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SUMMARY

Sequential neural activity patterns are as ubiquitous
as the outputs they drive, which include motor
gestures and sequential cognitive processes. Neural
sequences are long, compared to the activation
durations of participating neurons, and sequence
coding is sparse. Numerous studies demonstrate
that spike-time-dependent plasticity (STDP), the
primary known mechanism for temporal order
learning in neurons, cannot organize networks to
generate long sequences, raising the question of
how such networks are formed. We show that heter-
osynaptic competition within single neurons, when
combined with STDP, organizes networks to
generate long unary activity sequences even without
sequential training inputs. The network produces a
diversity of sequences with a power law length distri-
bution and exponent�1, independent of cellular time
constants. We show evidence for a similar distribu-
tion of sequence lengths in the recorded premotor
song activity of songbirds. These results suggest
that neural sequences may be shaped by synaptic
constraints and network circuitry rather than cellular
time constants.

INTRODUCTION

Reaching for or throwing objects, walking, and vocalizing are a

few of the ways vertebrates interact with the world. Vertebrates

also plan, visualize, or review action and event sequences.

Underlying the time-varying patterns of muscle activation or

sequential cognitive processing are sequences of neural activity.

Such sequences are found in various parts of the brain, including

the cortex (Schwartz and Moran, 1999; Andersen et al., 2004;

Pulvermüller and Shtyrov, 2009; Luczak et al., 2007; Buonomano,

2003; Ikegaya et al., 2004; Tang et al., 2008), hippocampus

(Nádasdy et al., 1999; Louie and Wilson, 2001; Pastalkova

et al., 2008; Davidson et al., 2009), basal ganglia (Barnes et al.,

2005), and the songbird HVC (Hahnloser et al., 2002; Kozhevni-
kov and Fee, 2007), under various behavioral states. The ubiquity

of repeating sequential neural patterns across species, task and

nontask conditions, and even in vitro suggests that the mecha-

nisms for creating sequence-producing circuits may be quite

general and robust. Yet little is known, from experiment or theory,

about what these mechanisms might be. In this work, we investi-

gate plasticity rules that could sculpt sequence-producing neural

circuits out of initially disordered networks.

What are some of the properties of sequential neural activity

patterns? Sequences are frequently much longer than the

membrane and synaptic time-constants of individual neurons.

The coding of sequences is sparse. For instance, individual pre-

motor neurons in motor cortex are active in only small portions of

a figure-eight arm tracing trajectory in monkeys (Schwartz and

Moran, 1999). Similarly, hippocampal place cells fire at one

or a few locations of a long track while the animal runs or as it

rehearses its possible forward trajectories at a decision point

(Pastalkova et al., 2008) or as it replays in sleep its place cell acti-

vation sequence (Louie and Wilson, 2001). Zebra finches

produce song motifs lasting up to 1 s, while individual neurons

in the high-level premotor center are each active for only single

bursts of about 6 ms duration (Hahnloser et al., 2002) over the

full song sequence. In other words, the high-level coding of

sequential activity in the brain is sparse, with single neurons firing

for small portions of the entire sequence.

Many sequential behaviors are also ‘‘modular,’’ composed of

gestures or shorter sequences that can be flexibly arranged

and combined. The underlying neural codes are also found to

be modular, sometimes even when the behavior itself is not obvi-

ously so. For example, although the song of a zebra finch

consists of a largely stereotyped single sequence of syllables,

the neural drive underlying the song appears to consist of a

concatenation of a disjoint set of separate subsequences of

neural activity (Tanji, 2001; Glaze and Troyer, 2006; Wang

et al., 2008; Davidson et al., 2009).

Several network-level models seek to explain the propagation

of sequential neural activity. A number of such models can be

grouped into the category of ‘‘synaptic chain’’ networks (Amari,

1972; Kleinfeld and Sompolinsky, 1988; Abeles, 1991; Drew

and Abbott, 2003; Li and Greenside, 2006; Jin et al., 2007). In

synaptic chain networks, the connectivity matrix is asymmetric

or directional, with one group of neurons connecting to the

next, and so on. Activity in the network flows in the direction of
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the underlying connections. Such an architecture is consistent

with the dynamics of sequence generation in the premotor

nucleus HVC of songbirds (discussed in Fiete and Seung, 2008;

Weber and Hahnloser, 2007). Synaptic chain models represent

a first step toward understanding neural sequence generation,

but the requisite network connectivity is hand designed and

hard wired. There is relatively little experimental or theoretical

understanding of how initially unstructured networks may orga-

nize into synaptic chain configurations. Similarly, it remains

unknown how multiple neural subsequences of varying length

(Tanji, 2001; Wang et al., 2008; Davidson et al., 2009) are formed.

Spike-time-dependent plasticity (STDP) rules demonstrably

allow networks to perform next-step recall of sequentially pre-

sented inputs: STDP rules translate repeated sequential activa-

tions of pairs of neurons into a permanent increase in the synaptic

strength from the first onto the second neuron (ordered by time of

activation), while weakening the reverse connection (Bi and Poo,

1998, 2001; Abbott and Nelson, 2000), making STDP a natural

candidate for explaining synaptic chain formation.

But simulation studies make it clear that STDP rules with

bounds on individual synaptic strengths are largely unsuccessful

at producing networks that autonomously generate long or

sparse neural activity sequences (Aviel et al., 2003; Levy et al.,

2001; Suri and Sejnowski, 2002; Rao and Sejnowski, 2003; Now-

otny et al., 2003). This is because STDP tends to enhance pop-

ulation synchrony (temporal bunching) and concentrate activity

in a few winning neurons (spatial bunching): the forward synapse

between a pair of neurons firing in close succession will be

strengthened, thereby further decreasing the lag between their

firing times and thus promoting their synchrony (Buonomano,

2005). A neuron that fires frequently early on will have its inputs

strengthened and will also tend to successfully drive its outputs,

quickly becoming a hub that drives simultaneous activity in

a large fraction of the network. These results illustrate the diffi-

culty encountered in explaining how various brain areas could

organize to generate sequential patterns of neural activity.

One method for forming long sequences using STDP is to

consider a network of intrinsically bursting neurons and sequen-

tially grow a chain by restricting synaptic plasticity to just the few

neurons at the end of the growing chain (Jun and Jin, 2007).

However, this approach does not allow for the simultaneous

formation of multiple chains and requires a separate scheme

for producing a range of chain lengths.

A cellular property that has not been linked with sequence-

producing networks or sequence learning is heterosynaptic

competition. Heterosynaptic competition for synapse growth

or total synaptic strength has been documented at both pre-

and postsynaptic neurons. For example, postsynaptic neurons

balance activity-dependent potentiation of an input synapse by

inducing heterosynaptic depression among other input

synapses, conserving the total synaptic weight onto the neuron

(Royer and Paré, 2003). Similarly, the dependence of long-term

potentiation on the synthesis of new proteins provides neurons

with the ability to constrain the strengthening and weakening

of outgoing synapses on the full-cell level (Huber et al., 2000;

Fonseca et al., 2004, 2006).

We show that when STDP is combined with heterosynaptic

competition for scarce synapse-building resources on the level
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of individual neurons, initially random neural networks robustly

self-organize to form multiple synaptic chains of different

lengths. If inputs to the network are sequential and dense, the

combined plasticity rules drive the network to rapidly learn unary

versions of the input sequence. Surprisingly, a network with

these plasticity rules self-organizes to produce long unary chains

of activity even if the training inputs are temporally random, with

no sequential structure.

For concreteness, we identify our model network with the

songbird premotor area HVC. The reasons for this choice are

that, first, HVC appears to originate sequential activity, rather

than inheriting it as sequential input from an upstream area (Not-

tebohm et al., 1976, 1982; Bottjer et al., 1984; Hahnloser et al.,

2002; Fee et al., 2004; Long and Fee, 2008); second, the constit-

uent neuron types and their activity patterns during song are

well-characterized (Mooney, 2000; Hahnloser et al., 2002;

Mooney and Prather, 2005; Kozhevnikov and Fee, 2007); and

third, HVC is thought to possess an underlying synaptic chain

structure (arguments in Fiete and Seung, 2008; Seung, 2009).

We demonstrate that the lengths of the chains formed by

learning obey a power law that resembles the distribution of

HVC chain lengths, as inferred from electrical stimulation exper-

iments in songbirds. The model, because of its genericness,

could be applied to other areas where sequences are known to

originate and where the underlying network architecture is that

of a synaptic chain. In these cases, it would lead to similar

predictions on the distribution of chain lengths and on the

elements required for chain formation.

RESULTS

The Model
The songbird HVC consists of three cell populations. HVCRA

neurons display unary activity sequences, send recurrent collat-

erals within HVC, and project downstream to the next nucleus

(RA) in the motor pathway. Inhibitory interneurons fire tonically

throughout the song motif and project within HVC. HVCX cells

send outputs to a distinct anterior forebrain pathway that is not

necessary for song production in adults.

Our simple network model consists of excitatory neurons with

modifiable recurrent synapses (Figure 1A). These represent the

HVCRA neurons. The model includes an inhibitory unit that

sums the activity of all excitatory neurons and in turn provides

equal global inhibition to all of them. This global inhibitory unit

represents the pool of inhibitory interneurons in HVC. We do

not include HVCX neurons in our model.

The excitatory neurons receive external inputs with temporally

random activations (no sequential structure or temporal correla-

tions), except where specifically noted. Initially, the recurrent

weights between excitatory neurons are all assumed to be small

and random. All weights between the excitatory neurons

undergo STDP with an antisymmetric learning window, schema-

tized in Figure 1B. Crucially for the success of sequence forma-

tion, in addition to STDP we impose a nonlinear competition

across synapses at each neuron, by imposing heterosynaptic

long-term depression (hLTD) when the weights at a neuron

hit a limit (Figure 1C). The rule is summarized by the summed-

weight limit rule.
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Figure 1. Schematic of Model Network and Synaptic Plasticity

Hypothesis

(A) A naive network has initially weak but plastic weights (dashed lines)

between all pairs of excitatory neurons. These neurons receive random drive

from higher-level areas. The excitatory neurons represent RA-projecting

HVC neurons in the song system of songbirds. Global inhibition, proportional

to the summed activation of the excitatory neurons, is also present (inhibitory

interneurons not shown). The higher-level drive to HVC may arrive from the

nucleus interface of the nidopallium (NIf) or the thalamic nucleus uvaeformis

(Uva).

(B) Neural activity leads to long-term strengthening and weakening of the

plastic weights through an antisymmetric spike-time-dependent plasticity

(STDP) rule, as depicted here in continuous time. Discrete-time simulations

use a discrete-time version of this rule.

(C) Synapses at each neuron are subject to a ‘‘soft’’ limit on their total strength:

when the summed weight of synapses into (or out of) a neuron exceeds a limit,

all the incoming (or outgoing) synapses to that neuron undergo a slight heter-

osynaptic long-term depression (hLTD).
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Summed-Weight Limit Rule

If an outgoing (incoming) synapse at neuron i undergoes long-

term potentiation (LTP) and the sum of all outgoing (incoming)

synaptic weights at the neuron exceeds a limit Wmax, then all

outgoing (incoming) weights at that neuron are slightly reduced.

This competitive rule enforces a ‘‘soft bound’’ on the total

outgoing and total incoming weights at any neuron. The bound

is called soft because the rule does not explicitly force the total

weight of a neuron’s synapses to stay below the specified limit
Wmax. Instead, it penalizes all weights by causing an equal

amount of hLTD in all synapses when such a bound is crossed.

Individual synaptic weights are nonnegative and allowed to vary

within the interval [0,wmax], where wmax is a hard bound (smaller

than or equal to Wmax) on the maximum strength of each

synapse. More detail is supplied in Experimental Procedures.

Sequence Formation in a Simple Neuron Network
We first consider the case of binary neurons simulated in discrete

time, where the states 1 or 0 mean the neuron is bursting or

quiescent, and where one simulated time-step corresponds to

a duration of 6 ms (the duration of a burst in HVCRA neurons;

see Experimental Procedures for details) (Figure 2). The

maximum allowed strength of individual synapses is equal to

the maximum allowed summed strength, wmax = Wmax. Neurons

are driven by random external inputs that are uncorrelated

across neurons and time. Under the learning rule, the weights

in the connectivity matrix evolve from small random initial values

and robustly converge to a steady state (Figure 2B). The steady

state of the weight matrix is such that after removal of the

ongoing random external input and ignition of neural activity by

an input barrage to a random subset of neurons, stereotyped

and nondecaying neural activity sequences are observed. In

the particular run illustrated in Figure 2, the network can support

the propagation of two distinct sequences, only one of which is

shown (Figure 2A). The activity sequence is self-propagating: the

HVC network requires no external inputs to sustain activity. Each

HVCRA neuron participates in exactly one chain or sequence,

and within that sequence is active exactly once. Thus, activity

in this network is unary.

That the resulting neural activity sequences must be unary

could have been inferred directly from the converged connec-

tivity matrix. The matrix evolves from a random initial state into

a matrix that has exactly one nonzero element per row and per

column (Figure 2B, left). The value of the nonzero element in all

cases is wmax = Wmax. Such matrices are called permutation

matrices and have very special properties: a permutation matrix,

applied to a vector (e.g., the state vector of neural activities)

simply rearranges the vector components. If the vector consists

of one active neuron, the permutation matrix shifts the register so

that the next neuron in line according to the permutation ordering

becomes active; in the next time-step, the matrix again shifts the

index of the active neuron, and so on. Thus, the resulting neural

activity is chain-like, with one active neuron per time-step. By

rearranging the rows and columns of the weight matrix, we can

see that the final network topology is a set of disjoint synaptic

chains of different lengths (Figure 2C, right). The time course of

learning is shown in Figure 2D.

These results are fairly generic: they do not require parameter

values to be fine-tuned (Figure S1 and Matlab code in the

Supplemental Information).

Playback of Formed Sequences
To induce activity playback in the formed network, as in

Figure 2A, the network is given a random barrage of input. If

global inhibition in the network is weak, multiple chains may be

simultaneously activated. But if global inhibition is sufficiently

strong, only one chain will remain activated. The activated
Neuron 65, 563–576, February 25, 2010 ª2010 Elsevier Inc. 565
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Figure 2. Evolution of Network Connectivity

to Produce Long Chains

(A) A 50 neuron network has organized to produce

neural activity sequences of length �35. Red lines

are visual guides highlighting the period of the

activity loop.

(B) Evolution of the network connectivity matrix

during learning. (Left) An initially random matrix

with dense but weak connectivity evolves to

produce a few strong synapses. The inset depicts

the STDP window, of two burst widths or time-

steps, used in these simulations. (Right) A single

winner weight emerges per row and column.

(C) The converged weight matrix is actually a

permutation matrix (shuffled identity matrix): re-

sorting the matrix makes the chain structure of

the connectivity apparent (here there are two

chains).

(D) Learning curves. The distance to wmax of

weights that eventually reach wmax decreases,

and all weights converge to their steady-state

values within 1000 iterations (blue curves for

several simulation runs, scale on right; each curve

is the average of all weights that end up close to

wmax from one run; black is the average over

runs). The distance to 0 of all weights that eventu-

ally go to 0 initially grows due to random strength-

ening of weights by STDP, but then steadily

shrinks because of synaptic competition, and

converges to zero (red curves for several simula-

tion runs, scale on left; black is the average).
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sequence repeats in a loop, unless another input induces switch-

ing to a different chain.

The control of sequence ordering (activation order of different

chains) during playback would require external executive inputs

(Hahnloser and Fee, 2007), which in turn may be triggered by

auditory feedback or internal timing cues.

The Distribution of Chain Lengths Is Scale Free
In different runs, the network weights converge to different

permutation matrices. Typically, each permutation matrix con-

tains multiple sequences, including a sequence whose length
566 Neuron 65, 563–576, February 25, 2010 ª2010 Elsevier Inc.
approaches or exceeds N/2, half as long

as the longest possible chain that the

network could produce by stringing all

neurons end-to-end into a single chain

(Figure 2). The average sequence length

is comparable to the size of the network,

hLi �N. Since no time-constant in the

simulation exceeds one time-step, the

average chain is far longer than any

neural or synaptic time-constant. Thus,

the formation of long chains is an emer-

gent property of the network-level

learning dynamics and does not require

long cellular time-constants.

Given that the lengths of the formed

chains are not determined by intrinsic

time-constants, what governs their distri-
bution? If we assume that the learning process randomly gener-

ates, with equal probability, any permutation matrix from the set

of all possible permutation matrices of N elements, we can

calculate the probability P(L) of finding a chain of length L, and

find: P(L) = c/L for L % Lmax = N, and P(L) = 0 otherwise (see

Supplemental Information). c is a normalization constant.

In simulation, the actual distribution of chain lengths from 300

learning runs is very close to this expected c/L distribution, with

a deviation for very short chains of length L % 2 (Figure 3A).

Within this distribution, the probability that in any run the longest

formed chain will have length greater than or equal to N/2 is
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Figure 3. Distribution of Formed Sequence

Lengths: Model and Zebra Finch Data

(A) The probability of a sequence of length L. Black dia-

monds: simulation data from 300 trials with n = 50 neurons.

Green curve: theoretical prediction of 1/L. Binomial error

bars as shown.

(B) Distribution of inferred HVCRA chain length from HVC

stimulation experiments (right and left HVC stimulation,

effectiveness threshold = 12%). The best power-law fit has

exponent�0.82 (red curve). A fit with scaling exponent�1

is shown for comparison (green curve).

(C) Example HVC stimulation and how the chain lengths

are inferred. The spectrogram of a zebra finch song motif

is shown on top (blue to red: from low to high sound ampli-

tudes). The effectiveness of electrical stimulation (0.2 ms,

500 mA biphasic current pulse) is highly variable as a func-

tion of stimulation time in ongoing song (bottom, black

line). HVCRA chain lengths (horizontal red rasters, bottom)

are inferred from periods of suprathreshold effectiveness

(threshold of 12%, red horizontal line).

(D) Scaling exponent of the optimal fit as a function of the

effectiveness threshold. For a large range of thresholds,

the scaling exponent is in the vicinity of �1.
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�69%. The probability that a run will produce a chain longer than

0.6N is just over 50%. The c/L distribution of chain lengths is

called ‘‘scale free’’ because it is a power law, which, unlike expo-

nential distributions with a characteristic decay constant, has no

inherent scale.

The Distribution of Premotor Sequences
in Zebra Finches
We now compare the chain-length distribution in our model with

the distribution of sequence elements in zebra finch song nuclei,

as inferred from electrical stimulation. It has long been known

that brief electrical perturbation of HVC can disrupt ongoing

songs, with effects ranging from brief syllable distortions to

halting of the song. How effective a particular stimulation is

can be quantified by the fraction of time bins following stimula-

tion in which song amplitudes deviate significantly from unstimu-

lated catch trials. For fixed-amplitude HVC stimulation, the effec-

tiveness with which songs are distorted was found to vary

dramatically over the time course of a song motif, with highly

effective and completely ineffective stimulation times following

each other in short intervals (Figure 3) (Wang et al., 2008).

Furthermore, stimulation effectiveness tends to be complemen-

tary across the two cerebral hemispheres, such that a stimulation

effective at disrupting song over some time interval in one hemi-

sphere tends to be ineffective in the other hemisphere over the

same interval.

These data imply that there are blocks of time when one hemi-

sphere is involved in sequence production (effective interval) and

that the hemispheres take turns in driving different parts of the

song. We interpret one effective interval in one hemisphere as

the playing out of one synaptic chain, with several distinct chains

formed by the HVCRA neuron populations in each hemisphere.
We analyze the stimulation data from n = 19 birds subjected to

random HVC stimulation during singing, as in Wang et al. (2008).

We infer HVCRA chain lengths from the time intervals between

consecutive threshold crossings of stimulation effectiveness

curves (first crossing from below and second crossing from

above). The inferred distribution of chain lengths is reasonably

well fit by a power law (Figure 3B). For a wide range of effective-

ness thresholds, we find that the scaling exponent of the best

fit is close to �1 (Figure 3D). Hence, we find support for a 1/L

chain-length distribution in experimental data.

Numerical Experiments in Networks
of Conductance-Based Spiking Neurons
Our results so far rest on networks of highly simplified binary

neurons lacking any temporal dynamics and with time discretized

into 6 ms chunks that contain the entire burst of a single neuron.

Different neurons firing single bursts in song can have either

perfect or zero activity correlation: partial correlations are impos-

sible. The STDP time window was also narrow, spanning only two

burst durations (Figure 2B). To test whether sequence formation

also holds with more realistic continuous-time neuron models

and wider STDP windows, we performed numerical experiments

in which we applied the learning rule to a network of spiking

neurons (Figure 4). The neurons were intrinsic bursters with a

membrane time constant of 25 ms and interacted through

conductances. Plasticity was governed by an antisymmetric

STDP function (Figure 4D; see Experimental Procedures) of

20 ms width. With time discretized more finely than burst lengths,

neurons that each fire a single burst have graded activity overlap

durations, potentially complicating the chaining problem. We

assume no synaptic delays or slow rise times that could help to

stabilize asynchronous (sequential) neural activity patterns.
Neuron 65, 563–576, February 25, 2010 ª2010 Elsevier Inc. 567
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Figure 4. Numerical Experiment with Conduc-

tance-Based Spiking Neurons

Like the binary neuron discrete-time networks, a network

of conductance-based bursting neurons in continuous

time organizes under STDP and the summed-weight limit

rule and random feedforward input, to produce long unary

sequences. The vertical dashed black lines (in A and B)

are a guide, highlighting the periodic repetition of the

neural activity sequence. The voltage (A) and synaptic

activation (B) traces of two sample integrate-and-burst

HVC neurons in the network (black and red) during a

75 ms interval. (C) Synaptic activations of all 50 neurons

during the sequence, and the initial (D) and converged

(E) connectivity matrices for the network.
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Despite these multiple steps toward biological realism,

connectivity still evolves into a permutation matrix that supports

the propagation of long, unary activity chains (Figure 4). Se-

quence formation is more robust when STDP updates represent

fractional changes in synaptic strength (multiplicative STDP)

rather than absolute changes: multiplicative STDP, combined

with a uniform subtractive hLTD across synapses in response

to the summed-weight limit, allows large weights to grow suffi-

ciently rapidly and intensifies the competition across weights.

Aside from this general scaling prescription, our networks did

not require tuning of neural thresholds or levels of global inhibi-

tion or fine-tuning of other neural or network parameters. Hence,

unary sequences can robustly form in networks of conductance-

based neurons, if the total synapse strength at each neuron is

limited and the limits are enforced through cross-synaptic

competition.

Formation of Wide Chains
For expositional convenience, we illustrated the formation of long

chains of width one. However, chains of width one are not robust,

in the sense that deletion of a neuron or failures of neural or

synaptic activation would break the chain of activity. This prop-

erty is biologically implausible, and a width one chain is inconsis-

tent with estimates of several (�200 out of �2 3 104) coactive

HVCRA neurons at any time in song (Hahnloser et al., 2002).

If we generalize two ingredients of the model above, a network

with initially random lateral connectivity will spontaneously orga-

nize into a synaptic chain organization that supports the propa-
568 Neuron 65, 563–576, February 25, 2010 ª2010 Elsevier Inc.
gation of wide unary chains of neural activity.

First, the maximum summed synaptic weight

into (out of) each neuron should exceed the

maximum weight of individual synapses:

Wmax = mwmax, with m > 1. Second, groups of

neurons should receive correlated external

input. The first condition allows single neurons

to send and receive more than one strong

synapse. The second condition, which corre-

sponds to each external neuron driving more

than one HVC neuron, allows neurons to

become recurrently coupled into groups, which

then connect with each other to form a wide

synaptic chain.
An input group is a set of all HVC neurons that receive a

common external input. Input groups can be overlapping: if

two external neurons drive one HVC neuron, it will belong to

two groups. We first assume disjoint input groups. (Below, we

consider overlapping input groups.) Each external input projects

to k HVC neurons, and each HVC neuron receives a single

external input. Such organization could result if the external

inputs to HVC have spatially segregated arborization patterns

or if external inputs compete to drive their HVC targets, with a

single winner per HVC neuron (e.g., Sanes and Lichtman,

1999; Hashimoto et al., 2009).

Wide chains endow noise tolerance, so we modeled the

dynamics as stochastic: individual neurons and synapses inde-

pendently and probabilistically respond given above-threshold

input or presynaptic firing, respectively. The external inputs are

temporally random with no sequential structure. With sufficiently

large m, a network with weak, random, all-to-all connectivity and

disjoint input groups organizes into a structure that generates

unary sequences of essentially uniform width q % k (i.e., q % k

neurons are active per time). We illustrate this result in networks

of binary neurons (Figures 5A–5C and 5G) and conductance-

coupled integrate-and-burst neurons (Figures 5D–5G). The

chains are long in the sense that the longest of the formed chains

scales like �N/q.

The resulting weight matrices look superficially quite different

from the permutation matrices formed for chains of width one

(data not shown). Each row and column contains multiple

nonzero entries, meaning that each neuron receives input from
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Figure 5. Formation of Wide Chains

The total summed-weight limit is larger than the

single-synapse maximum (Wmax = mwmax, with

m > 1). Groups of k HVC neurons receive corre-

lated external input (see text).

(A) Binary neuron networks stably generate wide

activity chains after learning is complete: k = 5,

and k neurons are active per time-step, excepting

occasional failures to fire due to variability in neural

and synaptic responses. The sequence (with

n = 50 neurons) is 20 steps long, with individual

neurons active only for two consecutive time-

steps.

(B) The temporal cross-correlation of network

activity illustrates sequence stability: the se-

quence replays without fading.

(C) The resulting weight matrix has multiple

nonzero entries per row and column, in blocks at

the diagonal and at off-diagonal locations. A diag-

onal block represents strong connectivity between

neurons within a formed group, causing coordi-

nated firing even if the external input is not tightly

coordinated. The off-diagonal blocks form a per-

mutation matrix, if each block is viewed as a single

element.

(D) Integrate-and-burst conductance-coupled neuron networks produce wide activity chains after learning: intensity plot of the voltages of all 50 neurons (top).

Black lines are spikes. Below: subthreshold voltages of neurons 4, 5 (blue and green, group 1), and 6 (red, group 2).

(E) Temporal cross-correlation of network response.

(F) The final weight matrix: there is symmetric connectivity within groups (diagonal blocks), and permutation matrix connectivity between groups (off-diagonal

blocks), demonstrating that the network has formed synaptic chains.

(G) The STDP windows used for the binary (left) and integrate-and-burst (right) simulations, and in insets, the initial weights for the two networks. Open (closed)

circles: the open (closed) interval. These simulations include unreliable (probabilistic) responses (see Experimental Procedures).
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and sends output to multiple neurons. But sorting the matrix

reveals an orderly underlying structure (Figures 5C and 5F). If

coactive neurons during playback are assigned consecutive

indices, the weights form diagonal blocks, together with blocks

of off-diagonal nonzero entries (Figure 5B) (center and right).

Each diagonal block represents a highly interconnected formed

group. When the input groups are disjoint, the formed groups are

essentially the same as the input groups. When input groups are

overlapping, the formed groups may be quite different from the

input groups (below). The off-diagonal blocks form a block

permutation matrix, corresponding to projections from one

formed group to the next. Thus, the learning rule results in a

synaptic chain organization, from an initially random network

topology.

If the formed groups contain q neurons each, then each

neuron typically has 2q – 1 incoming and as many outgoing

connections: q inputs from another group and q – 1 inputs

from within the group. As mentioned, the formed groups may

be smaller than the input groups (q % k), if m < 2k – 1 and

hLTD is strong (data not shown). In this case, there are k – q

unused neurons per input group during playback. The advantage

is that m and k need not be exactly tuned relative to each other

(e.g., synaptic chains form even if m s 2k – 1).

The probability of finding a chain of length L % Lmax is c/L, as

before, but with Lmax = N/q, and c defined accordingly (not

shown). The q-wide activity chains are robust to neuron or

synapse deletion when q is large. For example, if the summed

weight Wmax is p times larger than necessary to produce activity

in a postsynaptic neuron, then q/p synapses from one group to
the next can be severed, without failure of sequential activity

propagation. For similar reasons, during learning and in playback

mode the network can tolerate unfaithful neural and synaptic

responses.

In the brain, as in our model, neurons from the same group

need not be spatially localized, so a wide-chain network need

not display spatial clusters of coactive neurons. Neurons of a

group may be spatially distributed, and only distinguishable as

members of a group by their correlated activation times and

through the shared synaptic inputs from within the group and

from the external inputs.

Random Input Groupings
In our model, it is possible to observe stable chain formation

even if the input groups are not disjoint. We let each external

input neuron randomly select HVC neurons as targets, without

excluding HVC neurons already selected by different external

inputs. A total of N/k (or the nearest rounded-down integer)

external input neurons innervated k HVC neurons each, in this

random manner. Thus, individual HVC neurons frequently

belonged to multiple input groups. Despite the overlapping input

group structure, if m is large enough, the network connectivity

organizes into largely disjoint formed groups that are connected

sequentially (Figure S2).

Sequence playback is unary: each neuron is active at only one

part of the sequence. The learning process orthogonalizes the

formed groups, as well as stringing formed groups into chains.

This is visible in the approximate block structure of the resulting

weight matrix, in contrast with the more overlapping structure of
Neuron 65, 563–576, February 25, 2010 ª2010 Elsevier Inc. 569



Figure 6. How Unary Sequences Form with STDP and a Limit on the

Summed Synaptic Weights at Each Neuron

All outgoing weights from neuron i are arranged radially (schematic). Initially

(left), all weights are small and do not contribute to neural firing; weight

changes are due to externally driven random activity (regime 0). In regime I

(center, red), the weights contribute to lateral excitation within the network,

even though the summed weight has not exceeded Wmax (so the summed-

weight limit has no impact) and no individual weights have saturated at

wmax. STDP strengthens strong weights. In regime II (right, blue) the summed

weight has reached Wmax. STDP continues to amplify large weights. With

STDP alone (top), many weights may reach wmax, contributing to runaway

network activity (cf. Figure S3). But hLTD combined with STDP produces

a winner-take-all competition in the weights, so only a few weights can win

and the rest are driven to zero (illustrated are three winning weights, which

would result for m = 3 wide chains).
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the input groups (Figure S2). Yet despite the difference between

formed groups and input groups, some of the input group struc-

ture is preserved in the formed groups: two neurons from the

same formed group are more likely to receive the same external

inputs than are two neurons from different formed groups. The

key qualitative difference compared to the disjoint input group

case is that the formed groups are of varying size, causing the

activity chain to vary in width along the sequence.

Random input groups result in an inefficient use of neurons,

even though chain formation remains possible. If N neurons

are randomly selected for external drive (with replacement)

from a bag of neurons labeled 1 to N, then typically more than

a third (1/e) of the neurons will never be selected. These neurons

will not receive external drive or be included in any chain. If more

than N neurons are selected, a larger fraction of neurons receives

some external input, but the overlap in input group membership

grows, causing problems: the network either fails to form chains

or forms only short chains (data not shown). If fewer than N

elements are selected, the overlap between groups shrinks,

and chain formation becomes more robust (data not shown); in

the limit where the selected number is far smaller than the total

number of HVC neurons, the random input groups will be statis-

tically disjoint, and all previous results from disjoint groups hold.

The cost, however, is >1/e unused neurons.

These results suggest two possibilities. First, the brain may

construct nonrandom disjoint input groups, either by physical
570 Neuron 65, 563–576, February 25, 2010 ª2010 Elsevier Inc.
or chemical topography in the external inputs to HVC or by

competitive target innervation (Sanes and Lichtman, 1999;

Hashimoto et al., 2009). Second, innervation may be sparse

and random, producing disjoint groups and low neural usage,

with elimination or subsequent use of the unused neurons.

Synaptic maturation for neurons already in chains and continued

plasticity for unused neurons could allow neural recruitment for

repair or novel sequence acquisition, without disrupting existing

sequences.
Mechanism of Chain Formation
How do the two processes, STDP and a competitive constraint

on the summed weight of synapses per neuron, interact to

produce synaptic chains, when STDP alone fails (Figure S3)?

Again, we first focus on the m = 1 case. (The wide-chain case is

similar, and we address it next.) The learning rule converts an

initially random matrix into a (block) permutation matrix in which

all rows and columns each contain exactly one nonzero element

(or block of elements in the case of wide chains, after removing

the diagonal blocks). From this matrix structure, we can infer that

the rule effectively drives a simultaneous winner-takes-all (WTA)

competition across synapses within each row and within each

column of the initial weight matrix.

Consider a single neuron i. Initially (Figure 6, regime 0) the

weights Wji from neuron i to all other neurons j in the network

are close to zero, far from any weight bounds and too small

to drive neural activity. Activity is driven by random external

inputs, and STDP produces a statistically uniform strengthening

of all weights, with small differences reflecting random activa-

tion histories. Next, when weights are large enough to con-

tribute to neural activation (Figure 6, regime I) but are still below

any individual or summed limits, then STDP acts as a positive

feedback process: larger weights increase the chance of post-

synaptic spiking in response to presynaptic activity and are

further strengthened by STDP. Thus, in regime I, STDP

amplifies the small randomly induced weight differentials from

regime 0.

In regime II (Figure 6), individual weights Wji are still typically

smaller than wmax, but the summed-weight limit of Wmax has

been hit. This limit drives uniform hLTD in all outgoing synapses

from i whenever any outgoing synapse undergoes LTP. Uniform

subtraction more strongly penalizes smaller weights (as a

percentage of their values), while STDP tends to selectively

strengthen strong weights, amplifying weight discrepancies.

These are the conditions of WTA dynamics, across all the

outgoing synapses at neuron i. The same is true at each neuron

and across incoming synapses.

The 1/L likelihood of finding a chain of length L (Figure 3A)

corresponds to the expected distribution of chain lengths if the

final weight matrix were assumed drawn at random from the

set of all possible permutation matrices. This suggests that,

remarkably, the WTA dynamics drives without bias the formation

of any possible permutation matrix (e.g., not favoring permuta-

tion matrices with specific chain lengths). In other words, chain

formation does not take into account the lengths of existing

chains when adding elements to them: the choice of a winner

among eligible elements in an empty row is random.
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For wide chains, Wmax = mwmax, so m incoming (outgoing)

synapses per neuron can reach wmax, while pushing the remain-

ing synapses to 0 (group WTA). Thus, there are m nonzero entries

per row and column of the weight matrix. The question is how

these multiple nonzero entries are coordinated to be in block

form. In other words, neurons form into recurrent groups, and

essentially every neuron in one group projects to every neuron

in the next group. How is the synaptic fan-in and fan-out coordi-

nated across neurons in a group? It results from the correlated

activity of neurons within each group. The within-group correla-

tions are initially due to correlated external inputs, but are greatly

enhanced by the formation of recurrent within-group connec-

tions through STDP. Now suppose neuron a1 in group A projects

to neuron b1 in group B, contributing to its firing. But if a1 is

active, then all neurons in A are likely active. Thus, if a1 tends

to fire before b1, most neurons in A will tend to fire before b1,

causing synapses from all A to b1 to be strengthened. Similarly,

if b1 fired, all neurons in B are likely firing. Thus, if a1 contributes

to activity in b1, it also does so for all B. This causes synapses

from a1 to all B to be strengthened.

Network Formation with Sequential Training Inputs
If the inputs to the network are spatiotemporally patterned, in the

form of a sequence of length T, the network connectivity still

evolves to support the propagation of neural activity sequences

(Figure S4). In fact, learning is extremely rapid and can be

complete in as few as 30 to 40 presentations of the input

sequence. This may help explain observations that some song-

birds can acquire an internal song template after hearing their

tutor song only a few times.

The learning rule converts a dense (non-unary) input sequence

into a unary sequence: the active neurons at any part of the

formed sequence are typically a subset of the neurons driven

at that point by the training sequence. Different runs produce

a formed unary sequence that is a different sparse version of

the same dense training sequence (Figures S4C and S4D).

Finally, the formed chain has the same length (number of steps)

as the input sequence, if the input sequence is shorter than the

maximum length the network can support (the number of neurons

in the network divided by formed chain width). Thus, when the

input is sequential, it can alter or override the scale-free distribu-

tion of chain lengths found when the input is random.

Varying the Neural Constraint on Synapses:
Weight-Growth Limit
To illustrate that the outcome can depend strongly on the form of

the trigger for hLTD, we briefly consider a different neuron-level

constraint on synapses. Suppose limits are placed not on the

total resources for synaptic building, as above, but on their

rates of production. We call this constraint the ‘‘weight-growth

limit.’’ As before, synapses undergo STDP. Unlike the

summed-weight limit rule, hLTD is not triggered when the

summed weight exceeds a threshold. Rather, whenever an

incoming (outgoing) synapse undergoes LTP, all other incoming

(outgoing) synapses at that neuron undergo slight hLTD (see

Experimental Procedures).

This rule also generates synaptic chain connectivity to support

the stable propagation of long neural activity sequences
(Figure 7A). However, each network produces a single sequence

or chain (Figures 7A and 7B). The chain is unary but wide,

with multiple coactive neurons per time. Sequences appear in

<1/10th the time taken by the summed-weight limit, with tempo-

rally random input.

There are other important differences. The weight-growth limit

with random inputs generates sequences only if neurons have

a slow adaptation time-constant (Experimental Procedures).

However, the weight-growth limit readily produces wide chains

without the help of correlated input groups. Unlike the

summed-weight rule, the weight matrix with the weight-growth

limit rule never converges to a steady state while the network

continues to receive full-amplitude external random inputs and

the learning rate remains nonzero. The weights continue to

evolve, with formed chains morphing into different ones. To

obtain stable sequences, the external inputs to the network

must be annealed to zero (Experimental Procedures).

The resulting weight matrix looks different from that obtained

with the summed-weight limit (Figure 7B). Each row and column

of the weight matrix contains several nonzero entries of varying

magnitudes. Yet the underlying structure is familiar: the sorted

matrix reveals recurrently connected neuron groups (Figure 7B,

center, right), with groups connected in a permutation matrix

structure. However, the blocks are of different sizes, meaning

that the neural activity chains are not of constant width. Unlike

in the summed-weight rule, where synapse strengths become

essentially binary (Figures 2C, 4E, 5C, and 5F), the distribution

of nonzero weights is wide, with a power-law (heavy) tail

(Figure 7C).

In multiple runs with random inputs and fixed parameters, the

formed chain length is exactly the same and is governed by the

adaptation time-constant (Figure 7D).

The network can be trained to produce sequences longer

than the adaptation time-constant if the input is sequential

and longer than the adaptation time (data not shown). Thus,

the cellular time-constant governs chain length if the inputs

are random, but plays little role in restricting chain length if

the inputs are sequential. This ability to produce a long

sequence in response to an equally long sequential training

input is shared by the summed-weight limit rule, as described

above (and seen in Figure S4). However, it is an especially

important feature for the weight-growth rule, for which the

maximum chain length is otherwise strictly limited by the cellular

adaptation time.

DISCUSSION

Models suggest that the propagation of long neural activity

sequences requires very special network connectivities (Amari,

1972; Abeles, 1991; Drew and Abbott, 2003; Li and Greenside,

2006; Jin et al., 2007). We have demonstrated that plausible

constraints on synapse strength combine with STDP to sponta-

neously produce such special connectivity matrices, even

without temporally patterned training inputs. Our results demon-

strate that competitive constraints on synapses at the level of

individual neurons can perform the global computation involved

in evenly distributing activity across the network and across time

so that the code is sequential and unary. The network produces
Neuron 65, 563–576, February 25, 2010 ª2010 Elsevier Inc. 571
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Figure 7. Sensitivity to the Functional Form

of Weight Limits: A Limit on Weight Growth

Produces Long Wide Chains If a Long

Cellular Time Constant Is Present

(A) A 135 neuron network has self-organized to

produce a 13 step long neural activity sequence,

with seven to eight neurons active per time for a

participation of 100 neurons in the sequence.

Red lines highlight the periodicity of the replaying

activity loop.

(B) The converged weights appear disordered

(left). On rearrangement, the matrix is clearly of

block form (center) and the blocks form a permuta-

tion matrix over the active neurons (right).

(C) (Left) Three examples of the distribution of

synaptic strengths for an annealed network that

produces stable sequences. (Right) The cumula-

tive histogram pooling together many separate

runs has a long power-law tail.

(D) (Left) The length of the formed sequence

depends weakly on the strength of weight subtrac-

tion 3, and strongly on the cellular time-constant of

adaptation tada. (Right) The width of the formed

sequence (number of coactive neurons) depends

strongly on 3 and more weakly on tada.
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multiple disjoint synaptic chains, with a power-law distribution of

lengths (and exponent �1). When the inputs are themselves

temporally structured, learning is rapid, and the network gener-

ates a sparsified version of the input sequence. Finally, we

analyzed data from recent HVC stimulation experiments in song-

birds and found evidence for a scale-free size distribution of

HVCRA subsequences. The songbird data are well fit by a scaling

exponent of z–1, in agreement with our model.

Insensitivity to Details of Neural and Synaptic Dynamics
The main ingredients used in our model are intrinsic neural

bursting, STDP, hLTD triggered by a constraint on summed

weights at each neuron, and some group structure in the initial

network whereby neurons within a group received similar

external input. These ingredients produce synaptic chain

networks, even when the dynamics of the neurons and synapses

are varied. In this sense, the detailed dynamics of neurons and

synapses do not matter for chain formation.
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Sensitivity to the Form
of the Learning Rule
Varying the trigger for hLTD can

profoundly affect network connectivity

and the resulting activity sequences. In

the summed-weight limit rule, cellular

time-constants proved to be unimpor-

tant, multiple chains formed simulta-

neously, synaptic weights were relatively

strong, and the distribution of chain

lengths was scale free. In the weight-

growth limit rule, the network formed

a single chain, synaptic strengths were

widely distributed, and a slow cellular
time-constant was essential (if the training input was nonsequen-

tial). Because the requirements and results of these forms of het-

erosynaptic competition differ greatly, it is possible to distinguish

which form, if either, exists in a sequence-forming area. Below,

we suggest some tests of our model.

Tests of the Model
The most basic tests of the model involve verification of its

hypotheses: STDP, heterosynaptic competition at each neuron,

and correlated external inputs to sets of HVC neurons. STDP,

though found across the brain and across species, has not yet

been documented in juvenile songbird HVC. The heterosynaptic

competition hypothesis, motivated by numerous experiments

(discussed below), can be tested in sequence-producing brain

areas using similar experimental protocols.

Our predictions of multiple neural subsequences and a power-

law length distribution are consistent with the zebra finch

data (Wang et al., 2008) analyzed here. However, effective
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stimulation duration is an indirect measure of neural sequence

length. More direct approaches, based on neural recording

and perturbation or behavioral song analysis (Glaze and Troyer,

2006), should help reveal the neural underpinnings of behavioral

sequences.

Neurons within a formed group are predicted to receive similar

external inputs with higher probability than neurons from sepa-

rate groups, even if playback is no longer dependent on external

input. In songbirds, Uva or NIf input to coactive HVC neurons

should be more correlated than the input to non-coactive HVC

neurons.

The main (summed-weight limit) rule does not depend on slow

neural adaptation or other slow time-constants. In accord, the

autocorrelation traces of individual HVCRA neurons in sleeping

zebra finches are flat (Hahnloser and Fee, 2006) with no refracto-

riness. If true in the awake bird, such results would preclude the

weight-growth limit rule, which depends on firing adaptation,

from explaining sequence formation in zebra finches (or would

at least necessitate sequential training input).

Our results suggest that sequential training input may not be

necessary for sequence formation. In the juvenile bird, HVC

may still organize into synaptic chains if the neurons are

randomly but strongly stimulated while all sequential auditory

input is blocked. Sequence formation may be slow and result

in multiple shorter sequences. With sequential training input,

learning could take <50 presentations, with formed chain length

given by the length of the input sequence.

Experimental Evidence of Heterosynaptic Plasticity
Reports of heterosynaptic plasticity abound. Some show that

homosynaptic LTP lowers the LTP threshold for synaptic neigh-

bors (Harvey and Svoboda, 2007). Other reports of heterosy-

naptic plasticity demonstrate hLTD following homosynaptic

LTP, closer to the rule hypothesized here for sequence

formation. For instance, homosynaptic LTP in the lateral perfo-

rant path to the dentate gyrus causes hLTD in the medial per-

forant synapses to the same neuron (Abraham et al., 1985;

Doyère et al., 1997). Heterosynaptic effects are specific to

the induction or maintenance of long-term but not short-term

potentiation (Abraham et al., 1985). Two studies, one physio-

logical and the other structural, lend more specific support to

our hypothesis. Postsynaptic neurons balance activity-depen-

dent LTP of an input synapse by inducing heterosynaptic

depression among other input synapses, conserving the total

synaptic weight onto the neuron (Royer and Paré, 2003). Simi-

larly, the total synaptic area in postsynaptic hippocampal

neurons remains constant after LTP induction, even though

the distribution of synapse sizes changes significantly (Bourne

and Harris, 2010).

LTP depends on protein synthesis (through transcription and

translation) at the cell body (Frey and Morris, 1997). Curtailing

synthesis drives competition for these proteins across synapses

in a single neuron for the maintenance (but not induction) of LTP

(Fonseca et al., 2004, 2006). LTD relies on protein degradation,

but also on protein synthesis through translation (Huber et al.,

2000; Malenka and Bear, 2004). These studies suggest that tran-

scription is a limiting step, and scarce posttranscriptional

proteins may drive heterosynaptic competition.
Playback
Bengalese finch songs show repeated playback of individual

syllables, with stochastic transitions to other syllables, which

may be consistent with the existence of loops in the underlying

circuit. Even in zebra finch song, which does not usually contain

repeated elements, when a syllable is repeated it is stuttered: the

repeats happen in quick succession. These observations hint

that in some songbirds, song may consist of several loops,

with each loop representing a song element (e.g., a syllable)

that tends to repeat unless there is an active command (e.g.,

from higher areas Uva or NIf) to switch between loops. In non-

loopy zebra finch songs, additional plasticity mechanisms may

cut each loop into an open sequence, then paste them into a

longer open sequence. In this case, sequential playback of the

full motif would require less executive control from higher areas.

Sequence playback speed may differ from the speed of a

training sequence (Davidson et al., 2009). A training sequence

running at any speed consistent with mechanisms for STDP

may successfully drive chain formation, but the speed of

sequence playback will be generic, largely determined by the

strength of the chaining weights, the threshold for spike genera-

tion, and the rise-time of synaptic currents.

Sequence Generation in Mammals
The mammalian hippocampus appears to contain synaptic

chains, given the widespread observations of robustly propa-

gating neural activity sequences in behaving, resting, and

sleeping animals (Nádasdy et al., 1999; Louie and Wilson,

2001; Pastalkova et al., 2008; Davidson et al., 2009). Muscle

trajectories are driven by neural sequences in motor and premo-

tor cortex (Schwartz and Moran, 1999; Andersen et al., 2004).

Microstimulation in cortical slices evokes reliable sequential

neural activity (Buonomano, 2003). Further, spontaneous

in vitro and in vivo activity in primary sensory cortex appears

sequential (Pulvermüller and Shtyrov, 2009; Luczak et al.,

2007; Ikegaya et al., 2004), suggesting underlying synaptic

chains (but some of these spontaneous activity data are also

consistent with random activation of uncoupled neurons [Mokei-

chev et al., 2007; Roxin et al., 2008]).The apparent ubiquity of

sequential neural activity suggests the mechanism for chain

formation is robust and generic.

The robustness with which sequence-generating circuits arise

in our model in the presence of an appropriate form of synaptic

competition and STDP and little network infrastructure beyond

correlated external inputs to sets of neurons suggests that the

learning rule is generic enough to be a candidate model of

sequence formation in diverse areas where synaptic chains are

found.

Comparison with Other Work
Buonomano (2005) suggested an alternative approach to

sequence learning based on an antiassociative rule and driven

by the difference between the time-averaged activity of each

neuron and a specified target value for the same. During training,

a group of initiator neurons is repeatedly stimulated. The antias-

sociative rule builds a chain beginning at the initiator group, by

minimizing the mismatch between actual and target neural

activity. Yet specifying a target firing rate may not always be
Neuron 65, 563–576, February 25, 2010 ª2010 Elsevier Inc. 573
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the appropriate prescription for learning. For example, if a bird

sings the same song frequently at dawn, and less in the after-

noon, the neural firing rates will differ greatly at those times,

even though the actual and target songs are the same. By

contrast, our framework imposes and requires no specific

constraints on neural activity. Instead, constraints are given on

synaptic weights, which govern the spreading of activity over

the network by restricting synaptic fan-out.

A closer approach to ours (Jun and Jin, 2007) involves STDP

and synaptic competition that is implemented discretely: once

an outgoing synapse from a neuron at the leading edge of a form-

ing chain crosses a threshold strength, it is allowed to grow, while

the remaining outgoing synapses are pruned. As we have seen

from the variant form of the neural limit on weight growth, subtle

differences in synaptic competition produce notable differences

in the results. Like Buonomano (2005), chain development in Jun

and Jin (2007) is purely serial, starting from an initiator group and

resulting in the development of a single chain in the network. This

is in contrast to the parallel formation of multiple sequences of

different lengths produced by our approach.
Future Work
We have illustrated two neural limits on plasticity, which lead to

very different formed sequences. Combining both limits may

lead to interesting hybrid results. For instance, if the relative

dominance of the rules is controlled by a tunable parameter,

that parameter could determine whether single or multiple

chains form (as in zebra finches or canaries and swamp spar-

rows, respectively). Intermediate parameter values might pro-

duce new regimes in the distribution of sequence lengths.
EXPERIMENTAL PROCEDURES

Zebra Finch Data Analysis

Stimulation data were analyzed as in Wang et al. (2008). Briefly, for each discre-

tized stimulation time, we tested whether the sound amplitudes in 3.9 ms bins

after stimulation were different from amplitudes in matched time bins during

catch trials using the Kolmogorov-Smirnov (KS) test (p = 0.01). For each set,

we quantified the stimulation effect by the fraction of time bins in which signifi-

cantdifferencesweredetected.Theeffectivenessor late-effectcurve ofFigure 3

is based on bins ranging from 78 to 312 ms after stimulation (bins 21 to 80).
Binary Neuron Network Dynamics

Neurons are active (xi = 1) or inactive (xi = 0). Time is discretized in units of a

burst duration, so one time step is equivalent to Tburst. The activity of the

ith HVC neuron is given by

xiðtÞ= Q
�
IEi ðt � 1Þ+ II globðt � 1Þ+ Iada

i ðt � 1Þ
�

(1)

where Q is the Heaviside (step) function, Ii
E = Sj Wijxj +Wobi is the summed

excitatory drive to the neuron, with Wij the strength of the connection from

neuron j to i, Wo is the strength of the feedforward input (equal for all neurons),

and bi ˛ {0,1} is the external input. Global inhibition is given by II glob = –b Sj xj,

and adaptation is modeled as a threshold dependent on past activity, Ii
ada =

–ayi, where yi is a linearly low-pass-filtered version of xi, with time-constant

tada. a is the adaptation strength. External inputs bi(t) are assigned i.i.d. for

each neuron in each time-step, with probability p(bi(t) = 1) = pin (except for

wide-chain formation in the summed-weight rule, for which the procedure

for generating spatially correlated bi(t) is described below). In Figure 4, we

also allow for stochastic neural and synaptic responses. Details in ‘‘Parame-

ters and Initial Conditions,’’ below.
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Conductance-Based Neuron Network Dynamics

The membrane potentials of the conductance-based model HVC neurons are

governed by ‘‘leaky integrate-and-burst’’ (LIB) dynamics. The subthreshold

evolution of voltages is the same as leaky integrate-and-fire (LIF) neurons:

Cm

dVi

dt
= � gLðVi � VLÞ � gE

i ðVi � VEÞ � gI
iðVi � VIÞ (2)

The threshold condition is modified so that when Vi(t) = Vq, then disregarding

the future inputs the neuron will receive between t and t + Tburst, the neural

voltage segment Vi(t,t + Tburst) is assigned to be the fixed sequence Vburst, a pre-

determined train of four spikes spaced evenly over the duration Tburst, ending in

a repolarization of the neuron to Vi(t + Tburst) = Vreset. At t + Tburst, the

subthreshold leaky voltage dynamics of Equation 2 take over again. The

synaptic activation si(t) is updated in the ordinary way: si(t) is incremented by

1 in response to each spike in neuron i and decays between spikes according to

dsi

dt
= � si

ts

: (3)

The excitatory conductance of the ith neuron is gi
E = Sj Wijsj + Wobi, where

bi(t) is the external input. In each time-step, the external input to each neuron is

active with probability rin dt, where rin is the mean firing rate of the external

input in Hz, and dt is the duration of the time-step in seconds. The inhibitory

conductance gi
I = gI glob + gi

ada is made up of a global inhibition term,

gI glob = (Ag/N)Sj sj, and where applicable, a neural adaptation term, modeled

by gi
ada = Aasi

ada(t). N is the number of neurons in the network, and si
ada

satisfies the same dynamical equation as si, but with time-constant tada.

In Figure 4, we also allow for stochastic synaptic responses (see ‘‘Parameters

and Initial Conditions’’).

Learning

In all cases, synaptic weights change under the STDP rule:

DSTDP
ij ðtÞ=

�
Wij

wmax

+ 0:001

�

3

"
xiðtÞKð0ÞxjðtÞ+

Xt

t = 0

xiðtÞKðtÞxjðt � tÞ � xiðt � tÞKðtÞxjðtÞ
# (4)

For binary neurons: xi(t) = 1 represents a burst in neuron i at time t. For LIB

neurons: xi(t) = 1 if neuron i fired a spike at time t, and is zero otherwise.

For binary neurons (Figures 2, 5A–5C, S2, and S3), t takes values of 0, 1,

2,., and tSTDP is in units of burst durations. For Figure 2, the STDP window

is short (one burst duration): K(t) = 1 for t = 1 and 0 otherwise. The window

can be widened without qualitative effects. For wide-chain binary neuron

simulations and all LIB simulations (Figures 4, 5, and S2), the STDP kernel is

K(t) = exp(–t/tSTDP) for t > 0, and 0 otherwise. For binary neuron wide-chain

simulations, the convention is K(0) = 1. (For robust formation of wide chains,

it is important to allow coactive neurons to become strongly connected with

each other. The convention K(0) = 1 allows the weights between coactive

neurons to grow. If K(0) = 0, then direct weights between coactive neurons

would never undergo STDP because the one time-step occupies the entire

burst duration.) For LIB neurons, the convention is K(0) = 0, producing an anti-

symmetric STDP window. (The burst in a LIB neuron simulation occupies many

time-steps. Thus, neurons with overlapping bursts overlap at nonzero time-

lags and can undergo STDP even if K(0) = 0.)

The total weight update is given by STDP as above, and competitive hLTD

triggered by a threshold on summed weight (or weight growth):

WijðtÞ= Wijðt � 1Þ+ hDSTDP
ij ðtÞ � 3hqi�ðtÞ � 3hq�jðtÞ (5)

with clipping to keep each weight within [0,wmax]. q*i represents the competi-

tive hLTD triggered at all outgoing synapses from neuron i, and qi* represents

the same for all incoming synapses into neuron i. For the summed-weight limit,

qi* = max(0, Sk(Wik + Dik
STDP) – Wmax), and q*i = max(0, Sk (Wki+Dki

STDP) – Wmax).

For the weight-growth limit, qi* = Sk Wik Q(Dik
STDP), and q*i = Sk Wki Q(Dki

STDP)

where Q is the Heaviside (step) function. The diagonal (self-interaction)

weights are fixed at zero, Wii = 0. h and e set the learning step size and the

strength of the heterosynaptic constraint.
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Parameters and Initial Conditions

Initially in all simulations, Wij = wmax/N or Wij is random in the interval

[0,wmax/N], for all i s j. N is the network size. Wii = 0 for all i. For binary neurons,

Wo = 1 (sufficiently large to activate the postsynaptic neuron).

Summed-Weight Limit, Binary Neurons

a = 0 (i.e., no adaptation; thus, tada is irrelevant), b = 0.25, pin = 2/N, N = 50,

h = 0.025, e = 0.125. For m = 1 (width-1 chains), Wmax = 1, wmax = 1. Parameters

do not need to be finely tuned (see Figure S1). Matlab code for this case

(Figure 2) is posted online.

For Figures 5A–5C (wide chains), the N = 50 neuron network is divided into

ten nonoverlapping groups of five neurons each, and pin = 2.5/N (here pin refers

to the i.i.d. probability that the external input to any input group is activated).

Given superthreshold input, individual neurons within the group respond

i.i.d. with a burst with probability 0.95, or fail to respond with probability

0.05. (Because each response represents a burst of three to six spikes, the

0.05 probability failure to respond represents a failure of every spike in the

burst given that the input is superthreshold.) There are no temporal correla-

tions in the inputs within or across groups. h = 0.001, e = 0.05, Wmax = 1.8,

b = 0.15, tSTDP = 2, and wmax = Wmax/m, with m = 7 or m = 9, which produced

qualitatively similar results but different chain widths. Whenever neuron i

spiked, the ji synapse was activated with probability 0.9, i.i.d. for each target j.

(Because the ji model synapse represents the total connection between the

i,j pair of neurons, it may represent multiple individual synapses. Furthermore,

failure of synaptic transmission represents failure of synaptic transmission

over every spike within the burst.)

Weight-Growth Limit, Binary Neurons

a = 1, tada = 4 time-steps, N = 135, pin = 1/N, and b = 0 (i.e., global inhibition is

not necessary; however, using b s 0 does not qualitatively change the results).

Learning: h = 0.0125, e = 2, wmax = 2.5. Over the first 2000 time-steps (burst

durations), the input probability grows from 0 to pin to avoid synchronously

activating (and then rendering adapted) the population. After 10,000 time-

steps, pin is decreased to zero with a time-constant of 4000 time-steps.

LIB Neurons

dt = 0.02 ms, Cm = 1 mF/cm2, VL = �60 mV, VE = 0 mV, VI = �70 mV, gL =

0.4 mS/cm2, Wo = 0.5 mS/cm2, Vq = �50 mV, Vreset = �55 mV, Tburst = 6 ms,

ts = 4 ms, and rin = 4 Hz.

Summed-Weight Limit, LIB Neurons

In Figure 4, N = 50, wmax = 0.14, Wmax = wmax (m = 1), h = 0.002, e = 72.5, Ag =

0.4 mS/cm2, Aa = 0.9 mS/cm2, tSTDP = 20 ms, and tada = 15 ms. The poisson

rate of input neurons is 2 Hz. For wide chains (Figures 5D–5F), we used disjoint

input groupings of size k = 5, with wmax = Wmax/9 (m = 9), Ag = 0.2 mS/cm2,

Wmax = 0.26, h = 0.0001, e = 30, and a poisson rate of 10 Hz for the input

neurons. Whenever HVC or input neuron i spiked, the ji synapse for each target

j was activated i.i.d. with probability 0.9. Other parameters were as in the

m = 1 case.

Weight-Growth Limit, LIB Neurons

Parameters are the same as in the m = 1 summed-weight limit case above,

except that gL = 0.1 mS/cm2, N = 80, Wo = 0.5, wmax = 3, h = 0.038, e = 4.8/N,

Ag = 0 mS/cm2, Aa = 0.5 mS/cm2, tada = 20 ms. The synaptic activation has an

exponential rise-time of 1 ms and decay-time of 4 ms. The input is annealed

away starting at 3 s. Annealing was done by exponentially decaying the input

firing rate, with a time-constant of 6 s.

Parameter Tuning

It is important (summed-weight rule) to start with small weights Wij: Wij << wmax

for each i,j, and SI Wij << Wmax and Sj Wij << Wmax. Parameters must be consis-

tent with the existence of a self-propagating activity solution: Wmax has to be

large enough so that if, in the desired configuration, most of the presynaptic

inputs to a neuron are simultaneously active, the postsynaptic neuron, driven

by the summed weights Wmax, will fire. The learning rate h must be large

enough that upward random fluctuations in the weight matrix in regime I

(see Results) can contribute significantly to the probability of activation of

the postsynaptic neuron. Yet h must be small enough for learning to be stable.

To allow for the growth of some weights to reach wmax, competitive hLTD per

synapse should be smaller than the largest STDP-driven LTP. This involved

tuning e once h was fixed (however, e did not need to be finely tuned, and

its value could vary widely without qualitatively affecting the results—
Figure S1). These steps brought the dynamics into the right regime for learning.

In this regime, the parameters did not require fine-tuning and could be per-

turbed without qualitative effects. Finally, we verified for the summed-weight

limit rule that the results are unaffected if the dynamics of weight subtraction

are slow, i.e., if subtraction does not follow instantaneously after Wmax is

reached through an LTP event, but is instead implemented in batch mode after

a number of LTP events, or is delayed continuously by a low-pass filter, with

actual hLTD or subtraction performed on a slower timescale.

SUPPLEMENTAL INFORMATION

Supplemental Information includes a calculation (of cycle lengths expected

from the group of permutation matrices), Matlab code, and four figures and

can be found with this article online at doi:10.1016/j.neuron.2010.02.003.
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