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The hierarchical structure of the cortex raises the question how plasticity in the brain
is able to shape such a structure in the first place. The distant cousins of biological
neurons, deep abstract neural networks, are commonly trained with the backpropagation-
of-errors algorithm (backprop), which solves the credit assignment problem for deep
neural networks and is behind many of the recent achievements of deep learning. De-
spite its effectiveness in abstract neural networks, it remains unclear whether backprop
might represent a viable implementation of cortical plasticity. Here, we present a new
theoretical framework that uses a least-action principle to derive a biologically plausible
implementation of backprop.
In our model, neuronal dynamics are derived as Euler-Lagrange equations of a scalar
function (the Lagrangian). The resulting dynamics can be interpreted as those of multi-
compartment neurons with apical and basal dendrites, coupled with a Hodgkin-Huxley-like
activation mechanism allowing neurons to phase-advance their somatic input and hence
undo temporal delays introduced by somatic and dendritic low-pass filtering. We suggest
that a neuron’s apical potential encodes a local prediction error arising from the differ-
ence between top-down feedback from higher cortical areas and bottom-up predictions
represented by activity in its home layer. This computation is enabled by a stereotypical
cortical microcircuit, projecting from pyramidal neurons to interneurons back to the
pyramidal neurons’ apical compartments. When a subset of output neurons is slightly
nudged towards a target behavior that cannot be explained away by bottom-up predic-
tions, an error signal is induced that propagates back throughout the network via feedback
connections. By defining synaptic dynamics as gradient descent on the Lagrangian, we
obtain a biologically plausible plasticity rule that acts on the forward projections of
pyramidal neurons in order to reduce this error.
The presented model incorporates several features of biological neurons that cooperate
towards approximating a time-continuous version of backprop, where plasticity acts at
all times to reduce local prediction errors, thereby minimizing a global output error or
cost function. Finally, the model is not only restricted to supervised learning, but can
also be applied to unsupervised and reinforcement learning schemes, as demonstrated in
simulations.
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Lagrangian dynamics
We propose a model based on an energy function
composed of layerwise prediction errors1 and a
cost function defined over a subset of neurons that
act as output neurons, e.g., neurons in the last
layer of a hierarchical network

E =
1

2

N∑
k

‖uk −Wkr̄k−1‖2︸ ︷︷ ︸
prediction error

+ βC︸︷︷︸
cost

, (1)

where uk are the membrane potentials of the kth
layer,Wk weights projecting to neurons in the kth
layer and r̄k−1 = ϕ(uk−1) the steady-state activa-
tion function of neurons in the previous layer. β is
a scalar weighting of the costs. The cost function
is given by the Euclidean norm between observed
and target behaviour C = 1

2
‖uN − yN‖2. By ap-

plying a change of variables u = ũ − τ ˙̃u, we can
define the Lagrangian L as L = −E(ũ, ˙̃u,W ). We
assume that neural dynamics minimizes an energy
integral (or "action"), i.e., δ

∫
Ldt = 0. The equa-

tion of motion solving this constraint is given by
the Euler Lagrange equations with respect to ũ,
i.e., ∂L

∂ũ
= d

dt
∂L
∂ ˙̃u

, leading to

τ u̇k = −uk +Wkrk−1 + ek , (2)
rk−1 = r̄k−1 + τ ˙̄rk−1 , ek = ēk + τ ˙̄ek , (3)
ēk = r̄′k ·WT

k+1(uk+1 −Wk+1r̄k) , (4)
ēN = β(yN − uN) . (5)

Synaptic dynamics are derived as gradient descent
on the energy function, i.e., plasticity reduces pre-
diction errors:

Ẇk ∝ −∇Wk
E = (uk −Wkr̄k−1)r̄

T
k−1 . (6)

Biophysical interpretation
The resulting neuron dynamics can be interpreted
as containing somatic (uk), basal (Wkr̄k−1) and
apical (ek) compartments. Prediction errors ēk
are encoded in the apical dendrite and are formed
by comparing top-down feedback (WT

k+1uk+1) and

1For simplicity, we restrict the description to layered
networks, but the model generalizes to arbitrary connec-
tivities.

bottom-up prediction mediated via lateral in-
terneurons (WT

k+1u
I
k with uIk = Wk+1r̄k), see

Fig. 1A. As discussed in [1], the weights of the
interneuron circuit must not be identical to the
forward weights but can be learned. In this frame-
work, neurons are both carriers of feedforward in-
put as well as error signals. A crucial difference to
ordinary rate models is the appearance of "look-
ahead" rates rk(t) ≈ r̄k(t+ τ), undoing temporal
delays by low-pass filtering. We identify this as
a Hodgkin-Huxley-like activation mechanism, set-
ting r ≈ INa which can be shown to behave like
the look-ahead rate under certain conditions. This
allows the neuron to encode, at every time step,
the correct error signal with respect to its current
state, enabling plasticity to reduce the cost at all
times.
Error backpropagation
Synaptic plasticity is driven by the comparison
between basal and somatic potentials. By low-
pass filtering Eq. (2) and using Eq. (6), we re-
cover the backprop formulas Ẇk ∝ ēkr̄

T
k−1 and

ēk = r̄′k ·WT
k+1ēk+1. To train the network, output

neurons are slightly nudged towards their target
yN(t), reducing the cost function. However, this
leads to non-zero prediction errors between layers,
driving plasticity to reduce these errors to zero
again. For small β, it can be shown that this in-
terplay between nudging and reducing layerwise
errors can be used to train the network. We demon-
strate the learning capabilities of the model for su-
pervised, unsupervised and reinforcement learning
examples (see Fig. 1B-D).
Related work
Recently, the possibility of biologically plausible
backprop obtained a huge boost with the discovery
of feedback alignment [2]. In [1, 3], it was further
shown how cortical microcircuits can be used to
approximate error backpropagation. Additionally,
Equilibrium Propagation [4] introduced a connec-
tion between energy-based models and error back-
propagation. In [5], a connection between predic-
tive coding and error backpropagation has been
established. See also [6] for a recent review of the
aforementioned models. The presented model com-
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Figure 1: (A) Error coding scheme with compartmental model. A bottom-up prediction mediated via interneurons tries
to explain away top-down feedback coming from higher cortical areas. If not all feedback can be explained away, this leads
to a non-zero prediction error in the apical compartment, driving plasticity in the forward connections. Here, microcircuit,
feedback and forward weights are coupled. However, these can also be learned independently, without requiring any
weight transport. (B) Learning MNIST with a layered network (784-500-10). During training, every training image is
only shown for a short amount of time (10ms) such that the network never reaches a stationary state. (C) Unsupervised
learning of a time-continuous human intracortical EEG signal (56 electrodes, modelled by 56+40 fully recurrent neurons)
before and after training. During test runs, the network only sees 46 of 56 inputs and reproduces the remainder (only
2 shown). (D) Classification of three images with reinforcement learning (reward is +1/ − 1). A winner-take-all like
connectivity among the output neurons provides the necessary nudging when learning is based on scalar reward signals.

bines the previous approaches and extends them
to allow real-time learning with backpropagated
errors, where plasticity does not depend on a sep-
aration of training and free phases or dynamical
time scales.
Summary

We present a formalized approach to deriving bi-
ologically plausible neurosynaptic dynamics im-
plementing error backpropagation. Different from
previous models, the derived dynamics allow a
real-time backpropagation of errors, where none
of the dynamics have to be stationary in order for
plasticity to be able to reduce an output cost. Fi-
nally, we would like to stress two key points of the
model’s biological implementation: (i) Learning is
driven by a local plasticity rule (the dendritic pre-
diction of somatic activity) and (ii) by minimizing
local prediction errors, each neuron contributes to
reducing a global cost.
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