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a b s t r a c t

An increasing body of evidence suggests that the trial-to-trial variability of spiking activity in the
brain is not mere noise, but rather the reflection of a sampling-based encoding scheme for probabilistic
computing. Since the precise statistical properties of neural activity are important in this context, many
models assume an ad-hoc source of well-behaved, explicit noise, either on the input or on the output
side of single neuron dynamics, most often assuming an independent Poisson process in either case.
However, these assumptions are somewhat problematic: neighboring neurons tend to share receptive
fields, rendering both their input and their output correlated; at the same time, neurons are known
to behave largely deterministically, as a function of their membrane potential and conductance. We
suggest that spiking neural networks may have no need for noise to perform sampling-based Bayesian
inference. We study analytically the effect of auto- and cross-correlations in functional Bayesian spiking
networks and demonstrate how their effect translates to synaptic interaction strengths, rendering
them controllable through synaptic plasticity. This allows even small ensembles of interconnected
deterministic spiking networks to simultaneously and co-dependently shape their output activity
through learning, enabling them to perform complex Bayesian computation without any need for
noise, which we demonstrate in silico, both in classical simulation and in neuromorphic emulation.
These results close a gap between the abstract models and the biology of functionally Bayesian spiking
networks, effectively reducing the architectural constraints imposed on physical neural substrates
required to perform probabilistic computing, be they biological or artificial.

© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

An ubiquitous feature of in-vivo neural responses is their
stochastic nature (Arieli, Sterkin, Grinvald, & Aertsen, 1996; Azouz
& Gray, 1999; Henry, Bishop, Tupper, & Dreher, 1973; Schiller,
Finlay, & Volman, 1976; Snowden, Treue, & Andersen, 1992; Vo-
gels, Spileers, & Orban, 1989). The clear presence of this variability
has spawned many functional interpretations, with the Bayesian-
brain hypothesis arguably being the most notable example (Bras-
camp, Van Ee, Noest, Jacobs, & van den Berg, 2006; Deco, Rolls,
& Romo, 2009; Fiser, Berkes, Orbán, & Lengyel, 2010; Körd-
ing & Wolpert, 2004; Maass, 2016; Rao, Olshausen, & Lewicki,
2002). Under this assumption, the activity of a neural network
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is interpreted as representing an underlying (prior) probability
distribution, with sensory data providing the evidence needed
to constrain this distribution to a (posterior) shape that most
accurately represents the possible states of the environment
given the limited available knowledge about it.

Neural network models have evolved to reproduce this kind
of neuronal response variability by introducing noise-generating
mechanisms, be they extrinsic, such as Poisson input (Brunel,
2000; Fourcaud & Brunel, 2002; Gerstner, Kistler, Naud, & Panin-
ski, 2014; Stein, 1967) or fluctuating currents (Maass & Zador,
1998; Moreno-Bote, 2014; Neftci, Pedroni, Joshi, Al-Shedivat, &
Cauwenberghs, 2016; Smetters & Zador, 1996; Steinmetz, Man-
wani, Koch, London, & Segev, 2000; Yarom & Hounsgaard, 2011),
or intrinsic, such as stochastic firing (Chichilnisky, 2001; Dayan
et al., 2003; Gerstner & Kistler, 2002; Ostojic & Brunel, 2011;
Plesser & Gerstner, 2000; Stevens & Zador, 1996) or membrane
fluctuations (Aitchison & Lengyel, 2016; Orbán, Berkes, Fiser, &
Lengyel, 2016).
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However, while representing, to some degree, reasonable ap-
proximations, none of the commonly used sources of stochas-
ticity is fully compatible with biological constraints. Contrary to
the independent white noise assumption, neuronal inputs are
both auto- and cross-correlated to a significant degree (Averbeck,
Latham, & Pouget, 2006; Deger, Helias, Boucsein, & Rotter, 2012;
Fiser, Chiu, & Weliky, 2004; Nelson, Salin, Munk, Arzi, & Bul-
lier, 1992; Rosenbaum, Tchumatchenko, & Moreno-Bote, 2014;
Salinas & Sejnowski, 2001; Segev et al., 2002), with obvious con-
sequences for a network’s output statistics (Moreno-Bote, Renart,
& Parga, 2008). At the same time, the assumption of intrinsic neu-
ronal stochasticity is at odds with experimental evidence of neu-
rons being largely deterministic units (Mainen & Sejnowski, 1995;
Rauch, La Camera, Lüscher, Senn, & Fusi, 2003; Zador, 1998).
Although synaptic transmissions from individual release sites are
stochastic, averaged across multiple sites, contacts and connec-
tions, they largely average out (Markram, Muller, Ramaswamy,
Reimann, Abdellah, Sanchez, et al., 2015). Therefore, it remains
an interesting question how cortical networks that use stochas-
tic activity as a means to perform probabilistic inference can
realistically attain such apparent randomness in the first place.

We address this question within the normative framework
of sampling-based Bayesian computation (Buesing, Bill, Nessler,
& Maass, 2011; Leng et al., 2018; Orbán et al., 2016; Pecevski,
Buesing, & Maass, 2011; Petrovici, Bill, Bytschok, Schemmel, &
Meier, 2016; Probst et al., 2015), in which the spiking activity
of neurons is interpreted as Markov Chain Monte Carlo sam-
pling from an underlying distribution over a high-dimensional
binary state space. In contrast to other work on deterministic
chaos in functional spiking networks, done mostly in the context
of reservoir computing (e.g., Monteforte & Wolf, 2012; Pyle &
Rosenbaum, 2017), we provide a stringent connection to the
spike-based representation and computation of probabilities, as
well as the synaptic plasticity required for learning the above. We
demonstrate how an ensemble of dynamically fully deterministic,
but functionally probabilistic networks, can learn a connectivity
pattern that enables probabilistic computation with a degree of
precision that matches the one attainable with idealized, perfectly
stochastic components. The key element of this construction is
self-consistency, in that all input activity seen by a neuron is the
result of output activity of other neurons that fulfill a functional
role in their respective subnetworks. The present work sup-
ports probabilistic computation in light of experimental evidence
from biology and suggests a resource-efficient implementation of
stochastic computing by completely removing the need for any
form of explicit noise.

2. Methods

2.1. Neuron model and simulation details

We consider deterministic Leaky Integrate-and-Fire (LIF) neu-
rons with conductance-based synapses and dynamics described
by

Cm
duk

dt
= gl (El − uk) +

∑
x∈{e,i}

gsyn
k,x (E

rev
x − uk) , (1)

gsyn
k,x (t) =

∑
synapses j

∑
spikes s

wkj θ (t − ts) exp (−
t − ts
τ syn ) , (2)

uk(ts) ≥ ϑ ⇒ uk(t ∈ (ts, ts + τref]) = ϱ , (3)

with membrane capacitance Cm, leak conductance gl, leak po-
tential El, excitatory and inhibitory reversal potentials Erev

e/i and
conductances gsyn

k,e/i, synaptic strength wkj, synaptic time constant
τ syn and θ (t) the Heaviside step function. For gsyn

k,e/i, the first

sum covers all synaptic connections projecting to neuron k. A
neuron spikes at time ts when its membrane potential crosses
the threshold ϑ , after which it becomes refractory. During the
refractory period τref, the membrane potential is clamped to the
reset potential ϱ. We have chosen the above model because it
provides a computationally tractable abstraction of neurosynaptic
dynamics (Rauch et al., 2003), but our general conclusions are not
restricted to these specific dynamics.

We further use the short-term plasticity mechanism described
in Fuhrmann, Segev, Markram, and Tsodyks (2002) to modulate
synaptic interaction strengths with an adaptive factor USE × R(t),
where the time-dependence is given by2

dR
dt

=
1 − R
τrec

− USERδ(t − ts) , USE , R ∈ [0, 1] , (4)

where δ(t) is the Dirac delta function, ts denotes the time of a
presynaptic spike, which depletes the reservoir R by a fraction
USE, and τrec is the time scale on which the reservoir R recovers.
This enables a better control over the inter-neuron interaction, as
well as over the mixing properties of our networks (Leng et al.,
2018).

Background input, such as spikes from a Poisson source, enters
Eq. (1) as synaptic input, but without short-term plasticity (as
in Petrovici et al. (2016)) to facilitate the mathematical analysis
(see Supporting information for more details).

All simulations were performed with the network specifi-
cation language PyNN 0.8 (Davison et al., 2009) and the spik-
ing neural network simulator NEST 2.4.2 (Gewaltig & Diesmann,
2007).

2.2. Sampling framework

As a model of probabilistic inference in networks of spiking
neurons, we adopt the framework introduced in Petrovici et al.
(2016), Probst et al. (2015). There, the neuronal output becomes
stochastic due to a high-frequency bombardment of excitatory
and inhibitory Poisson stimuli (Fig. 1A), elevating neurons into a
high-conductance state (HCS) (Destexhe, Rudolph, & Paré, 2003;
Kumar, Schrader, Aertsen, & Rotter, 2008), where they attain a
high reaction speed due to a reduced effective membrane time
constant. Under these conditions, a neuron’s response (or ac-
tivation) function becomes approximately logistic and can be
represented as ϕ(µ) = (1 + exp (−(µ − u0)/α))−1 with inverse
slope α and inflection point u0. Together with the mean free
membrane potential µ and the mean effective membrane time
constant τeff (see Eqs. (17b) and (20c)), the scaling parameters
α and u0 are used to translate the weight matrix W and bias
vector b of a target Boltzmann distribution ptargetz = p(z) ∝

exp
( 1
2z

TWz + zTb
)
with binary random variables z ∈ {0, 1}n

to synaptic weights and leak potentials in a sampling spiking
network (SSN):

wkj =

αWkjCm
τref
τ syn

(
1 −

τ syn

τeff

) (
Erev
kj − µ

)−1[
τ syn

(
e−

τref
τ syn − 1

)
− τeff

(
e−

τref
τeff − 1

)] , (5)

El =
τm

τeff
(αb + u0) −

∑
x∈{e,i}

⟨gsyn
x ⟩

gl
Erev
x , (6)

where wkj is the synaptic weight from neuron j to neuron k,
El a vector containing the leak potentials of all neurons, b the
corresponding bias vector, Erev

kj ∈ {Erev
e , Erev

i }, depending on the
nature of the respective synapse, and τm =

Cm
gl

(see Eq. (68)
to Eq. (73) for a derivation). This translation effectively enables
sampling from ptargetz , where a refractory neuron is considered to
represent the state zk = 1 (see Fig. 1B,C).

2 In Fuhrmann et al. (2002) the postsynaptic response only scales with R(t),
whereas here we scale it with USE × R(t).
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Fig. 1. Sampling spiking networks (SSNs) with and without explicit noise. (A)
Schematic of a sampling spiking network, where each neuron (circles) encodes
a binary random variable zi ∈ {0, 1}. In the original model, neurons were
rendered effectively stochastic by adding external Poisson sources of high-
frequency balanced noise (red boxes). (B) A neuron represents the state zk = 1
when refractory and zk = 0 otherwise. (C) The dynamics of neurons in an
SSN can be described as sampling (red bars) from a target distribution (blue
bars). (D) Instead of using Poisson processes as a source of explicit noise, we
replace the Poisson input with spikes coming from other networks performing
spike-based probabilistic inference by creating a sparse, asymmetric connectivity
matrix between several SSNs. For instance, the red neuron receives not only
information-carrying spikes from its home network (black lines), but also spikes
from the other two SSNs as background (red arrows), and in turn projects back
towards these networks. Other such background connections are indicated in
light gray. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

2.3. Measures of network performance

To assess how well a sampling spiking network (SSN) sam-
ples from its target distribution, we use the Kullback–Leibler
divergence (Kullback & Leibler, 1951)

DKL
(
pnet ∥ ptarget

)
=

∑
z

pnetz ln
(

pnetz

ptargetz

)
, (7)

which is a measure for the similarity between the sampled distri-
bution pnet and the target distribution ptarget. For inference tasks,
we determine the network’s classification rate on a subset of the
used data set which was put aside during training. Furthermore,
generative properties of SSNs are investigated either by letting
the network complete partially occluded examples from the data
set or by letting it generate new examples.

2.4. Learning algorithm

Networks were trained with a Hebbian wake-sleep algorithm

∆Wij = η

[
ptargetzi=1,zj=1 − pnetzi=1,zj=1

]
, (8)

∆bi = η

[
ptargetzi=1 − pnetzi=1

]
, (9)

which minimizes the DKL
(
pnet ∥ ptarget

)
(Ackley, Hinton, & Se-

jnowski, 1985). η is a learning rate (see Supporting informa-
tion for used hyperparameters). For high-dimensional datasets
(e.g. handwritten letters and digits), Boltzmann machines were
trained with the CAST algorithm (Salakhutdinov, 2010), a variant
of wake-sleep with a tempering scheme, and then translated to
SSN parameters with Eqs. (5) and (6) instead of training the SSNs
directly to reduce simulation time.

2.5. Experiments and calculations

Details to all experiments as well as additional figures and
captions to videos can be found in the Supporting information.
Detailed calculations are presented at the end of the main text.

3. Results

We approach the problem of externally-induced stochasticity
incrementally. Throughout the remainder of the manuscript, we
discern between background input, which is provided by other
functional networks, and explicit noise, for which we use the
conventional assumption of Poisson spike trains. We start by
analyzing the effect of correlated background on the performance
of SSNs. We then demonstrate how the effects of both auto-
and cross-correlated background can be mitigated by Hebbian
plasticity. This ultimately enables us to train a fully deterministic
network of networks to perform different inference tasks without
requiring any form of explicit noise. This is first shown for larger
ensembles of small networks, each of which receives its own
target distribution, which allows a straightforward quantitative
assessment of their sampling performance DKL

(
pnet ∥ ptarget

)
. We

study the behavior of such ensembles both in computer simula-
tions and on mixed-signal neuromorphic hardware. Finally, we
demonstrate the capability of our approach for truly functional,
larger-scale networks, trained on higher-dimensional visual data.

3.1. Background autocorrelations

Unlike ideal Poisson sources, single spiking neurons produce
autocorrelated spike trains, with the shape of the autocorrelation
function (ACF) depending on their refractory time τref and mean
spike frequency r̄ = p(z = 1)τref−1. For higher output rates, spike
trains become increasingly dominated by bursts, i.e., sequences
of equidistant spikes with an interspike interval (ISI) of ISI ≈

τref. These fixed structures also remain in a population, since the
population autocorrelation is equal to the averaged ACFs of the
individual spike trains.

We investigated the effect of such autocorrelations on the out-
put statistics of SSNs by replacing the Poisson input in the ideal
model with spikes coming from other SSNs. As opposed to Pois-
son noise, the autocorrelation C(Sx, Sx, ∆) =

⟨Sx(t)Sx(t+∆)⟩−⟨Sx⟩2
Var(Sx)

of
the SSN-generated (excitatory or inhibitory) background Sx, x ∈

{e, i} (Fig. 2B) is non-singular and influences the free mem-
brane potential (FMP) distribution (Fig. 2C) and thereby activation
function (Fig. 2D) of individual sampling neurons. With increas-
ing firing rates (controlled by the bias of the neurons in the
background SSNs), the number of significant peaks in the ACF
increases as well (see Eq. (54)):

C(Sx, Sx, nτref) ≈

∞∑
k=1

ek ln p̄δ
(
[n − k]τref

)
, (10)

where p̄ is the probability for a burst to start. This regularity in
the background input manifests itself in a reduced width σ ′ of
the FMP distribution (see Eq. (30))

f (ufree
i ) ∼ N (µ′

= µ, σ ′
=

√
βσ ) (11)

with a scaling factor
√

β that depends on the ACF, which in turn
translates to a steeper activation function (see Eqs. (36) and (37))

p(zi = 1) ≈

∫
∞

ϑ

f (u)du ≈ ϕ(µ)
⏐⏐⏐⏐
u′
0=u0,α′=

√
βα

, (12)

with inflection point u′

0 and inverse slope α′. Thus, autocor-
relations in the background input lead to a reduced width of
the FMP distribution and hence to a steeper activation function
compared to the one obtained using uncorrelated Poisson input.
For a better intuition, we used an approximation of the activation
function of LIF neurons, but the argument also holds for the
exact expression derived in Petrovici et al. (2016), as verified by
simulations (Fig. 2D).
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Fig. 2. Effect of correlated background on SSN dynamics and compensation through reparametrization. (A) Feedforward replacement of Poisson noise by spiking
activity from other SSNs. In this illustration, the principal SSN consists of three neurons receiving background input only from other functional SSNs that sample
from their own predetermined target distribution. For clarity, only two out of a total of [260, 50, 34] (top to bottom in (B)) background SSNs per neuron are shown
here. By modifying the background connectivity (gray and blue arrows) the amount of cross-correlation in the background input can be controlled. At this stage,
the background SSNs still receive Poisson input (red boxes). (B) By appropriate parametrization of the background SSNs, we adjust the mean spike frequency of the
background neurons (blue) to study the effect of background autocorrelations C(Sx, Sx, ∆). Higher firing probabilities increase the chance of evoking bursts, which
induce background autocorrelations for the neurons in the principal SSN at multiples of τref (dark blue: simulation results; light blue: ek ln p̄ with k =

∆
τref

, see Eq. (10)).
(C) Background autocorrelation narrows the FMP distribution of neurons in the principal SSN: simulation (blue bars) and the theoretical prediction (Eq. (11), blue
line) vs. background Poisson noise of the same rate (gray). Background intensities correspond to (B). (D) Single-neuron activation functions corresponding to (B,C)
and the theoretical prediction (Eq. (12), blue line). For autocorrelated noise, the slope of the response curve changes, but the inflection point (with p(z = 1) = 0.5)
is conserved. (E) Kullback–Leibler divergence DKL

(
pnet ∥ ptarget

)
(median and range between the first and third quartile) for the three cases shown in (B,C,D) after

sampling from 50 different target distributions with 10 different random seeds for the 3-neuron network depicted in (A). Appropriate reparametrization can fully
cancel out the effect of background autocorrelations (blue). The according results without reparametrization (gray) and with Poisson input (red) are also shown. (F)
A pair of interconnected neurons in a background SSN generates correlated noise, as given by Eq. (13). The effect of cross-correlated background on a pair of target
neurons depends on the nature of synaptic projections from the background to the principal SSN. Here, we depict the case where their interaction wpre

ij is excitatory;
the inhibitory case is a mirror image thereof. Left: If forward projections are of the same type, postsynaptic potentials will be positively correlated. Middle: Different
synapse types in the forward projection only change the sign of the postsynaptic potential correlations. Right: For many background inputs with mixed connectivity
patterns, correlations can average out to zero even when all input correlations have the same sign. (G) Same experiment as in (E), with background connection
statistics adjusted to compensate for input cross-correlations. The uncompensated cases from (F, left) and (F, middle) are shown in gray. (H) Correlation-cancelling
reparametrization in the principal SSN. By transforming the state space from z ∈ {0, 1}n to z′

∈ {−1, 1}, input correlations attain the same functional effect as
synaptic weights (Eq. (15)); simulation results given as red dots, linear fit as red line. Weight rescaling followed by a transformation back into the z ∈ {0, 1}n state
space, shown in green (which affects both weights and biases) can therefore alleviate the effects of correlated background. (I) Similar experiment as in (E) for a
network with ten neurons, with parameters adjusted to compensate for input cross-correlations. As in the case of autocorrelated background, cross-correlations can
be cancelled out by appropriate reparametrization. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Apart from the above effect, the background autocorrelations
do not affect neuron properties that depend linearly on the
synaptic noise input, such as the mean FMP and the inflec-
tion point of the activation function (equivalent to zero bias).
Therefore, the effect of the background autocorrelations can be
functionally reversed by rescaling the functional (from other
neurons in the principal SSN) afferent synaptic weights by a factor
equal to the ratio between the new and the original slope α′/α

(Eqs. (5) and (6)), as shown in Fig. 2E.

3.2. Background cross-correlations

In addition to being autocorrelated, background input to pairs
of neurons can be cross-correlated as well, due to either shared
inputs or synaptic connections between the neurons that gen-
erate said background. These background cross-correlations can
manifest themselves in a modified cross-correlation between the
outputs of neurons, thereby distorting the distribution sampled
by an SSN.

However, depending on the number and nature of presynaptic
background sources, background cross-correlations may cancel
out to a significant degree. The correlation coefficient (CC) of
the FMPs of two neurons fed by correlated noise amounts to

(see Eq. (59))

ρ(ufree
i , ufree

j ) ∝

∑
l,m

wilwjm
(
Erev
il − µi

)(
Erev
jm − µj

)
(13)

·

∫
d∆ λli,mj C

(
Sl,i, Sm,j, ∆

)
C̃ (κ, κ, ∆) ,

where l sums over all background spike trains Sl,i projecting
to neuron i and m sums over all background spike trains Sm,j
projecting to neuron j. C̃ (κ, κ, ∆) is the unnormalized autocor-
relation function of the postsynaptic potential (PSP) kernel κ ,
i.e., C̃ (κ, κ, ∆) = ⟨κ(t)κ(t + ∆)⟩, and C

(
Sl,i, Sm,j, ∆

)
the cross-

correlation function of the background inputs. λli,mj is given by

λli,mj =

√
Var

(
Sl,i

)
Var

(
Sm,j

)
. The background cross-correlation

is gated into the cross-correlation of FMPs by the nature of the
respective synaptic connections: if the two neurons connect to
the cross-correlated inputs by synapses of different type (one
excitatory, one inhibitory), the sign of the CC is switched (Fig. 2F).
However, individual contributions to the FMP CC also depend
on the difference of the mean free membrane potential and
the reversal potentials, so the gating of cross-correlations is not
symmetric for excitatory and inhibitory synapses. Nevertheless,
if the connectivity statistics (in-degree and synaptic weights)
from the background sources to an SSN are chosen appropriately
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and enough presynaptic partners are available, the total pairwise
cross-correlation between neurons in an SSN cancels out on av-
erage, leaving the sampling performance unimpaired (Fig. 2G).
Note that this way of reducing cross-correlations is independent
of the underlying weight distribution of the networks providing
the background; the required cross-wiring of functional networks
could therefore, in principle, be encoded genetically and does
not need to be learned. Furthermore, a very simple cross-wiring
rule, i.e., independently and randomly determined connections,
already suffices to accomplish low background cross-correlations
and therefore reach a good sampling performance.

Whereas this method is guaranteed to work in an artificial
setting, further analysis is needed to assess its compatibility with
the cortical connectome with respect to connectivity statistics
or synaptic weight distributions. However, even if cortical ar-
chitecture prevents a clean implementation of this decorrelation
mechanism, SSNs can themselves compensate for residual back-
ground cross-correlations by modifying their parameters, similar
to the autocorrelation compensation discussed above.

To demonstrate this ability, we need to switch from the nat-
ural state space of neurons z ∈ {0, 1}N to the more symmetric
space z′

∈ {−1, 1}N .3 By requiring p(z′) !
= p(z) to conserve state

probabilities (and thereby also correlations), the desired change
of state variables z′

= 2z − 1 can be achieved with a linear
parameter transformation (see Eqs. (66) and (67)):

W′
=

1
4
W and b′

=
1
2
b +

1
4

∑
i

coliW . (14)

In the {−1, 1}N state space, both synaptic connections w′

ij and
background cross-correlations ρ(Si, Sj) shift probability mass be-
tween mixed states (zi, zj) = ±(1, −1) and aligned states (zi, zj) =

±(1, 1) (see Supporting information, Fig. S1). Therefore, by ad-
justing b and W, it is possible to find a W′ (Fig. 2H) that precisely
conserves the desired correlation structure between neurons:

w′

ij = g−1
[ρ(Si, Sj)] ≈

ρ(Si, Sj) − g0
g1

, (15)

with constants g0 and g1 (Fig. 2I). Therefore, when an SSN learns
a target distribution from data, background cross-correlations are
equivalent to an offset in the initial network parameters and are
automatically compensated during training.

For now, we can conclude that the activity of SSNs constitutes
a sufficient source of stochasticity for other SSNs, since all effects
that follow from replacing Poisson noise in an SSN with func-
tional output from other SSNs (which at this point still receive
explicit noise) can be compensated by appropriate parameter
adjustments. These are important preliminary conclusions for the
next sections, where we show how all noise can be eliminated in
an ensemble of interconnected SSNs endowed with synaptic plas-
ticity without significant penalty to their respective functional
performance.

3.3. Sampling without explicit noise in large ensembles

We initialized an ensemble of 100 6-neuron SSNs with an
inter-network connectivity of ϵ = 0.1 and random synaptic
weights. As opposed to the previous experiments, none of the
neurons in the ensemble receive explicit Poisson input and the
activity of the ensemble itself acts as a source of stochasticity
instead, as depicted in Fig. 1D. No external input is needed to
kick-start network activity, as some neurons spike spontaneously,

3 The z = 0 state for a silent neuron is arguably more natural, because it has
no effect on its postsynaptic partners during this state. In contrast, z ∈ {−1, 1}
would, for example, imply efferent excitation upon spiking and constant efferent
inhibition otherwise.

due to the random initialization of parameters (see Fig. 3A).
The existence of inhibitory weights disrupts the initial regularity,
initiating the sampling process. Ongoing learning (Eqs. (8) and
(9)) shapes the sampled distributions towards their respective
targets (Fig. 3B), the parameters of which were drawn randomly
(see Supporting information). Our ensemble achieved a sampling
performance (median DKL) of 1.06+0.27

−0.40 × 10−3, which is similar
to the median performance of an idealized setup (independent,
Poisson-driven SSNs as in Petrovici et al. (2016)) of 1.05+0.15

−0.35 ×

10−3 (errors are given by the first and third quartile). To put the
above DKL values in perspective, we compare the sampled and
target distributions of one of the SSNs in the ensemble at various
stages of learning (Fig. 3C). Thus, despite the fully deterministic
nature of the system, the network dynamics and achieved per-
formance after training is essentially indistinguishable from that
of networks harnessing explicit noise for the representation of
probability. Instead of training ensembles, they can also be set
up by translating the parameters of the target distributions to
neurosynaptic parameters directly, as discussed in the previous
section (see Supporting information, Fig. S2).

3.4. Implementation on a neuromorphic substrate

To test the robustness of our results, we studied an imple-
mentation of noise-free sampling on an artificial neural substrate,
which incorporates unreliable components and is therefore sig-
nificantly more difficult to control. For this, we used the Brain-
ScaleS system (Schemmel, Fieres, & Meier, 2008), a mixed-signal
neuromorphic platform with analog neurosynaptic dynamics and
digital inter-neuron communication (Fig. 3D, see also Supporting
information, Fig. S3). A major advantage of this implementation
is the emulation speedup of 104 with respect to biological real-
time; however, for clarity, we shall continue using biological time
units instead of actual emulation time.

The additional challenge for our neuronal ensemble is to cope
with the natural variability of the substrate, caused mainly by
fixed-pattern noise, or with other limitations such as a finite
weight resolution (4 bits) or spike loss, which can all be substan-
tial (Petrovici et al., 2014; Schmitt et al., 2017). It is important to
note that the ability to function when embedded in an imperfect
substrate with significant deviations from an idealized model rep-
resents a necessary prerequisite for viable theories of biological
neural function.

We emulated an ensemble of 15 4-neuron SSNs, with an
inter-SSN connectivity of ϵ = 0.2 and with randomly drawn
target distributions (see Supporting information). The biases were
provided by additional bias neurons and adjusted during learning
via the synaptic weights between bias and sampling neurons,
along with the synapses within the SSNs, using the same learning
rule as before (Eqs. (8) and (9)). After 200 training steps, the
ensemble reached a median DKL of 3.99+1.27

−1.15·10
−2 (errors given by

the distance to the first and third quartile) compared to 1.18+0.47
−0.55

before training (Fig. 3E). As a point of reference, we also consid-
ered the idealized case by training the same set of SSNs without
interconnections and with every neuron receiving external Pois-
son noise generated from the host computer, reaching a DKL of
2.49+3.18

−0.71 · 10−2.
This relatively small performance loss of the noise-free en-

semble compared to the ideal case confirms the theoretical pre-
dictions and simulation results. Importantly, this was achieved
with only a rather small ensemble, demonstrating that large num-
bers of neurons are not needed for realizing this computational
paradigm.

In Fig. 3F and Video S1, we show the sampling dynamics
of all emulated SSNs after learning. While most SSNs are able
to approximate their target distributions well, some sampled



D. Dold, I. Bytschok, A.F. Kungl et al. / Neural Networks 119 (2019) 200–213 205

Fig. 3. Sampling without explicit noise from a set of predefined target distributions in software (A–C) and on a neuromorphic substrate (D–G). (A) (top) Temporal
evolution of spiking activity in an ensemble of 100 interconnected 6-neuron SSNs with no source of explicit noise. An initial burst of regular activity caused by
neurons with a strong enough positive bias quickly transitions to asynchronous irregular activity due to inhibitory synapses. (bottom) Distribution of mean neuronal
firing rates of the ensembles shown in (B, C) after training. (B) Median sampling quality of the above ensemble during learning, for a test sampling period of 106 ms.
At the end of the learning phase, the sampling quality of individual networks in the ensemble (blue) is on par with the one obtained in the theoretically ideal case
of independent networks with Poisson background (black). Error bars given over 5 simulation runs with different random seeds. (C) Illustration of a single target
distribution (magenta) and corresponding sampled distribution (blue) of a network in the ensemble at several stages of the learning process (dashed green lines
in (B)). (D) Photograph of a wafer from the BrainScaleS neuromorphic system used in (E), (F) and (G) before post-processing (i.e., adding additional structures like
buses on top), which would mask the underlying modular structure. Blue: exemplary membrane trace of an analog neuron receiving Poisson noise. (E) Performance
of an ensemble consisting of 15 4-neuron SSNs with no external noise during learning on the neuromorphic substrate, shown in light blue for each SSN and with
the median shown in dark blue. The large fluctuations compared to (B) are a signature of the natural variability of the substrate’s analog components. The dashed
blue line represents the best achieved median performance at DKL

(
pnet ∥ ptarget

)
= 3.99 × 10−2 . For comparison, we also plot the optimal median performance for

the theoretically ideal case of independent, Poisson-driven SSNs emulated on the same substrate, which lies at DKL
(
pnet ∥ ptarget

)
= 2.49 × 10−2 (dashed black line).

(F) Left: Demonstration of sampling in the neuromorphic ensemble of SSNs after 200 training steps. Individual networks in light blue, median performance in dark
blue. Dashed blue line: median performance before training. Dashed black line: median performance of ideal networks, as in (E). Right: Best achieved performance,
after 100 s of bio time (10ms of hardware time) for all SSNs in the ensemble depicted as blue dots (sorted from lowest to highest DKL). For comparison, the same
is plotted as black crosses for their ideal counterparts. (G) Sampled (blue) and target (magenta) distributions of four of the 15 SSNs. The selection is marked in (F)
with green triangles (left) and vertical green dashed lines (right). Since we made no particular selection of hardware neurons according to their behavior, hardware
defects have a significant impact on a small subset of the SSNs. Despite these imperfections, a majority of SSNs perform close to the best value permitted by the
limited weight resolution (4 bits) of the substrate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

distributions are significantly skewed (Fig. 3G). This is caused
by a small subset of dysfunctional neurons, which we have not
discarded beforehand, in order to avoid an implausibly fine-
tuned use-case of the neuromorphic substrate. These effects be-
come less significant in larger networks trained on data instead
of predefined distributions, where learning can naturally cope
with such outliers by assigning them smaller output weights.
Nevertheless, these results demonstrate the feasibility of self-
sustained Bayesian computation through sampling in physical
neural substrates, without the need for any source of explicit
noise. Importantly, and in contrast to other approaches (Jordan,
Petrovici, Breitwieser, Schemmel, Meier, Diesmann, & Tetzlaff,
2017), every neuron in the ensemble plays a functional role,
with no neuronal real-estate being dedicated to the production
of (pseudo-)randomness.

3.5. Ensembles of hierarchical SSNs

When endowed with appropriate learning rules, hierarchical
spiking networks can be efficiently trained on high-dimensional
visual data (Kheradpisheh, Ganjtabesh, Thorpe, & Masquelier,
2018; Lee, Delbruck, & Pfeiffer, 2016; Leng et al., 2018; Petro-
vici et al., 2017; Schmitt et al., 2017; Zenke & Ganguli, 2018).
Such hierarchical networks are characterized by the presence
of several layers, with connections between consecutive layers,
but no lateral connections within the layers themselves. When

both feedforward and feedback connections are present, such
networks are able to both classify and generate images that are
similar to those used during training.

In these networks, information processing in both directions
is Bayesian in nature. Bottom-up propagation of information
enables an estimation of the conditional probability of a particular
label to fit the input data. Additionally, top-down propagation
of neural activity allows generating a subset of patterns in the vis-
ible layer conditioned on incomplete or partially occluded visual
stimulus. When no input is presented, such networks will pro-
duce patterns similar to those enforced during training (‘‘dream-
ing’’). In general, the exploration of a multimodal solution space
in generative models is facilitated by some noise-generating
mechanism. We demonstrate how even a small interconnected
set of hierarchical SSNs can perform these computations self-
sufficiently, without any source of explicit noise.

We used an ensemble of four 3-layer hierarchical SSNs trained
on a subset of the EMNIST dataset (Cohen, Afshar, Tapson, & van
Schaik, 2017), an extended version of the widely used MNIST
dataset (LeCun, Bottou, Bengio, & Haffner, 1998) that includes
digits as well as capital and lower-case letters. All SSNs had the
same structure, with 784 visible units, 200 hidden units and 5
label units (Fig. 4A). To emulate the presence of networks with
different functionality, we trained each of them on a separate
subset of the data. (To combine sampling in space with sampling
in time, multiple networks can also be trained on the same data,
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Fig. 4. Bayesian inference on visual input. (A) Illustration of the connectivity between two hierarchical SSNs in the simulated ensemble. Each SSN had a visible layer
v, a hidden h and a label layer l. Neurons in the same layer of an SSN were not interconnected. Each neuron in an SSN received only activity from the hidden layers
of other SSNs as background (no sources of explicit noise). (B) An ensemble of four such SSNs (red) was trained to perform generative and discriminative tasks
on visual data from the EMNIST dataset. We used the classification rate of restricted Boltzmann machines trained with the same hyperparameters as a benchmark
(blue). Error bars are given (on blue) over 10 test runs and (on red) over 10 ensemble realizations with different random seeds. (C) Illustration of a scenario where
one of the four SSNs (red boxes) received visual input for classification (B). At the same time, the other SSNs continuously generated images from their respective
learned distributions. (D) Pattern generation and mixing during unconstrained dreaming. Here, we show the activity of the visible layer of all four networks from
(B), each spanning three rows. Time evolves from left to right. For further illustrations of the sampling process in the ensemble of hierarchical SSNs, see Supporting
information, Figs. S4 and S5 and Video S2. (E) Pattern completion and rivalry for two instances of incomplete visual stimulus. The stimulus consisted of the top right
and bottom right quadrant of the visible layer, respectively. In the first run, we clamped the top arc of a ‘‘B’’ compatible with either a ‘‘B’’ or an ‘‘R’’ (top three rows,
red), in the second run we chose the bottom line of an ‘‘L’’ compatible with an ‘‘L’’, an ‘‘E’’, a ‘‘Z’’ or a ‘‘C’’ (bottom three rows, red). An ensemble of SSNs performs
Bayesian inference by implicitly evaluating the conditional distribution of the unstimulated visible neurons, which manifests itself here as sampling from all image
classes compatible with the ambiguous stimulus (see also Supporting information, Fig. S6). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

see Supporting information Fig. S5 and Video S2.) Since training
the spiking ensemble directly was computationally prohibitive,
we trained four Boltzmann machines on the respective datasets
and then translated the resulting parameters to neurosynaptic
parameters of the ensemble using the methods described earlier
in the manuscript (see also Supporting information, Fig. S2).

To test the discriminative properties of the SSNs in the ensem-
ble, one was stimulated with visual input, while the remaining
three were left to freely sample from their underlying distribu-
tion. We measured a median classification rate of 91.5+3.6

−3.0% with
errors given by the distance to the first and third quartile, which
is close to the 94.0+2.1

−1.5% achieved by the idealized reference setup
provided by the abstract Boltzmann machines (Fig. 4B). At the
same time, all other SSNs remained capable of generating recog-
nizable images (Fig. 4C). It is expected that direct training and a
larger number of SSNs in the ensemble would further improve
the results, but a functioning translation from the abstract to
the biological domain already underpins the soundness of the
underlying theory.

Without visual stimulus, all SSNs sampled freely, generating
images similar to those on which they were trained (Fig. 4D).
Without any source of explicit noise, the SSNs were capable to
mix between the relevant modes (images belonging to all classes)
of their respective underlying distributions, which is a hallmark
of a good generative model. We further extended these results
to an ensemble trained on the full MNIST dataset, reaching a
similar generative performance for all networks (see Supporting
information Fig. S5 and Video S2).

To test the pattern completion capabilities of the SSNs in the
ensemble, we stimulated them with incomplete and ambiguous
visual data (Fig. 4E). Under these conditions, SSNs only produced
images compatible with the stimulus, alternating between dif-
ferent image classes, in a display of pattern rivalry. As in the
case of free dreaming, the key mechanism facilitating this form
of exploration was provided by the functional activity of other
neurons in the ensemble.

4. Discussion

Based on our findings, we argue that sampling-based Bayesian
computation can be implemented in fully deterministic ensem-
bles of spiking networks without requiring any explicit
noise-generating mechanism. Our approach has a firm theoret-
ical foundation in the theory of sampling spiking neural net-
works, upon which we formulate a rigorous analysis of network
dynamics and learning in the presence or absence of noise.

While in biology various explicit sources of noise exist (Branco
& Staras, 2009; Faisal, Selen, & Wolpert, 2008; White, Rubinstein,
& Kay, 2000), these forms of stochasticity are either too weak
(in case of ion channels) or too high-dimensional for efficient
exploration (in the case of stochastic synaptic transmission, as
used for, e.g., reinforcement learning (Seung, 2003)). Further-
more, a rigorous mathematical framework for neural sampling
with stochastic synapses is still lacking. On the other hand, in the
case of population codes, neuronal population noise can be highly
correlated, affecting information processing by, e.g., inducing sys-
tematic sampling biases (Averbeck et al., 2006).

In our proposed framework, each network in an ensemble
plays a dual role: while fulfilling its assigned function within
its home subnetwork, it also provides its peers with the spiking
background necessary for stochastic search within their
respective solution spaces. This enables a self-consistent and
parsimonious implementation of neural sampling, by allowing
all neurons to take on a functional role and not dedicating any
resources purely to the production of background stochasticity.
The underlying idea lies in adapting neuro-synaptic parameters
by (contrastive) Hebbian learning to compensate for auto- and
cross-correlations induced by interactions between the functional
networks in the ensemble. Importantly, we show that this does
not rely on the presence of a large number of independent presy-
naptic partners for each neuron, as often assumed by models of
cortical computation that use Poisson noise (see, e.g., Xie and
Seung (2004)). Instead, only a small number of ensembles is



D. Dold, I. Bytschok, A.F. Kungl et al. / Neural Networks 119 (2019) 200–213 207

necessary to implement noise-free Bayesian sampling. This be-
comes particularly relevant for the development of neuromorphic
platforms by eliminating the computational footprint imposed by
the generation and distribution of explicit noise, thereby reducing
power consumption and bandwidth constraints.

For simplicity, we chose networks of similar size in our sim-
ulations. However, the presented results are not contingent on
network sizes in the ensemble and largely independent of the
particular functionality (underlying distribution) of each SSN.
Their applicability to scenarios where different SSNs learn to
represent different data is particularly relevant for cortical com-
putation, where weakly interconnected areas or modules are
responsible for distinct functions (Bertolero, Yeo, & D’Esposito,
2015; Bullmore & Sporns, 2009; Chen, He, Rosa-Neto, Germann,
& Evans, 2008; Meunier, Lambiotte, & Bullmore, 2010; Song,
Sjöström, Reigl, Nelson, & Chklovskii, 2005). Importantly, these
ideas scale naturally to larger ensembles and larger SSNs. Since
each neuron only needs a small number of presynaptic partners
from the ensemble, larger networks lead to a sparser interconnec-
tivity between SSNs in the ensemble and hence soften structural
constraints. Preliminary simulations show that the principle of
using functional output as noise can even be applied to con-
nections within a single SSN, eliminating the artificial separation
between network and ensemble connections (see Fig. S7 and
Video S3 in the Supporting information).

Even though we have used a simplified neuron model in
our simulations to reduce computation time and facilitate the
mathematical analysis, we expect the core underlying principles
to generalize. This is evidenced by our results on neuromor-
phic hardware, where the dynamics of individual neurons and
synapses differ significantly from the mathematical model. Such
an ability to compute with unreliable components represents a
particularly appealing feature in the context of both biology and
emerging nanoscale technologies.

Finally, the suggested noise-free Bayesian brain reconciles the
debate on spatial versus temporal sampling (Ma, Beck, Latham,
& Pouget, 2006; Orbán et al., 2016). In fact, the networks of
spiking neurons that provide each other with virtual noise may be
arranged in parallel sensory streams. An ambiguous stimulus will
trigger different representations on each level of these streams,
forming a hierarchy of probabilistic population codes. While these
population codes learn to cover the full sensory distribution in
space, they will also generate samples of the sensory distribution
in time (see Fig. S5 in the Supporting information). Attention may
select the most likely representation, while suppressing the rep-
resentations in the other streams. Analogously, possible actions
may be represented in parallel motor streams during planning
and a motor decision may select the one to be performed. When
recording in premotor cortex, such a selection causes a noise
reduction (Churchland, Byron, Ryu, Santhanam, & Shenoy, 2006),
that we suggest is effectively the signature of choosing the most
probable action in a Bayesian sense.

5. Conclusion

From a generic Bayesian perspective, cortical networks can
be viewed as generators of target distributions. To enable such
computation, models assume neurons to possess sources of per-
fect, well-behaved noise — an assumption that is both impractical
and at odds with biology. We showed how local plasticity in
an ensemble of spiking networks allows them to co-shape their
activity towards a set of well-defined targets, while reciprocally
using the very same activity as a source of (pseudo-)stochasticity.
This enables purely deterministic networks to simultaneously
learn a variety of tasks, completely removing the need for true
randomness. While reconciling the sampling hypothesis with the
deterministic nature of single neurons, this also offers an effi-
cient blueprint for in-silico implementations of sampling-based
inference.

6. Calculations

6.1. Free membrane potential distribution with colored noise

In the high-conductance state (HCS), it can be shown that the
temporal evolution of the free membrane potential (FMP) of an
LIF neuron stimulated by balanced Poisson inputs is equivalent to
an Ornstein–Uhlenbeck (OU) process with the following Green’s
function (Petrovici, 2016):
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where νk are the noise frequencies, wk the noise weights and
we dropped the index notation ufree

k used in previous sections for
convenience. The stationary FMP distribution is then given by a
Gaussian (Gerstner & Kistler, 2002; Petrovici, 2016):

f (u) =

√
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2πσ 2 exp
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−
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)
. (18)

Replacing the white noise η(t) in the OU process, defined by
⟨η⟩ = const. and ⟨η(t)η(t ′)⟩ = νδ(t − t ′) + ν2 (Gerstner
& Kistler, 2002), with (Gaussian) colored noise ηc , defined by
⟨ηc⟩ = const. and ⟨ηc(t)ηc(t ′)⟩ = γ (t − t ′) (Häunggi & Jung,
1994) where γ (t − t ′) is a function that does not vanish for
t − t ′ ̸= 0, the stationary solution of the FMP distribution is
still given by a Gaussian with mean µ′ and width σ ′ (Cáceres,
1999; Häunggi & Jung, 1994). Since the noise correlations only
appear when calculating higher-order moments of the FMP, the
mean value of the FMP distribution remains unchanged µ′

= µ.
However, the variance σ ′2

= ⟨
(
u(t) − ⟨u(t)⟩

)2
⟩ of the stationary

FMP distribution changes due to the correlations, as discussed in
the next section.

6.2. Width of free membrane potential distribution

In the HCS, the FMP can be approximated analytically as
(Petrovici, 2016)
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By explicitly writing the excitatory and inhibitory noise spike
trains as Se/i(t ′) =

∑
spikes s δ(t ′ − ts), this can be rewritten to

u(t) = u0 +

∑
k∈{e,i}

Λk

∫
dt ′Sk(t ′)Θ(t − t ′)

·

[
exp

(
−

t − t ′

τ
syn
k

)
− exp

(
−

t − t ′

⟨τeff⟩

)]
(21a)

= u0 + Λe
(
Se ∗ κe

)
(t) + Λi

(
Si ∗ κi

)
(t) (21b)
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where ∗ denotes the convolution operator and with
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For simplicity, we assume τ
syn
e = τ

syn
i . The width of the FMP

distribution can now be calculated as
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where the average is calculated over t and Stot(t) = ΛeSe(t) +

ΛiSi(t). Since the average is an integral over t , i.e. ⟨(·)⟩ →
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More generally, we obtain with a similar calculation the autocor-
relation function (ACF) of the FMP:
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with x̄(t) = x(t) − ⟨x(t)⟩ and by using ⟨ū(t)ū(t + ∆)⟩ =

⟨u(t)u(t + ∆)⟩ − ⟨u(t)⟩2. This can be further simplified by apply-
ing the Wiener–Khintchine theorem (Khintchine, 1934; Wiener,
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and by applying the Wiener–Khintchine theorem again in reverse
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where the variance of the FMP distribution is given for ∆ = 0.
Thus, the unnormalized ACF of the FMP can be calculated by

convolving the unnormalized ACF of the background spike trains
(Stot) and the PSP shape (κ). In case of independent excitatory and
inhibitory Poisson noise (i.e., ⟨S̄(t)S̄(t ′)⟩ = νδ(t − t ′)), we get
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which agrees with the result given in Petrovici (2016). If the
noise spike trains are generated by processes with refractory
periods, the absence of spikes between refractory periods leads to
negative contributions in the ACF of the noise spike trains. This
leads to a reduced value of the variance of the FMP and hence,
also to a reduced width of the FMP distribution. The factor

√
β

by which the width of the FMP distribution (Eqn. (11)) changes
due to the introduction of colored background noise is given by
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k∈{e,i} Λ2
kνk

∫
∞

0 κ2(t) dt
. (31)

For the simplified case of a Poisson process with refractory period,
one can show that

∫
d∆ ⟨S̄tot(t)S̄tot(t + ∆)⟩ has a reduced value

compared to a Poisson process without refractory period (Gerst-
ner & Kistler, 2002), leading to β ≤ 1. Even though we do not
show this here for neuron-generated spike trains, the two cases
are similar enough that β ≤ 1 can be assumed to apply in this
case as well.

In the next section, we will show that the factor β can be used
to rescale the inverse slope of the activation function to transform
the activation function of a neuron receiving white noise to the
activation function of a neuron receiving equivalent (in frequency
and weights), but colored noise. That is, the rescaling of the FMP
distribution width due to the autocorrelated background noise
translates into a rescaled inverse slope of the activation function.

6.3. Approximate inverse slope of LIF activation function

As stated earlier, the FMP of an LIF neuron in the HCS is
described by an OU process with a Gaussian stationary FMP
distribution (both for white and colored background noise). As
a first approximation, we can define the activation function as
the probability of the neuron having a FMP above threshold (see
Eq. (18))

p(zi = 1) ≈

∫
∞

ϑ

f (u)du (32)

=

∫
∞

ϑ

√
1

2πσ 2 exp
(

−
(u − µ)2

2σ 2

)
du (33)

=
1
2

(
1 − erf

(ϑ − µ
√
2σ

))
. (34)
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Even though this is only an approximation (as we are neglecting
the effect of the reset), the error function is already similar to
the logistic activation function observed in simulations (Petrovici
et al., 2016).

The inverse slope of a logistic activation function is defined at
the inflection point, i.e.,

α−1
=

d
dµ

ϕ

(
µ − u0

α

)⏐⏐⏐⏐
µ=u0

. (35)

By calculating the inverse slope via the activation function de-
rived from the FMP distribution, we get

α−1
=

d
dµ

p(zi = 1)
⏐⏐⏐⏐
µ=ϑ

, (36)

=

√
1

2πσ 2 , (37)

from which it follows that the inverse slope α is proportional to
the width of the FMP distribution σ . Thus, rescaling the variance
of the FMP distribution by a factor β leads, approximately, to
a rescaling of the inverse slope of the activation function α′

=
√

βα.

6.4. Origin of side-peaks in the noise autocorrelation function

For high rates, the spike train generated by an LIF neuron in
the HCS shows regular patterns of interspike intervals which are
roughly equal to the absolute refractory period. This occurs (i) due
to the refractory period introducing regularity for higher rates,
since ISI’s < τref are not allowed and the maximum firing rate of
the LIF neuron is bounded by 1

τref
, and (ii) due to an LIF neurons’s

tendency to spike consecutively when the effective membrane
potential

ueff(t) =
glEl +

∑
k∈{e,i} g

syn
k (t)Erev

k

g tot(t)
, (38)

τeffu̇ = ueff − u , (39)

is suprathreshold after the refractory period (Petrovici, 2016). The
probability of a consecutive spike after the neuron has spiked
once at time t is given by (under the assumption of the HCS)

p1 = p(spike at t + τref| first spike at t) (40)

=

∫
∞

ϑ

dut+τref f (ut+τref , τref | ut = ϑ) ,

due to the effective membrane potential following an Ornstein–
Uhlenbeck process (whereas the FMP is a low-pass filter thereof,
however with a very low time constant τeff), see Eq. (16). The
probability to spike again after the second refractory period is
then given by

p2 = p(spike at t + 2τref| spike at t + τref, t) (41)

=

∫
∞

ϑ

∫
∞

ϑ
du2du1 f (u2, τref | u1)f (u1, τref | u0 = ϑ)∫

∞

ϑ
du1 f (u1, τref | u0 = ϑ)

,

with un = ut+nτref , or in general after n − 1 spikes

pn = p(spike at t + nτref | spike at t + (n − 1)τref, . . . , t)

=

∫
∞

ϑ

dun−1 f (n−1)(un−1) , (42)

f n(un) =

∫
∞

ϑ
dun−1 f (un, τref | un−1)f (n−1)(un−1)∫

∞

ϑ
dun−1 f (n−1)(un−1)

, (43)

for n > 1 and f 1(u1) = f (u1, τref | u0 = ϑ). The probability to
observe n spikes in such a sequence is then given by

Pn =

n−1∏
i=1

pi , (44)

and the probability to find a burst of length n (i.e., the burst ends)

p(burst of length n) = Pn · (1 − pn) . (45)

With this, one can calculate the average length of the occurring
bursts

∑
∞

i=1 i · p(burst of length i), from which we can already
see how the occurrence of bursts depends on the mean activity
of the neuron. A simple solution can be found for the special
case of τ syn

≪ τref, since then the effective membrane potential
distribution has already converged to the stationary distribution
after every refractory period, i.e., f (un, τref | un−1) = f (un) and
hence

pn = p(spike at t + nτref| spike at t + (n − 1)τref, . . . , t)

=

∫
∞

ϑ

duf (u) = p̄ (46)

for all n. Thus, for this special case the average burst length can
be expressed as
∞∑
i=1

i · p(burst of length i) =

∞∑
i=1

i · p̄i−1(1 − p̄) , (47)

=
1

1 − p̄
. (48)

By changing the mean membrane potential (e.g., by adjusting the
leak potential or adding an external (bias) current), the probabil-
ity of consecutive spikes p̄ can be directly adjusted and hence,
also the average length of bursts. Since these bursts are fixed
structures with interspike intervals equal to the refractory period,
they translate into side-peaks at multiples of the refractory period
in the spike train ACF, as we demonstrate below.

The ACF of the spike train S is given by

C(S, S, ∆) =
⟨StSt+∆⟩ − ⟨S⟩2

Var(S)
, (49)

where the first term of the numerator is ⟨StSt+∆⟩ = p(spike at t+
∆, spike at t) (notation as in Eqs. (21a) and (23a)). This term can
be expressed as

p(spike at t + ∆, spike at t)

= p(spike at t + ∆ | spike at t) · p(spike at t) , (50)

= p(spike at t + ∆ | spike at t) · ⟨S⟩ , (51)

where we assumed that the first spike starts the burst at a
random time t . Therefore, in order to calculate the ACF, we have
to calculate the probability that a spike occurs at time t + ∆

given that the neuron spikes at time t . This has to include every
possible combination of spikes during this interval. In the follow-
ing, we argue that at multiples of the refractory period, the main
contribution to the ACF comes from bursts.

• First, for ∆ < τref, the term p(spike at t + ∆ | spike at t) in
Eq. (50) vanishes since the neuron is refractory and cannot
spike during this interval. Thus, the ACF becomes negative
as only the term −

⟨S⟩2
Var(S) in Eq. (49) remains, where both

numerator and denominator are positive.
• For ∆ = τref, a spike can only occur when the neuron bursts

with probability p1 =
∫

∞

ϑ
dut+τref f (ut+τref , τref | ut = ϑ),

where we assumed for simplicity that the first spike starts
the burst spontaneously.
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• Since for τref < ∆ < 2τref, the neuron did not burst with
probability 1−p1, it is possible to find a spike in this interval,
leading again to negative, but diminished, values in the ACF.

• For ∆ = 2τref, we now have two ways to observe spikes at
t and t + 2τref: (i) The spikes are part of a burst of length 2
or (ii) there was no intermediate spike and the spikes have
an ISI of 2τref. Since for larger rates, having large ISIs that
are exact multiples of τref is unlikely, we can neglect the
contribution of (ii).

• If we go further to ∆ = nτref, we get even more additional
terms including bursts of length < n. However, these terms
can again be neglected as, compared to having a burst of
length n, it is rather unlikely to get a burst pattern with
missing intermediate spikes, i.e., having partial bursts which
are a multiple of τref apart.

• Finally, for ∆ → ∞, we have ⟨StSt+∆⟩−⟨S⟩2 = ⟨St⟩ ⟨St+∆⟩−

⟨S⟩2 = ⟨S⟩ ⟨S⟩ − ⟨S⟩2 = 0 and the ACF (Eq. (49)) vanishes.

Consequently, we can approximate the ACF at multiples of the
refractory period by calculating the probability of finding a burst
of n spikes (Eq. (43)):

C(S, S, nτref) ≈

∞∑
k=1

Pk+1δ
(
[n − k]τref

)
, (52)

and for the special case of τ syn
≪ τref

C(S, S, nτref) ≈

∞∑
k=1

p̄kδ
(
[n − k]τref

)
(53)

=

∞∑
k=1

ek ln p̄δ
(
[n − k]τref

)
. (54)

Hence, since increasing the mean rate (or bias) of the neuron
leads to an increase in p̄ and thus to a reduced decay constant
ln p̄, more significant side-peaks emerge.

For τ syn
≈ τref, the effective membrane distribution is not yet

stationary and therefore, this approximation does not hold. To
arrive at the exact solution, one would have to repeat the above
calculation for all possible spike time combinations, leading to
a recursive integral (Gerstner & Kistler, 2002). Furthermore, one
would also need to take into account the situation where the
first spike is itself part of a burst, i.e., is not the first spike in
the burst. To circumvent a more tedious calculation, we use an
approximation which is in between the two cases τ syn

≪ τref
and τ syn

≈ τref: we use p̄ =
∫

∞

ϑ
duf (u, τref | ϑ), which provides a

reasonable approximation for short bursts.

6.5. Cross-correlation of free membrane potentials receiving corre-
lated input

Similarly to the ACF of the membrane potential, one can cal-
culate the crosscorrelation function of the FMPs of two neurons
receiving correlated noise input. First, the membrane potentials
are given by

u1 = u1
0 + Stot,1 ∗ κ , (55)

u2 = u2
0 + Stot,2 ∗ κ . (56)

The covariance function can be written as

⟨ū1(t)ū2(t + ∆)⟩

= ⟨u1(t)u2(t + ∆)⟩ − ⟨u1(t)⟩ ⟨u2(t)⟩ (57a)
= ⟨

(
Stot,1 ∗ κ

)
(t)

(
Stot,2 ∗ κ

)
(t + ∆)⟩

− ⟨
(
Stot,1 ∗ κ

)
(t)⟩ ⟨

(
Stot,2 ∗ κ

)
(t)⟩ (57b)

= · · ·

=
(
lim
T→∞

1
T

⟨S̄tot,1(t)S̄tot,2(t + ∆′)⟩T

∗ ⟨κ(t)κ(t + ∆′)⟩∞
)
(∆) , (57c)

with ū = u − ⟨u⟩, from which we obtain the crosscorrelation
function by normalizing with the product of standard deviations
of u1 and u2 (for notation, see Eq. (27)). The term containing the
input correlation coefficient is ⟨S̄tot,1(t)S̄tot,2(t + ∆′)⟩. Plugging in
the spike trains, we get four crosscorrelation terms

⟨S̄tot,1(t)S̄tot,2(t + ∆′)⟩

=

∑
l,m∈{e,i}

Λl,1Λm,2 ⟨S̄l,1(t)S̄m,2(t + ∆′)⟩ . (58)

Since excitatory as well as inhibitory noise inputs are randomly
drawn from the same pool of neurons, we can assume that
⟨S̄l,1(t)S̄m,2(t + ∆′)⟩ is approximately equal for all combinations
of synapse types when averaging over enough inputs, regardless
of the underlying correlation structure/distribution of the noise
pool. The first term, however, depends on the synapse types since
the Λ-terms (Eq. (20b)) contain the distance between reversal
potentials and mean FMP:

⟨ū1(t)ū2(t + ∆)⟩

= ζ1ζ2
∑

l,m∈{e,i}

wlwm
(
Erev
l − µ1

)(
Erev
m − µ2

)
·

[
⟨S̄l,1(t)S̄m,2(t + ∆′)⟩ ∗ ⟨κ(t)κ(t + ∆′)⟩

]
(∆) , (59)

with constants ζi =
τ syn

⟨gtot i⟩

(
τ syn

− ⟨τeff
i
⟩
)
. The cross-correlation

vanishes when, after summing over many inputs, the following
identities hold:

⟨Λe,1Λe,2⟩inputs = −⟨Λe,1Λi,2⟩inputs , (60a)

⟨Λi,1Λi,2⟩inputs = −⟨Λi,1Λe,2⟩inputs , (60b)

where ⟨(·)⟩ is an average over all inputs, i.e., all neurons that
provide noise.

While not relevant for our simulations, it is worth noting
that the excitatory and inhibitory weights with which each neu-
ron contributes its spike trains can be randomly drawn from
non-identical distributions. By enforcing the following correlation
between the noise weights of both neurons, one can introduce
a skew into the weight distribution which compensates for the
differing distance to the reversal potentials:

(Ee,1
rev − µ1)(Ee,2

rev − µ2)⟨w1
ew

2
e ⟩inputs

= −(Ee,1
rev − µ1)(E i,2

rev − µ2)⟨w1
ew

2
i ⟩inputs (61)

A simple procedure to accomplish this is the following: First,
we draw the absolute weights w1 and w2 from an arbitrary
distribution and assign synapse types randomly with probabil-
ities pe/i afterwards. If w2 is excitatory, we multiply w1 by

|Ei,2rev−µ2|

pe|E
i,2
rev−µ2|+pi|E

e,2
rev−µ2|

, otherwise by |Ee,2rev−µ2|

pe|E
i,2
rev−µ2|+pi|E

e,2
rev−µ2|

. This way,

⟨w1
⟩ remains unchanged and the resulting weights suffice

Eq. (61).

6.6. State space switch from {0,1} to {-1,1}

To switch from the state space z ∈ {0, 1} to z′
∈ {−1, 1} while

conserving the state probabilities (i.e., p(z) = p(z′)) one has to
adequately transform the distribution parameters W and b. Since
the distributions are of the form p(z) = exp

(
zTWz + zTb

)
, this

is equivalent to requiring that the energy E(z) = zTWz + zTb of
each state remains, up to a constant, unchanged.
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First, we can write the energy of a state z′ and use the trans-
formation z′

= 2z − 1 to get

E(z′) =
1
2

∑
i,j

z′

iW
′

ijz
′

j +
∑

i

z′

ib
′

i (62a)

=
1
2

(
4
∑
i,j

ziW′

ijzj − 2
∑
i,j

ziW′

ij − 2
∑
i,j

W′

ijzj

+

∑
i,j

W′

ij

)
−

∑
i

b′

i + 2
∑

i

zib′

i (62b)

=
1
2

∑
i,j

zi4W′

ijzj +
∑

i

zi
(
2b′

i

− 2
∑

j

W′

ij

)
+ C , (62c)

where C is a constant C =
1
2

∑
i,j W

′

ij−
∑

i b
′

i and we used the fact
that W′

ij is symmetric. Since constant terms in the energy leave
the probability distribution invariant, we can simply compare
E(z′) and E(z)

E(z) =
1
2

∑
i,j

zTi Wijzj +
∑

i

zTi bi , (63)

and extract the correct parameter transformation:

Wij = 4W′

ij , (64)

bi = 2b′

i − 2
∑

j

W′

ij . (65)

From this, we can also calculate the inverse transformation rule
for z =

1
2 (z

′
+ 1):

W′

ij =
1
4
Wij , (66)

b′

i =
1
2
bi +

1
4

∑
j

Wij . (67)

6.7. Translation from Boltzmann to neurosynaptic parameters

As discussed in the methods section, following Petrovici et al.
(2016), the activation function of LIF neurons in the HCS is ap-
proximately logistic and can be written as

p(zk = 1 | z/k) = ϕ(µ)

= (1 + exp (−(µ − u0)/α))−1 , (68)

where z/k is the state vector of all other neurons except the k’th
one and µ the mean membrane potential (Eq. (17b)). u0 and
α are the inflection point and the inverse slope, respectively.
Furthermore, the conditional probability p(zk = 1 | z/k) of a Boltz-
mann distribution over binary random variables zk, i.e., p(z) ∝

exp
( 1
2z

TWz + zTb
)
, is given by

p(zk = 1 | z/k)

=

⎛⎝1 + exp (−
∑

j

Wkjzj − bk)

⎞⎠−1

, (69)

with symmetric weight matrix W, Wii = 0 ∀i, and biases b. These
equations allow a translation from the parameters of a Boltzmann
distribution (bi, Wij) to parameters of LIF neurons and their
synapses (El, wij), such that the state dynamic of the network
approximates sampling from the target Boltzmann distribution.

First, the biases b can be mapped to leak potentials El (or ex-
ternal currents) by requiring that, for W = 0 (that is, no synaptic

input from other neurons), the activity of each neuron equals the
conditional probability of the target Boltzmann distribution

(1 + exp (−(µ − u0)/α))−1 !
= (1 + exp (−bk))−1 , (70)

leading to the translation rule

El =
τm

τeff
(αb + u0) −

∑
x∈{e,i}

⟨gsyn
x ⟩

gl
Erev
x . (71)

To map Boltzmann weights Wij to synaptic weights wij, we
first have to rescale the Wij, as done for the biases in Eq. (71).
However, leaky integrator neurons have non-rectangular PSPs, so
their interaction strength is modulated over time. This is different
from the interaction in Boltzmann machines, where the PSP shape
is rectangular (Glauber dynamics). Nevertheless, we can derive a
heuristic translation rule by requiring that the mean interaction
during the refractory period of the presynaptic neuron is the same
in both cases, i.e.,∫ τref

0
dt PSP(t) !

=

∫ τref

0
dt αWij (72a)

= αWijτref , (72b)

where PSP(t) is given by Eq. (19). From this, we get the translation
rule for synaptic weights:

wkj =

αWkjCm
τref
τ syn

(
1 −

τ syn

τeff

) (
Erev
kj − µ

)−1[
τ syn

(
e−

τref
τ syn − 1

)
− τeff

(
e−

τref
τeff − 1

)] . (73)
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