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Abstract. Direction selectivity (DS) of simple cells in the primary visual cortex was recently suggested to
arise from short-term synaptic depression in thalamocortical afferents (Chance F, Nelson S, Abbott L (1998),
J. Neuroscience 18(12): 4785–4799). In the model, two groups of afferents with spatially displaced receptive
fields project through either depressing and non-depressing synapses onto the V1 cell. The degree of synaptic
depression determines the temporal phase advance of the response to drifting gratings. We show that the spatial
displacement and the appropriate degree of synaptic depression required for DS can develop within an unbiased
input scenario by means of temporally asymmetric spike-timing dependent plasticity (STDP) which modifies both
the synaptic strength and the degree of synaptic depression. Moving stimuli of random velocities and directions
break any initial receptive field symmetry and produce DS. Frequency tuning curves and subthreshold membrane
potentials akin to those measured for non-directional simple cells are thereby changed into those measured for
directional cells. If STDP is such that down-regulation dominates up-regulation the overall synaptic strength adapts
in a self-organizing way such that eventually the postsynaptic response for the non-preferred direction becomes
subthreshold. To prevent unlearning of the acquired DS by randomly changing stimulus directions an additional
learning threshold is necessary. To further protect the development of the simple cell properties against noise in the
stimulus, asynchronous and irregular synaptic inputs are required.

Keywords: synaptic plasticity, spike-timing dependent plasticity, synaptic depression, direction selectivity,
activity-dependent development, simple cell

1. Introduction

The temporally asymmetric spike-timing dependent
plasticity (STDP) which was recently observed in neo-
cortex and other brain regions shows a remarkable sen-
sitivity to the timing between pre- and postsynaptic
spikes (Markram et al., 1997; Zhang et al., 1998; Bi
and Poo, 1998; Feldman, 2000). According to these
experiments, the synaptic efficacy is upregulated if the
synapse is activated 10 ms before the occurrence of a
postsynaptic action potential, while it is downregulated

if the synapse is active 10 ms after the postsynaptic ac-
tion potential. This high sensitivity, on the other hand,
is opposed to the high irregularity of the neuronal fir-
ing and the stochastic nature of synaptic transmission.
In vivo spike trains show an inter spike interval (ISI)
variability which is in the same order of the ISIs them-
selves (Softky and Koch, 1993), typically larger than
20 ms. In the visual system these neurons are often
driven by noisy stimuli which introduce further vari-
ability. How then is it possible to meaningfully extract
and encode visual features by Hebbian mechanisms if
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the sensitivity of the synaptic rule is below the noise
level of the neural code? The paradox becomes even
more striking when one considers that simple cells in
the primary visual cortex (V1) are maximally direction
selective for slowly moving stimuli crossing the recep-
tive field (of roughly 1 deg) within one second (Saul
and Humphrey, 1992b; Hawken et al., 1996). How can
the cells learn to discriminate between stimuli extend-
ing over one second if the learning window itself is less
than 100 ms. How can cells acquire direction selectiv-
ity (DS), if in a natural environment moving stimuli are
constantly changing their direction and velocity?

To investigate these questions we modeled a single
simple cell in the primary visual cortex with a real-
istic number of afferents projecting from the lateral
geniculate nucleus (LGN) through either depressing or
non-depressing synapses. We implemented a stochas-
tic model of synaptic transmission with short-term de-
pression resulting from vesicle depletion. The degree
of synaptic depression is represented by the probabil-
ity of vesicle discharge, Pdis, given a spike and a ready
releasable vesicle. Direction selectivity in our model is
based on short-term synaptic depression in thalamocor-
tical connections as suggested by Chance et al. (1998).
As a consequence we consider STDP acting on the ab-
solute synaptic strength as well as on the degree of
synaptic depression. Visual stimuli consisted of light
gratings moving across the receptive field (RF) with
randomly sampled velocities and directions.

The simulations show that for a directionally unbi-
ased set of moving stimuli, in the presence of irreg-
ularly spiking LGN neurons and stochastic synaptic
transmission, it is in fact possible to acquire the simple
cell direction selectivity (DS) with similar properties
as observed in vivo. The large number of independent
synaptic release sites play a key role in obtaining these
results. Although a single synapse is not able to reliably
decide whether the presynaptic activity in general leads
or lags the postsynaptic activity, a large population may
do so. A large number of afferents, together with the
asynchrony of the spike trains, also gives the system
robustness against noise in the stimulus. The simula-
tions further confirm the importance of the competitive
aspect of STDP stressed by Song et al. (2000), which
in our case leads to the stable formation of the simple
cell RF with realistic response frequencies under dif-
ferent stimulation protocols. However, additional non-
linearities are necessary to stabilize the acquired RF
properties against direction changes. We show that in
a natural environment, with stimuli moving at differ-

ent speeds in different directions, the selectivity can
only be stabilized if we impose a learning threshold
to the postsynaptic activity which prevents unlearning
of any previously acquired selectivity. Without such a
threshold, the simple cell will switch its preferred di-
rection if a large number of stimuli move in the opposite
direction.

The basic mechanism making our simple cell di-
rectionally selective is the temporal phase advance of
the synaptic response attributed to synaptic depression
(Chance et al., 1998). Combining depressing and non-
depressing afferents with a spatial offset will produce
coincident synaptic input to the simple cell if stim-
ulated in the preferred direction, but asynchronously
timed input if stimulated in the non-preferred direc-
tion. Synaptic depression and the corresponding phase
advance only occurs if Pdis is large (say 0.8), and it is
virtually not present if Pdis is small (say 0.1). Hence,
a developmental model explaining the specific spatial
arrangement and the different response characteristics
of the two groups of synaptic afferents needs to modify
both the absolute synaptic strength and the degree of
depression encoded by Pdis. In fact, both types of synap-
tic plasticity are found in neocortex (Feldman, 2000;
Markram and Tsodyks, 1996, respectively). We show
that an activity-dependent modification of these two
synaptic parameters may turn a non-directional model
simple cell into a directional simple cell, each char-
acterized by the corresponding temporal tuning curve
and the subthreshold membrane potential responses.
The LGN activity driving the described synaptic plas-
ticity may either come from prenatal waves of retinal
activity, or from postnatal activity before or after eye
opening (cf. Discussion). Additional experimental sup-
port for the required forms of STDP in adult V1 comes
from recent in vivo recordings in cats showing clear
short-term plasticity of the RF which depends on the
millisecond timing between repeated pairings of stim-
uli (Gao et al., 2001). In these experiments, repeatedly
presenting two spatially displaced visual stimuli with
a delay of roughly 10 ms shifted the RF of the cortical
cell towards the location of the second stimulus, sug-
gesting a functional relevance of STDP in the primary
visual cortex (see also Djupsund et al., 2001).

Models for simple cell DS have a long history, but
the question which of the various directional mecha-
nisms eventually dominates the simple cell response
characteristics is still controversial. One line of mod-
els follows a feedforward scheme which is based on
spatially dislocated excitatory/inhibitory (Watson and
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Ahumada, 1985; Borst and Egelhaaf, 1989; Heeger,
1993) or excitatory/excitatory afferents (Adelson and
Bergen, 1985; Chance et al., 1998) with different tem-
poral response properties. Another, more recent line
of models stresses the importance of recurrent feed-
back connections in generating DS (Suarez et al., 1995;
Maex and Orban, 1996; Mehta, 2000). Models inves-
tigating developmental aspects of directional simple
cells exploit the lagged/non-lagged paradigm of LGN
cell responses (Feidler et al., 1997; Wimbauer et al.,
1997), network effects (Nagano and Fujiwara, 1979;
Rao and Sejnowski, 2000), or simple cell inhibitory
feedback (Mehta, 2000). The present model is of the
feedforward type and focuses on computational aspects
of STDP and short-term synaptic depression. To this
end we neglect cortico-cortical connections and the het-
erogeneity of the LGN latencies. In reality, the differ-
ent putative directional mechanisms might well work
together.

An early version which explains the emergence of
DS by a pure redistribution of synaptic efficacy through
modification of the vesicle discharge probability, with-
out adapting the absolute synaptic weights, appeared
as an extended abstract (Buchs and Senn, 2001).

2. Model and Methods

Our model encompasses the visual pathway from the
retinal input through the LGN to the activity of a simple
cell in the primary visual cortex. Special attention is
devoted to the synaptic mechanisms between the LGN
neurons and the simple cell.

2.1. Receptive Field of LGN Neurons
and the Simple Cell

As a visual stimulus we consider either stationary coun-
terphase gratings or drifting gratings moving with dif-
ferent speeds from the left or the right through the vi-
sual field. This stimulus drives the retinal ganglion cells
which themselves project onto LGN cells. To describe
the transfer function from the light stimulus to the LGN
output we follow Maex and Orban (1996) in the choice
of the spatio-temporal linear filter and the subsequent
half rectification. We use the analytical expression de-
rived in the ‘analysis paper’ (Senn and Buchs, 2002)
to calculate the instantaneous Poisson firing rate of the
on- and off-center LGN cells. In response to a drift-
ing sinewave grating a LGN cell at retinal position
xi (measured in degrees) fires with an instantaneous

Poisson rate f i
pre(t) = max{±A(C)A◦(k, �) cos(kxi −

�t), f back}. The quantities C, k/2π , and �/2π , de-
scribe the luminance contrast, the spatial frequency (in
cycles/deg), and the temporal frequency (in Hz) of the
drifting grating, respectively. The function A(C) rep-
resents a logarithmic fit of the contrast frequency curve
from Ohzawa et al. (1985), and A◦(k, �) captures the
frequency dependency of the linear spatio-temporal
LGN filter (for an explicit definition see the analysis
paper). On- and off-center LGN cells are distinguished
by the choice of the sign+or− in front of the amplitude
factors, respectively. To account for the refractory time
of LGN cells, spikes obtained from the Poisson spike
generator are discarded if they followed the previous
spike within 3 ms. Unless stated differently, we choose
a stimulus contrast of C = 0.5, a spatial frequency
of k/2π = 1 cycles/deg, different temporal frequen-
cies �/2π , and a background rate of f back = 5 Hz.
With these parameters, the maximal LGN firing rate
is 60 Hz. For the subthreshold voltage experiments we
use counterphase gratings leading to LGN responses of
the form f i

pre(t) = max{±A cos(kxi ) cos(�t), f back}.
The present description of the LGN firing rates as-

sumes periodic full field stimulations. Since transient
deviations from the periodic response are only observed
during the first cycle we apply the same formulas to our
generalized stimulation scenario with 4 consecutive cy-
cles drifting in randomly chosen directions. To simplify
the analysis we consider gratings with only optimal
spatial frequency and optimal orientation. The reason-
ing is that suboptimal gratings, and probably also nat-
ural stimuli which are composed of a superposition of
many such local suboptimal gratings, are less efficient
in driving the simple cell, and hence are less efficient
in inducing RF modifications. In turn, optimal gratings
with opposite drifting directions are most efficient in
annihilating each others RF modifications. Hence, to
study RF development we concentrate on the dominant
stimuli, and vary their features along one dimension,
the temporal frequency of the gratings. To isolate the
effect of short-term plasticity and STDP on thalamo-
cortical synapses we neglect cortico-cortical input onto
the model simple cell, although it represents perhaps
90% of the whole input (Ahmed et al., 1994). More-
over, feedforward input is modeled monosynaptically,
despite that inhibitory input is mediated by cortical in-
terneurons and hence is at least disynaptic.

The simple cell RF is implemented by a push-pull
mechanism with excitatory on-center and inhibitory
off-center afferents located at each site within the
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Figure 1. Initial synaptic arrangement. (a) Schematic drawing of
the initial spatial arrangement of on- and off-center LGN cells pro-
jecting through excitatory (bright ovals) and inhibitory (dark ovals)
synapses, respectively, onto the model simple cell in V1. The middle
clusters of afferents show synaptic depression (dashed line, index d).
(b) The initial effective synaptic strength Ḡeff of the different types of
(depressing/non-depressing, excitatory/inhibitory) afferents. For bet-
ter visualization, the inhibitory conductances from the off-center cells
are plotted downwards. (Dark dashed line: Ḡeff ,E

d (x) = ρE
d (x)Ḡ E

d (x);
dark solid line: Ḡeff ,E

nd (x); bright dashed line: Ḡeff ,I
d (x); bright solid

line: Ḡeff ,I
nd (x). The strength of the depressing synapses (dashed lines)

is scaled down by a factor of 0.5.)

simple cell RF. Both types of afferents are modeled as
monosynaptic connections from the LGN to the sim-
ple cell. In an initial state the simple cell RF is sym-
metric. Afferents located in the center of the simple
cell RF project through depressing synapses and are
either excitatory or inhibitory, depending on whether
they are on- or off-center, respectively (Fig. 1a). Simi-
larly, on- and off-center afferents located in the RF sur-
round project through non-depressing excitatory and
inhibitory synapses onto the simple cell, respectively.
For simplicity we only consider optimally oriented
gratings and, since the structure of the simple cell RFs
extends along this optimal orientation, we restrict our-
selves to a one-dimensional simple cell RF. The differ-
ent clusters of excitatory on-center and inhibitory off-
center afferents are modeled by Gaussian distributions
specifying the effective synaptic strength. This effec-
tive synaptic strength, Ḡeff (x), is characterized by the
product of the LGN cell density, ρ(x), associated with
the retinal position x , and the strength of an individual
synaptic connection, Ḡ(x) (Fig. 1b, see also Section 2
in the analysis paper). The fact that the fixed LGN cell
density is itself Gaussian makes the development of
the simple cell RF much more robust against random
stimulus fluctuations compared to a flat LGN density
(cf. point 5 in the discussion). The current experimen-
tal literature provides evidence neither for nor against
a spatial subdivision of the simple cell RF into depress-
ing and non-depressing synapses. Our simulations,
however, show that an initial symmetric subdivision

of the RF is necessary if strong DS is to evolve from
the same type of STDP applied to depressing and non-
depressing synapses (cf. point 7 in the discussion).

In our simulations we spatially distributed 800 affer-
ents among each of the 6 clusters in Fig. 1b such that the
densities in each cluster became Gaussian. The width of
the on- and off-cluster in the middle was σd = 0.15 deg
and the width of the surrounding clusters positioned
around xnd = ±0.35 deg was σnd = 0.15 deg. In most
of our simulations we had a total number of 4800 affer-
ents from the LGN onto the simple cell. This number
may be too high considering that the total number of
synapses onto the simple cell is in the range of tens of
thousands and only 10% of these are assigned to thala-
mocortical afferents (Ahmed et al., 1994). On the other
hand, each synaptic bouton may have multiple release
sites and each release site several releasable vesicles,
each contributing to the stochasticity of the postsynap-
tic current. Tests with a total of 600 synapses gave sim-
ilar qualitative results, but the chance for developing
DS was lowered (see Results).

2.2. Synaptic Transmission and Short-Term
Depression

To consider a realistic degree of jitter in the synaptic
transmission we modeled a stochastic neurotransmitter
release, and hence follow each of the (4800) vesicles
of the thalamocortical connections individually. For
the non-depressing synapses the probability of neuro-
transmitter release, Prel, is fixed to 0.5. For depressing
synapses Prel is activity-dependent because the vesicle
recovery process has a relatively slow time constant of
τrec = 150 ms. Immediately after vesicle discharge, the
readily releasable pool is depleted. It is stochastically
refilled by a Poisson process, i.e. at any time step dt
(=1 ms) the vesicle recovers with probability dt/τrec.
Formally, Prel = Pdis Pv , where Pv is the probability of
a vesicle being recovered, and Pdis is the vesicle dis-
charge probability (given a spike and a recovered ready
releasable pool). This is a stochastic version of the
depressing synapse model of Tsodyks and Markram
(1997), see also Senn et al. (2001) and Section 3.1
in the analysis paper. Pdis is modified by the synaptic
learning rule and is initially set to 0.03.

2.3. Simple-Cell Model and Receptor Dynamics

The simple cell in V1 is modeled as an integrate-and-
fire neuron receiving excitatory and inhibitory input
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from on- and off-center LGN cells, respectively, as
described above. Both types of input project through
depressing and non-depressing synapses, and the sub-
threshold membrane potential is governed by

τm
dV

dt
= Vrest − V + G E

nd (VE − V ) + G E
d (VE − V )

+ G I
nd (VI − V ) + G I

d (VI − V ). (1)

The membrane time constant is τm = 30 ms, the
resting potential Vrest = −70 mV, and the reversal
potential for the excitatory (inhibitory) synapses is
VE = 0 mV (VI = −100 mV). When the membrane
potential V reaches the threshold value of −52 mV,
an action potential is fired, and the potential is reset
to Vreset = −58 mV. To take into account the absolute
refractory time we clamp the membrane potential af-
ter each spike for 3 ms at Vreset. The G’s represent the
activity-dependent (dimensionless) total synaptic con-
ductances corresponding to the four types of connec-
tions. (Recall that G = gRm and τm = Cm Rm , where
g represents the corresponding total synaptic conduc-
tances, Rm the total membrane resistance, and Cm the
total membrane capacitance.)

The dynamics of an individual synaptic conductance
is modeled by a first order kinetics with instantaneous
response to a synaptic release. For instance, for an off-
center LGN cell at location xi projecting through a
depressing synapse, the synaptic conductance G I,i

d in-
creases by Ḡ I,i

d immediately after each synaptic release,
and then decays exponentially towards zero with time
constant τG = 2 ms. The total synaptic conductance of
these inhibitory depressing synapses is the sum of the
individual conductances, G I

d = ∑
i G I,i

d . The individ-
ual synaptic peak conductances before their modifica-
tion are chosen to be Ḡ E/I,i

d = 0.2 and Ḡ E/I,i
nd = 0.01.

These synaptic conductances were calibrated to obtain
a realistic time course for the simple cell subthreshold
membrane potential in response to stationary gratings
(Fig. 8a).

2.4. Synaptic Modifications

The implementation of the temporally asymmetric
synaptic learning rule is a reduced version of the one
in Senn et al. (2001), which was designed to fit the
experimental data from neocortical layer 5 pyrami-
dal cells (Markram et al., 1997). We applied the rule
not only to the discharge probability Pdis of the de-
pressing synapses, but also to the synaptic strengths

Ḡ E,i
d/nd of the individual excitatory depressing and non-

depressing connections. Roughly speaking, the rule
upregulates these synaptic parameters at each post-
synaptic spike, depending on the previous presynap-
tic activity, and it downregulates them at each presy-
naptic spike, depending on the previous postsynaptic
activity. To keep track of the pre- and postsynaptic
activities we introduce variables Ci

pre and Ci
post, allud-

ing to some pre- and postsynaptic calcium concentra-
tions. The variables are instantaneously increased by 1
at each presynaptic release and postsynaptic spike, re-
spectively, and otherwise decay towards zero with time
constants τC

pre = 20 ms and τC
post = 80 ms (Fig. 2). To

take into account the strong nonlinear increase of the
synaptic change as a function of the firing rate around
8 Hz observed by Markram et al. (1997) we introduce
secondary messenger S and apply postsynaptic thresh-
olds θ for the induction of the synaptic modifications
(cf. Senn et al., 2000). Again, the variables Si

pre and Si
post

are increased by 1 immediately after a presynaptic re-
lease and a postsynaptic spike, respectively, and they

Figure 2. The synaptic modifications according to Eq. (2). (a) LTP
is specified by an internal presynaptic variable (Cpre, upper line)
which is increased at the time of a presynaptic release (trel) and decays
with a time constant of τC

pre = 20 ms, and an internal postsynaptic
variable (Spost , lower line, clipped downwards) which is increased at
the time of a postsynaptic spike (tpost) and decays with a shorter time
constant τ S

post = 10 ms. Only the hatched area between Spost and the
learning threshold (θ S

post , dashed line) enters in the Hebbian LTP term.
(b) The effective synaptic modification. Above the line: the product
of the two hatched areas in (a), Cpre times [Spost −θ S

post]
+, specifying

the LTP term in Eq. (2). Below the line: the product of the two hatched
areas in (c), Spre times [Cpost −θC

post]
+, specifying the corresponding

LTD term. (c) LTD is specified by an internal postsynaptic variable
(Cpost , lower line, clipped downwards) which is increased at the time
of a postsynaptic spike (tpost) and decays with the long time constant
τC

post = 80 ms, and an internal presynaptic variable (Spre, upper line)
which is increased at the time of a presynaptic spike (trel) and decays
with τ S

pre = 10 ms. Only the hatched area between Cpost and the
learning threshold (θC

post , dashed line) enters in the Hebbian LTD
term shown in (b).
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decay both with a time constant of τ S
pre/post = 10 ms.

The synaptic modification is composed of two Heb-
bian terms describing long-term potentiation (LTP) and
long-term depression (LTD) of the specific parameter.
LTP is the product of the presynaptic calcium concen-
tration times the thresholded postsynaptic messenger
concentration, and LTD is the product of the thresh-
olded postsynaptic calcium concentration times the
presynaptic messenger concentration (Fig. 2). For the
modification of the discharge probability we therefore
have

dPi
dis

dt
= rup

P

(
Pmax

dis − Pi
dis

)
Ci

pre

[
Si

post − θ S
post

]+

− rdn
P Pi

disSi
pre

[
Ci

post − θC
post

]+
. (2)

The saturation factors (Pmax
dis − Pi

dis) and Pi
dis in front of

the Hebbian terms ensure that Pdis is not driven beyond
the physiological regime. We put [x]+ = max{x, 0},
Pmax

dis = 1, and the rates are set to rup
P ≡ rup,E

P,d =
2.5 and rdn

P ≡ rdn,E
P,d = 0.25. The adaptation of the

excitatory synaptic strengths, Ḡ E,i
d/nd , follows the same

rule (2) with Pi
dis replaced by Ḡ E,i

d/nd . The corresponding
parameter values are Ḡmax

d/nd = 1/0.1, rup,E
G,d = 0.5,

rup,E
G,nd = 2, rdn,E

G,d = 0.9, and rdn,E
G,nd = 0.25.

The synaptic modifications introduced so far con-
cerned excitatory connections only, and previous sim-
ulations show that these are in fact sufficient to ex-
plain the emergence of DS (see Buchs and Senn (1999),
and the analysis paper). However, intracellular record-
ings of subthreshold membrane potentials of simple
cells reveal the presence of strong inhibitory affer-
ents, which show a distinct temporal behavior for di-
rectional and non-directional cells (Jagadeesh, 1993,
see Fig. 8). To account for these differences we also
subject the inhibitory afferents to STDP. Since we
model inhibition monosynaptically, synaptic plastic-
ity for these afferents has to be modeled by the re-
verse learning rule. This would effectively correspond
to the original rule operating on excitatory thalamo-
cortical synapses which project through inhibitory in-
terneurons onto the simple cell. Hence, modeling direct
thalamocortical inhibition, we modify Pi

dis and Ḡ I,i
d/nd

of the inhibitory cells according to (2), but with the
reversed sign in front of both terms, and with the corre-
sponding saturation factors interchanged. The rates are
rup,I

P,d = 0.5 and rdn,I
P,d = 2, rup,I

G,d = 0.15, rup,I
G,nd = 0.2,

and rdn,I
G,d = 12.5, rdn,I

G,nd = 5, and Ḡmax
d/nd is the same for

excitatory and inhibitory synapses. The main criterion
for the choice of the learning parameters was to achieve

the subthreshold membrane potential of directional
cells (Fig. 8d). As a guideline we set our parameters so
that LTP dominates the modification of Pdis (since the
initial Pdis is small), while LTD dominates the modifi-
cation of the synaptic strength. The specific values of
the learning parameters are less crucial.

To test the necessity of the different elements in the
rule (2) we have also simulated a minimal version of a
temporally asymmetric learning rule. This reduced ver-
sion is obtained from (2) by setting the thresholds θ S

post

and θC
pre to zero (thereby discarding the brackets in (2)),

and by considering an instantaneous decay of the sec-
ondary messenger (thus replacing Si

post with δ(t − tpost)
and Si

pre with δ(t − trel)). Since in this reduced ver-
sion the thresholds were missing, however, DS could
not be maintained when the stimulus directions were
randomized (see Fig. 6 and see Buchs and Senn, 1999).

3. Results

3.1. Emergence of Direction Selectivity

To illustrate the emergence of DS we started with a
symmetric distribution of the LGN afferents as shown
in Fig. 1. The synaptic efficacies are tuned such that for
a sinewave stimulation the model simple cell shows the
strongest response when the stimulus is centered over
the RF. If the light grating moves from left to right,
excitatory synapses from on-center LGN cells which
are located in the left half of the RF are activated im-
mediately before the occurrence of the postsynaptic
spikes (raster plot in Fig. 3a, markers slightly left of
the vertical lines) and therefore upregulate their synap-
tic strengths (Ḡ E

d/nd ), while those in the right half of the
RF are activated after the postsynaptic spikes (mark-
ers slightly right of the vertical lines), and therefore
downregulate. The membrane potential is driven by the
currents of four groups, on-and off-center LGN affer-
ents, with either depressing or non-depressing synapses
(Fig. 3a, lower traces). Repeated stimulations with grat-
ings from the left induces a shift in the RF as shown on
the left axis of Fig. 3a and in Fig. 4a.

The same rule also modifies the vesicle discharge
probability of the depressing excitatory synapses (P E

dis),
which is a measure of the amount of depression. Since
we have chosen small initial values for Pdis to mimic the
subthreshold membrane potential of non-directional
cells, Pdis increases during the learning process within
the whole RF. Mathematically, this is due to the factor
P E

dis in front of the LTD term in Eq. (2), making this
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Figure 3. (a) Spike raster plot in response to a rightward moving grating (rightward running upwards). Each mark represents a release event
of a synapse (�, �: depressing excitatory, inhibitory; �, �: non-depressing excitatory, inhibitory synapses). Releases of only each 30th synapse
are shown. Left inset: effective synaptic strength of the different groups, same scaling and line code as in Fig. 1b. Lowest trace: postsynaptic
membrane time course with attached action potentials (vertical lines running through the raster plot and indicating the postsynaptic spike times).
Middle traces: current time courses generated by the synaptic subgroup corresponding to the legend on the right, with inhibitory currents
plotted downwards. Excitatory synapses with synaptic releases immediately before a post-synaptic action potential (markers slightly left of the
vertical lines) increase their strength and their probability of discharge, while excitatory synapses activated after a postsynaptic action potential
(markers slightly left of the vertical lines) decrease these parameters. The rule for inhibitory synapses is reversed. (b, c) Responses after repeated
stimulations with a rightwards drifting grating. (b) Upper traces: Total current from the depressing (grey) and non-depressing (dark) synapses
induced by a grating (�/2π = 4 Hz, k/2π = 1 deg−1) moving in the preferred direction. Lower traces: Due to the phase advanced response
of the depressing synapses the postsynaptic membrane potential is repeatedly driven above threshold (dashed dotted line) and generates action
potentials (vertical lines). (c) Same as in (b) but for a grating drifting in the opposite direction. The response of the depressing synapses falls
exactly into the trough of the non-depressing ones and the membrane potential is too low to reliably generate spikes. (For comparison with in
vivo recordings see e.g. Fig. 1A in Carandini and Ferster, 2000.)

term vanish in the initial state. Due to the temporal
structure of the stimulus, on the other hand, the domi-
nating LTP term is stronger on the left half of the RF,
inducing the spatial asymmetry of the Pdis distribu-
tion shown in Fig. 4b. Modifying the corresponding
parameters of the inhibitory synapses, Ḡ I

d/nd and P I
dis,

respectively, by the analogous rule (2), but with re-
versed signs, induces asymmetries in the same direc-
tion. Since inhibitory pathways are activated through

off-center LGN cells, their activation is phase shifted
by half a cycle and the synapses left from the RF center
are activated after the postsynaptic activity (see raster
plot Fig. 3). Hence, for inhibitory afferents the reversed
rule achieves the same effects as the original rule for
excitatory synapses (Fig. 4).

When testing the DS after training with a grating
moving again in the training direction, the spatial shift
in the RF together with the temporal phase advance
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Figure 4. Synaptic distribution after learning. (a) Same as in Fig. 1b, but now after application of the drifting ‘light’ stimuli with drift velocity
sampled from a Gaussian distribution (shown in Fig. 6b). The curves represent the effective synaptic strength Ḡeff , averaged over 30 synapses,
and binned together on the x-axis. (The strengths of the depressing synapses (dashed lines) are again scaled down by a factor of 0.5.) (b) The
distribution of the vesicle discharge probability P E/I

dis for the excitatory and the inhibitory synapses (plotted up- and downwards, respectively)
before (thin dashed lines at Pdis = 0.03) and after repeated stimulations (thick dashed lines). Straight lines at Pdis = 0.5 represent the unchanged
discharge probabilities of the non-depressing excitatory and inhibitory synapses.

of the depressing synapses lead to a summation of the
response of the two groups of afferents (Fig. 3b). If
the grating moves in the opposite direction, however,
the response of the depressing synapses falls into the
trough originating from the non-depressing surround
and the sum is smaller (Fig. 3c). Importantly, the synap-
tic rule adjusts the weights automatically in order to
produce output firing rates in a physiological regime.
In this regime the response to the non-preferred di-
rection is reduced to single occasional spikes, while
for the preferred direction the cell responds with firing
rates between 10–20 Hz. This self-regulation is due to
the dominance of downregulation in the rule for the
synaptic strengths, implying that initially the simple
cell response to both directions decays. As soon as the
peak depolarization drops below threshold for the non-
preferred direction, no further changes are induced by
stimuli from that direction, and the overall decay even-
tually saturates. Once the rates in the learning equation
(2) are tuned to get the appropriate dominance of LTD
over LTP, the acquisition of the simple cell response
property was very robust with respect to the modifica-
tion of the neuronal parameters and the RF parameters.

The simple cell DS emerges from the interplay be-
tween the spatial RF asymmetry induced by modifying
the synaptic strength, and the temporal phase advance
of the depressing synapses induced by modifying the
vesicle discharge probability. For a stimulus moving
in the preferred direction, the spatial and temporal ad-
vances add, while they cancel each other for a stimulus
moving in the non-preferred direction. The temporal
and spatial shift as a function of the temporal frequency
(�/2π ) of the stimulus is shown in Fig. 5, before and

after repeated stimulations in different directions, but
with fixed temporal frequency. Since Pdis is initially
small, virtually no synaptic (short-term) depression and
therefore no temporal phase advance is present (Fig. 5a,
dashed line). This is different, however, when Pdis be-
comes large during the stimulation (Fig. 4b), thereby
causing synaptic depression and a significant phase ad-
vance (Fig. 5a, full line). Similarly, the modification of
Ḡ E

d induces a shift in the effective synaptic strength
of the depressing synapses opposite to the stimulus di-
rection (Fig. 5b, full line). Interestingly, for stimuli ex-
tending over the entire width of the RF the asymptotic
shift is independent of the grating velocity, but instead
depends on the spatial derivative of the stimulus (this
would be different for a moving narrow light bar, cf.
Eq. (40) in the analysis paper). However, if we stimu-
late only with a finite number of cycles with the same
temporal frequency, or with an infinite number of cy-
cles with differently oriented gratings, the asymptotic
shift cannot be reached, and spatial phase shifts evolve
as shown in Fig. 5b. Note that the temporal and spatial
shifts show a similar frequency dependency, implying
that they effectively cancel in the non-preferred direc-
tions while they add in the preferred direction. For an
explicit estimate of the two phase shifts as a function
of the temporal frequency, and for further discussions
of the parameter dependencies, we refer to the analysis
paper.

To test the dependence of our results on the number
of afferents we run all simulations with 600 instead
of 4800 LGN cells. Although no qualitative differ-
ences were observed, the reduction increased the post-
synaptic fluctuations and slightly impaired the proper
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Figure 5. Temporal and spatial phase advance as a function of the temporal frequency �/2π of the drifting gratings. (a) The temporal phase
advance (as a fraction of a full cycle) of the synaptic current consisting of the sum of all depressing (excitatory and inhibitory) synapses (cf.
Fig. 3), before (dashed) and after learning (solid). The shift is represented by the phase of the first Fourier component of the synaptic response.
The temporal phase advance mainly depends on the temporal frequency of the test grating, while it is only weakly dependent on the specific
temporal frequency during training. (b) The spatial phase shift of the effective synaptic strength, Ḡeff ,E

d (x), of the depressing excitatory synapses,
before (dashed) and after stimulation with 40 cycles of a drifting grating with the corresponding temporal frequency. The optimal temporal
frequency of roughly 4 Hz is determined by the parameters of the learning process and, in a first approximation, is given by 1/(2πτL ), where
τL is the (effective) width of the learning function (see analysis paper). Note that the temporal phase advance (a), which is determined by
the presynaptic firing rate and the parameters of the short-term depression, does also peak at roughly 2–8 Hz. Error bars represent standard
deviations.

development of DS. When stimulating with a 4 Hz grat-
ing moving always from left to right, for instance, the
average direction index was DI = 0.83 in the case of
600 LGN cells, compared to DI = 0.97 in the case of
4800 LGN cells (where the direction index is defined
by DI = (P − NP)/(P + NP) with P and NP being the
simple cell responses to the preferred and non-preferred
directions).

3.2. Symmetry Breaking for an Unbiased
Set of Noisy Stimuli

As we saw, the asymmetry in the learning rule induces
RF shifts opposite to the stimulus direction, and the
simple cell ‘learns’ to respond to motions from the di-
rection it was ‘trained’ to. A more realistic scenario,
however, would involve different stimulus velocities
with different directions of motion. Without assuming
a specific structure of the environment one would ex-
pect a normal distribution of velocities around zero.
Our simulations show that even for such an unbiased
set of stimuli DS emerges (Fig. 6a and b). Due to the
initial RF symmetry the simple cell responds equally
strongly to gratings moving with the same speed in
opposite directions. However, a selectivity to either di-
rection emerges after repeated presentation of drifting
gratings with random velocities and directions sampled
from a zero-mean Gaussian distribution (Fig. 6a), each

presented for 4 cycles. This arises through a positive
feedback mechanism which amplifies slight RF asym-
metries: as soon as the response to one direction dom-
inates, the RF shifts opposite to that direction, and this
causes a further increase of the response to the same
direction (see Section 3.4 of the analysis paper).

To test the dependence of this stability result on
the details of the learning rule we implemented dif-
ferent forms of the rule with varying parameter values.
It turned out that a crucial element ensuring the ro-
bustness against reversing stimulus directions are the
thresholds imposed in the learning rule (2). Such learn-
ing thresholds (or, equivalently, strong nonlinearities in
the learning curve) make a qualitative difference in un-
learning. Without thresholds, any acquired selectivity
can be unlearned if by chance several gratings moved in
sequence in the non-preferred direction. In fact, for the
reduced learning rule without thresholds and without
secondary messengers, the selectivity only transiently
emerged when the stimulus direction was randomly
chosen (Fig. 6c). Unlearning of the acquired DS with-
out additional nonlinearities is always possible since
the simple cell still responds to the non-preferred di-
rection and thereby counteracts the preferred synaptic
modifications. With a learning threshold, however, the
response to the non-preferred direction may fall sig-
nificantly below this threshold if we assume that LTD
dominates LTP. In this case the remaining responses
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Figure 6. Unbiased input scenario requires a learning threshold. (a) Distribution of the postsynaptic response to gratings with random velocities,
using the learning rule (2) with internal thresholds. According to the initial RF symmetry the simple cell response (dots, representing spike rates
averaged over 4 cycles) does not depend on the stimulus direction (thin lines). After presenting moving gratings with velocities �

k (deg/sec)
sampled from a Gaussian distribution (dashed line, mean = 0, SD = 6 deg/sec) the symmetry in the response is broken and the cell develops
some DS for positive velocities (thick line, average of the individual samples). (b) Temporal evolution of the postsynaptic spike frequency for
the same data shown in (a). The simple cell responses to rightward/leftward drifting gratings are plotted on the upward/downward ordinate. Due
to the symmetry breaking of the RF, the responses to the two directions drop with different speeds. Once a directional preference is established,
the threshold in the learning rule prevents unlearning. (c) If we use the reduced learning rule without learning thresholds and infinitely fast
secondary messenger (see Section 2.4), the acquired DS cannot be maintained. Although the symmetric RF is unstable and therefore transiently
some DS evolves, a few gratings moving in series in the non-preferred direction can again abolish this selectivity. The brightness of the dots
encodes the grating velocity according to (a).

to the non-preferred directions are too weak to coun-
teract the acquired selectivity, even during a very long
stimulus sequences in the non-preferred direction.

Randomized grating velocities and drifting direc-
tions is one source of stachasticity. As another source
of stochasticity we considered Gaussian noise (with
zero mean and a 3 Hz standard deviation) in the in-
stantaneous Poisson firing rates of the LGN cells. As
expected, the noise in the firing rate is absorbed by the
Poisson process and affects neither the development
of DS nor the shape of the frequency response curves
(cf. Fig. 7a). The noise robustness crucially depends on

the fact that the individual spike trains themselves are
stochastic. To reveal this functional role of the stochas-
ticity we implemented a deterministic generation of the
presynaptic spikes and the synaptic releases (by trig-
gering a presynaptic spike whenever the time from the
last spike exceeded the instantaneous presynaptic fir-
ing rate, and with a deterministic implementation of our
depressing and non-depressing synapses, cf. Tsodyks
and Markram (1997)). In the deterministic version we
often observed high frequency oscillations of the total
postsynaptic current in its rising phase (up to 100 Hz)
due to a partial alignment of the presynaptic spikes
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Figure 7. Activity-dependent shift of the simple cell tuning curves, observed in the simulations (a) and in vivo (b). (a) In an initial state, the
RF is symmetric and the tuning curves for the two directions are identical (not shown). After presenting 50 grating stimuli with random drift
velocities, the model simple cell develops weak DS (a1). Solid line: postsynaptic mean firing rate for the preferred direction as a function of
the temporal frequency of the grating. Dashed line: same for the non-preferred direction. (a2) After additional 200 random stimulations the
postsynaptic firing rate dropped (note the different scales on the ordinates) and the DS improved in a regime where the temporal and spatial
phase shift is largest (cf. Fig. 5). Error bars represent standard errors of the mean. (b1) Tuning curve of a directional simple cell in layer 5
of area 17 (replotted from Saul and Humphrey, 1992b), showing the response amplitude in the preferred (solid) and non-preferred direction
(dashed). (b2) Recordings from the same cell after 3 additional hours of stimulations show a drop in the overall response and in the response to
the non-preferred direction similar to the simulations.

from the different afferents. This occurred even though
the initial spike times were randomized and despite the
fact that we used a purely feedforward architecture.
When adding the Gaussian noise to the instantaneous
firing rates of the LGN cells, however, these high fre-
quency oscillations disappeared and the postsynaptic
peak response drastically dropped. While the high fre-
quency oscillation destroyed the simple cell DS, it was
again restored by adding independent spike-time jitter.
Hence, the same noise which is absorbed in the stochas-
tic version may have a drastic effect on the simple cell
response when the presynaptic spikes and the synaptic
releases are deterministic.

3.3. From Non-Directional to Directional
Simple Cells

Next we investigated the possibility that the learning
rule may convert non-directional simple cells into di-
rectional cells. To test this possibility we started from
an initially symmetric synaptic arrangement and deter-
mined the velocity tuning curves before and after stim-
ulation with randomly sampled gratings. Depending on
the parameter values (such as k, f 1, rup/dn, θpost), the
original and emerging tuning curves are in fact qualita-
tively similar to those measured for non-directional and
directional simple cells in the cat visual cortex (Saul
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and Humphrey, 1992b). In our model it is important
that the overall simple cell response decreases during
the ongoing stimulations. Only when LTD dominates
LTP, will the self-stabilization of the simple cell re-
sponse occur (note the drop of the maximal firing rate
of 20 Hz to 15 Hz in Fig. 7a).

The requirement that the simple cell responsiveness
must decrease during the conversion of a directional
cell to a non-directional cell is difficult to support ex-
perimentally. Nevertheless, there is one example of a
simple cell in V1 which shows a similar decrease of
the responsiveness and a similar shift of the temporal
frequency tuning curve between the beginning and the
end of its 3 hour long recording as it is typical in the
model (Fig. 7a and b). In both model and data there
is an increase in DS at temporal frequencies between
2–8 Hz. In the model this is because the spatial shift
of the RF center caused by STDP and the temporal
phase advance caused by synaptic depression are both
maximal at temporal frequencies between 2–8 Hz (see
Fig. 5). The reason for the activity-dependent shift of
the tuning curves in the data is not established. We
did not try to achieve a full quantitative fit of the data
shown by this specific cell since the spectrum of mea-
sured tuning curves is rather large (see, for instance,
Saul and Humphrey (1992b) and Hawken et al. (1996).
Imposing a postsynaptic membrane time constant of
τm = 50 ms for the simple cell, for instance, would
easily cut off the simple cell responses above 16 Hz
(see e.g. Carandini et al., 2001). However, for synaptic
depression time constants τrec below 200 ms it is not
possible to achieve DS at low frequencies (0.25 Hz)
which is as strong as that observed in vivo. Similar
tuning curves as shown in Fig. 7a can be obtained by
considering only excitatory synapses.

To further investigate the conversion of a non-
directional to a directional simple cell we considered
the modification of the time course of the subthreshold
membrane potential caused by the synaptic plasticity.
The response to counterphase gratings applied before
and after the developmental process was very similar
to the response of non-directional and directional sim-
ple cells in V1 (Fig. 8). The counterphase response
before the developmental process showed virtually no
distortion of the sinusoidal membrane potential oscil-
lation (Fig. 8 a1). This is because in the initial config-
uration we assumed small vesicle discharge probabil-
ities which makes synaptic depression virtually disap-
pearing. Due to the linear behavior of the simple cell
the counterphase responses predict well the response

to the drifting gratings (a2), just as it is the case for
non-directional simple cells in V1 (c1, c2). After ran-
dom stimulation with drifting gratings, different tem-
poral distortions are caused at different spatial phases
(b1). The distortions are caused by the development
of synaptic depression during the learning process and
reproduce the advanced responses in the intracellular
recordings from a direction selective simple cell in V1
(d1). If compared with the simulations in Chance et al.
(1998) the distortion is less sharp, since in our case
the synaptic afferents are continuously distributed in
space (rather than concentrated in 3 separate positions).
Interestingly, the temporal distortion of the total post-
synaptic current is completely lost when considering
drifting gratings (b2, d2). In our simulations this is due
to the spatial averaging of differently timed synaptic
responses: since the same temporal nonlinearities arise
at different spatial positions, the total postsynaptic cur-
rent obtained by sequentially activating these afferents
is smoothed out. This is the remarkable linearity of sim-
ple cells emphasized by many works (Reid et al., 1987,
1991; Jagadeesh et al., 1993; for a review see Shapley,
1994). Despite this linearity, DS could be explained
by non-linear synaptic depression emerging from an
activity-dependent redistribution of the synaptic effi-
cacy (through STDP acting on Pdis).

3.4. Strobe Rearing Prevents the Development
of Direction Selectivity

Finally we show that the development of DS by means
of an asymmetric synaptic learning rule is compati-
ble with strobe rearing experiments. In these experi-
ments cats were reared from birth to 8 months in a
room illuminated only by a strobe lamp operating at
8 Hz (Pasternak et al., 1985; Cremieux et al., 1987;
Humphrey and Saul, 1998). As observed by the differ-
ent groups, DS in most simple cells could not properly
evolve or was largely lost under such flickering illu-
mination, although other features like orientation pref-
erences remained intact. Further analysis suggests that
the deficit in directional cells is because strobe rear-
ing prevents the convergence of synaptic inputs with
different response timing onto the same simple cell
(Humphrey et al., 1998). Those remaining cells which
still had differently timed afferents were less direction
selective, and this can be explained with a reduced in-
separability of the spatio-temporal RF (Humphrey and
Saul, 1998).
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Figure 8. Comparison of subthreshold responses before and after learning with in vivo recordings in a non-directional cell in area 17 of the
cat. (a1) Membrane potentials evoked by a contrast modulated stationary sinewave grating oscillating at 2 Hz, located at eight different spatial
phases. Arrows indicate the level of the membrane resting potential, and the smooth trace at the bottom reflects the stimulus time course in the
RF center. (a2) Top: Response to a drifting grating moving in the preferred direction with the same temporal frequency as the stationary grating
(thick trace). The prediction from the appropriately shifted and scaled responses from the left is shown as a thin line below. Bottom: Same for the
non-preferred direction. (b) Same as in a, but now after 300 presentation of drifting gratings with velocities sampled from a normal distribution
around 0 deg/s. Due to the temporal nonlinearities the response predicted by the counterphase gratings does not perfectly coincide with the
response to the drifting grating. (c, d) The original experiments for a non-directional (c) and directional (d) simple cell in the cat visual cortex
(replotted from Jagadeesh, 1993, 1997). The nonlinearities in (b1) and (d1) of the membrane potential is attributed to the depressing synapses
in the RF center.

To mimic strobe rearing we drove the LGN cells with
drifting gratings illuminated only during 8 Hz flashes.
Each flash generates an instantaneous LGN activity
which is proportional to the instantaneous illuminance

of the grating at the specific site and which decays
with a time constant of 50 ms (the effective integration
time of simple cells ranges from 44–100 ms, see Reid
et al. (1992)). When applying such stimuli to the initial



180 Buchs and Senn

Figure 9. Strobe versus normal rearing. (a) During ‘strobe rearing’ (mimicked by illuminating drifting gratings during the short 8 Hz flashes)
only the temporal phase advance develops (by uniformly increasing Pdis, solid line), without breaking the spatial symmetry of the RF (since, on
the time scale of the learning window, the information about the direction of motion is lost, dashed line). This leads to a simple cell which is not
direction selective. No symmetry breaking occurs even if the stimulating gratings move exclusively in one direction. (b) During ‘normal rearing’
the temporal phase advance of the depressing synapses (solid) and their spatial shift (dashed) both increase. (c) When applying the stroboscopic
illumination scenario after ‘normal rearing’ (b), the acquired spatial phase shift of the depressing synapses fades out and DS is impaired.

symmetric arrangement with weak depression, the dis-
charge probability increased uniformly, and no appro-
priate spatial synaptic structure in the synaptic strength
emerged. This is because the time window of the learn-
ing rule is too narrow to capture the motion sampled
every 125 ms by the flash. Moreover, the short flashes
distort the presynaptic activity along a single LGN af-
ferent in a step-like manner and, on the time scale of
the learning window, the directional information is lost.
Since the synaptic modification is proportional to the
derivative of the presynaptic firing rate multiplied by
the postsynaptic rate (Eq. (58) of the analysis paper) no
directional information is contained in the final synap-
tic strengths.

Although no symmetry breaking occurs in our sim-
ulations for strobe rearing, the discharge probability
may globally increase depending on whether the flash
activity is strong enough to trigger the synaptic modi-
fications. As a consequence, a temporal phase advance
of the RF center may develop (Fig. 9a). Due to the lack
of a spatial phase shift, however, strobe reared cells are
not direction selective. For comparison, under normal
rearing the temporal and spatial phase advance both
co-evolve (Fig. 9b), resulting in a directional simple
cell. When applying the strobe illumination to a nor-
mally reared, direction selective simple cell, the tempo-
ral phase advance is maintained since Pdis becomes uni-
formly large (Fig. 9c). However, since LTD dominates
the modification of the synaptic strength, and since the
strobe flashes break the correlations between the pre-
and postsynaptic activity present in uniformly illumi-
nated drifting gratings, the RF asymmetry acquired dur-
ing normal rearing is again abolished (Fig. 9c). Hence,
in agreement with the experiments, normally reared

simple cells loose their DS when repeatedly exposed
to strobe illumination.

Our model also allows for an interpretation of the
behavioral experiments showing that strobe reared cats
may become able to detect motion directions if the light
intensity of the stimulus is increased by a factor of 10
from a normal level (Pasternak et al., 1985). To explain
this phenomenon within our model we assume that
some cells show an initial asymmetry in the spatial dis-
tribution of depressing and non-depressing afferents. If
the flash induced activity is too weak to trigger synap-
tic modifications Pdis would remain small (0.03–0.1).
In this case the usual light intensities do not generate
a suitable phase advance and the simple cell remains
unselective. However, with low Pdis synaptic depres-
sion sets in if the light intensity is increased strongly
enough (because depression depends on the product
fpre Pdis), and thereby generates the required phase ad-
vance making the cell direction selective (simulations
not shown, but see Fig. 2E in Chance et al. (1998),
for the monotonic increase of the phase advance with
stimulus contrast).

4. Discussion

We have presented a developmental model for the sim-
ple cell DS. The mechanism for DS we considered
exploits the temporally nonlinear response character-
istics arising from synaptic depression, as previously
suggested by Chance et al. Synaptic depression of feed-
forward connections from the LGN to the primary vi-
sual cortex was recently observed in the cat (Stratford
et al., 1996), and it is an open issue to what extent
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DS is attributed to synaptic depression (Chance et al.,
1998), intracortical connections (Heeger, 1993; Suarez
et al., 1995), and different LGN latencies (Feidler
et al., 1997). The present work shows that, in princi-
ple, synaptic depression together with STDP (Markram
and Tsodyks, 1996; Markram et al., 1997) would have
the power to convert non-directional simple cells into
directional ones within a randomized stimulation sce-
nario. Synaptic depression in the visual pathway is
also supported by recent in vivo experiments on cross-
orientation suppression in the primary visual cortex of
the cat (Durand et al., 2001; Freeman et al., 2001).
There is a wide range of behaviors seen in simple cells
which can be explained by thalamocortical synaptic
depression, as exposed in Carandini et al. (2002). Tem-
porally asymmetric STDP in V1, on the other hand,
is supported by recent experiments showing that the
short-and long-term dynamics of RFs depend on the
milliseconds delay between two spatially displaced
flashing stimuli (Djupsund et al., 2001; Gao et al., 2001;
Yao and Dan, 2001).

The cited experiments on synaptic depression and
STDP in the primary visual cortex could be combined
to investigate the effect of these mechanisms on the
simple cell DS. If both cross-orientation suppression
and DS rely on synaptic depression, masking with or-
thogonal gratings should impair the DS of a cell. If
STDP is present in V1, repeated stimulation with unidi-
rectional gratings should alter the cell’s DS. Moreover,
DS should be abolished when replacing the sine grat-
ing by a bar grating because the characteristic phase
advance would not develop for a moving bar grating.
This would be different, however, if DS is caused by
different LGN latencies instead of synaptic depression.

To isolate the impact of synaptic depression onto
DS we considered a purely feedforward architecture
(Hubel and Wiesel, 1962) and neglect the different
types of LGN latencies (Saul and Humphrey, 1992a).
When adding LGN latencies distributed in the range
of 0–150 ms to our model, DS still evolved. If after
learning we turned off either the LGN latencies or the
synaptic depression, DS was lost in both cases, showing
that both mechanisms may jointly contribute, and with
equal importance, to the simple cell DS. We emphasize
that we do not make a statement about the origin of the
neuronal activity driving the synaptic modifications. In
fact, different species show different stages of simple
cell DS at eye-opening (for a review and further refer-
ences see Sur and Leamey (2001), for early works on
kittens see Hubel and Wiesel (1963), and Albus and

Wolf (1984)), and spontaneous waves of retinal activ-
ity before eye-opening (Meister et al., 1991, 1995) may
generate LGN activity which may drive synaptic mod-
ifications in a similar manner as the visual input after
eye-opening.

4.1. Basic Results

The important property of depressing synapses is that
they cause a phase advanced response to a sinusoidally
modulated stimulus. DS emerges if, in the stimulus di-
rection, afferents with depressing synapses are spatially
arranged behind non-depressing afferents. A stimulus
activating in sequence non-depressing and depressing
synapses therefore produces in-phase postsynaptic re-
sponses which add together. If the stimulus activates
the synaptic populations in the reverse order however,
the responses are slightly phase shifted, sum up less
and trigger only weak simple cell responses (Fig. 3b
and c). Although the phase advance of the total synap-
tic current summed over the spatially distributed pop-
ulation of depressing synapses is relatively small due
the spatial averaging (Fig. 5a), this phase advance is
still enough to produce DS with realistic direction in-
dices (up to ∼0.9 for the optimal stimulus frequency,
see Fig. 7, a2). However, the size of the possible phase
advances is too small to explain the different response
latencies observed in cortical cells (Saul and Feidler,
2002).

An activity-dependent development of the different
phase shifts requires a rule which generates the correct
spatial distribution of depressing and non-depressing
afferents within the RF, and at the same time ap-
propriately adjusts the degree of synaptic depression.
These requirements are met by a temporally asymmet-
ric STDP which acts on both, the synaptic strength and
the degree of synaptic depression. This form of STDP
imparts several properties to simple cells which may
help them to develop DS in an unbiased input scenario
with visual stimuli moving with various velocities and
different directions. Such properties comprise the tem-
poral tuning curve (Fig. 7) and the subthreshold mem-
brance potential time course (Fig. 8). Depending on
the rate of the synaptic modifications, the properties
are either more akin to those of a non-directional or a
directional simple cell. The model also offers an ex-
planation of the impaired DS after exposure to strobo-
scopic illumination (Pasternak et al., 1985; Cremieux
et al., 1987; Humphrey and Saul, 1998). Since the flash
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period of a 8 Hz strobe light is beyond the time win-
dow of synaptic modification, a spatial RF asymmetry
will either be lost or cannot develop (Fig. 9). If, in the
model, DS is lost after exposure to strobe stimuli, it
can be regained by increasing the contrast and light
intensity of the moving stimuli.

4.2. The Learning Process

In order to stably reproduce the different experimental
observations in the presence of the unbiased random-
ized stimulus scenario we had to introduce additional
elements to our basic model. A careful analysis of
these elements leads to different insights into the
learning process, and raises further hypotheses about
its biological implementation:

(1) Symmetry breaking through positive feedback.
When exposed to an unbiased input scenario with grat-
ings moving with equal probability in different direc-
tions, any initial symmetry in the simple cell RF will be
broken. This is ascribed to the positive feedback loop
induced by the Hebbian rule. Since the rule strength-
ens the synapses proportional to their contribution to
the postsynaptic activity, a subsequent activation will
lead to an increased response which in turn strengthens
the same synapses (see the analysis paper for a formal
description).

(2) LTD > LTP implies self-regulation of simple cell
responses. Without additional regulatory mechanisms
the above positive feedback loop would drive the synap-
tic strengths towards saturation level. In a more real-
istic input scenario with stimuli moving in different
directions, as considered here, the synaptic growth is
naturally bounded since a synapse is activated equally
often before and after a postsynaptic spike. As recently
shown in different papers (see e.g. Kempter et al., 1999;
Song et al., 2000) this leads to a normalization of
the synaptic strengths, provided the down-regulating
branch in the rule dominates (in area) the up-regulating
branch (‘LTD > LTP’). In our simulations this domi-
nance implies that the overall response to both direc-
tions decreases until the learning process ceases (see
Fig. 6).

(3) Preventing unlearning requires an internal
synaptic threshold. The above normalization property
does not yet assure the stability of the learning pro-
cess, since repeated presentation of stimuli moving in
the non-preferred direction may unlearn the acquired
DS (see Fig. 6b and Buchs and Senn, 1999). There is,

however, a qualitative difference when applying a
learning threshold to the postsynaptic activity in the
two Hebbian terms of Eq. (2). Although the cell may
still respond to the non-preferred direction, no synaptic
changes are induced if this activity becomes too weak
to drive the internal (post)synaptic variables above the
learning threshold. Additional mechanisms may lead to
a slow adaptation of this learning threshold such that
the synapse may regain its plasticity after a period of
low postsynaptic activity, e.g. induced by visual de-
privation. Such a moving threshold was introduced in
the BCM-theory (Bienenstock et al., 1982) which was
also shown to be appropriate for learning DS for a nat-
ural class of moving stimuli (Blais et al., 2000; see
also Feidler et al., 1997). We emphasize that the same
learning threshold is also required to model the plas-
ticity data of Markram et al. (1997) (see Senn et al.,
2001). Interestingly, the third-order nonlinearity com-
ing out from this data also implies a moving threshold
property analogous to the BCM-theory (Senn et al.,
2001). The necessity of a learning threshold to stabi-
lize synaptic structures is well known in the context
of working memory formation by attractor networks
(Fusi et al., 2000).

(4) Modification of both, synaptic strength and
synaptic depression, produce stronger and more re-
liable DS. In a previous study we showed that the
modification of the degree of synaptic depression (Pdis)
alone could explain the emergence of DS (Buchs and
Senn, 2001). However, the emerged direction selectiv-
ity was sensitive to specific spatial distribution of Pdis,
and sometimes DS failed to develop in the unbiased
input scenario when by chance the stimulus directions
were switched very frequently. When we co-modify
both the discharge probability and the synaptic strength
according to the same rule, the RF asymmetry is much
stronger, and the development and performance of DS
is more reliable. Both types of synaptic long-term mod-
ifications are indeed observed in neocortex; a change
of the synaptic strength (Feldman, 2000), and a tem-
poral redistribution of the synaptic efficacy (Markram
and Tsodyks, 1996) as a function of the pre- and post-
synaptic spike-time differences.

(5) Gaussian synaptic densities make the RF
development robust against parameter variations. As
an additional stabilization element we modeled fixed
Gaussian spatial synaptic densities which significantly
reduced the sensitivity of the results to variations in
the model parameters. Formally, the effective synap-
tic strength, Geff , is determined by the product of the
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synaptic densities times the strength of the individ-
ual synapses. Whereas in our simulations the synaptic
strength and the degree of depression were subject to
synaptic modification, the initial Gaussian densities of
the different types of LGN afferents remained fixed.
Due to these densities, the quality of the acquired DS
(in terms of realistic tuning curves) and the shape of the
effective synaptic strengths after learning (Fig. 4a) were
virtually indistinguishable for different runs and differ-
ent sets of learning parameters and stimulus distribu-
tions. This was in strong contrast to the case when the
spatial synaptic densities were rectangular. It is tempt-
ing to speculate that nature likewise assures the stabil-
ity of the development by first forming broad Gaussian
synaptic densities (via formation of new connections,
see Lendvai et al. (1999) and Geinisman (2001)), mak-
ing the system stable against input variations, on top of
which activity-dependent synaptic modifications acts
as a fine tuning.

(6) STDP for inhibitory synapses? In order to explain
the appropriate development of the push-pull mecha-
nism exerted by excitatory and inhibitory afferents (see
the subthreshold membrance potential before and after
learning, Fig. 8a and b), it is required that the inhibitory
feedforward pathway is modified opposite to the excita-
tory pathway. Since, for reasons of simplicity, we simu-
lated only monosynaptic inhibitory pathways from the
LGN to the model simple cell, we had to postulate the
reversed learning rule for these inhibitory synapses. In
reality, however, inhibitory afferents are at least disy-
naptic with excitatory projections from the LGN. In
such a disynaptic inhibitory pathway, the same oppo-
site modifications are also obtained by applying the
original rule to the excitatory thalamocortical synapses,
while leaving the subsequent inhibitory synapses non-
plastic. It would be interesting to test whether in fact
thalamocortical excitatory synapses are subject to the
standard form of STDP, and/or whether intracortical
inhibitory synapses obey the reversed rule.

(7) Different learning rules for depressing/non-
depressing synapses may generate additional RF
structure. To assure the emergence of strong DS we
had to assuming an initial symmetric synaptic structure,
with depressing thalamocortical synapses surrounded
by non-depressing ones (Fig. 1). This initial struc-
ture proved to be necessary since we applied the same
learning rule to the strength of depressing and non-
depressing synapses. If we would assume the same
initial distribution for depressing and non-depressing
synapses, both would experience a similar spatial phase

shift and no DS would develop. As an alternative
to a hypothetical initial RF structure one may postu-
late that the temporally asymmetric rule only modifies
the strength of the non-depressing synapses, while the
strength of the depressing synapses (and less critically
Pdis) would be modified according to a symmetric Heb-
bian rule. In this case we expect that an appropriate RF
structure would fully develop from an initially unstruc-
tured RF. This is because a RF shift would only develop
for the non-depressing synapses while the depressing
synapses would remain in the RF center, generating a
RF structure similar to that shown in Fig. 4a. These
simulations, however, remain to be done. There is no
experimental data which would favor one or the other
alternative. Although differences in the temporal re-
sponse characteristics of the simple cell RF center and
its surround are reported (see Orban et al. (1987), or
Soodak et al. (1991) for LGN RF substructures) no
structure of depressing and non-depressing synapses is
proven. Similarly, it remains an open question whether
different parameters of dynamic synapses are modified
according to different rules (Markram et al., 1998).

(8) The width of the learning window limits the de-
tectable stimulus velocities. When ‘training’ the simple
cell with bars moving in a single direction across a wide
RF, the induced spatial shift of the synaptic strengths is
roughly proportional to the stimulus velocities. A sub-
sequent ‘test’ of the simple cell velocity tuning will give
the strongest response for the same direction and ve-
locity it was trained for (see Rao and Sejnowski (2000),
for a similar scenario). This intuitive result, however,
is only correct if the bar is narrow compared to the RF
width (and the velocity is not too small compared to
the RF width divided by the width of the learning win-
dow, see Eq. (40) in the analysis paper). If the moving
stimulus extends over the full RF, as is the case for
gratings, the RF shift is no longer a monotonic func-
tion of the velocity, but rather peaks at a specific value.
At fixed spatial frequency, the maximal spatial phase
shift is obtained for stimuli with temporal frequency
1/(2πτL ) ≈ 4 Hz, where τL = 40 ms is the tem-
poral width of the learning function (Fig. 5b, cf. also
Fig. 4a and Eq. (37) in the analysis paper). Stimuli with
the same spatial frequency but moving faster or slower
generate a smaller spatial shift of the RF. Once the RF
modification is accomplished, the same velocity which
triggered a maximal RF shift is also the one which
gives the strongest DS (compare Fig. 5b and 7 a2).
This velocity is determined by the temporal width of
the learning window, and not by the distribution of
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the training velocities, as is the case for moving bars.
Interestingly, the temporal frequencies producing the
largest RF shifts are also the ones producing signifi-
cant temporal phase advances by means of short-term
synaptic depression (compare Fig. 5a and b). It appears
that the parameters of the STDP and of the short-term
synaptic depression are well adjusted to support a de-
velopment of the simple cell DS in a realistic frequency
regime.

(9) Stochastic spike times prevent high frequency
oscillations and make DS development robust against
noise in the LGN. In the Introduction we exposed the
conundrum that the precision of the STDP exceeds
the jitter of the individual spike times. The paradox is
resolved by considering a large population of inde-
pendent LGN afferents averaging out the effects of the
spike jitter. In addition, the stochastic spike generation
has the functional consequence of protecting the
simple cell against high frequency oscillations. This
is because with a deterministic spike generation there
is a high chance that fast oscillations arise through
transient alignments of spikes from different afferents.
When imposing deterministic inter-spike intervals
in our simulations, these oscillations can become so
strong that they prevent the development of DS.

In summary, temporally asymmetric STDP at-
tributed to depressing and non-depressing thalamo-
cortical synapses may convert non-directional simple
cells into directional simple cells, thereby generating
qualitatively similar tuning curves and membrane po-
tential responses as observed in vivo. The important
features of the synaptic modifications ensuring a ro-
bust DS development in an unbiased stochastic input
scenario are the learning thresholds imposed to the
postsynaptic activity, the dominance of LTD over LTP,
the co-modification of the synaptic depression and the
synaptic strength (while keeping the synaptic densities
fixed), and the stochastic spike generation of the LGN
afferents.
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