
LETTER Communicated by Bruno Averbeck

Learning Spike-Based Population Codes by Reward
and Population Feedback

Johannes Friedrich
friedrich@pyl.unibe.ch
Robert Urbanczik
urbanczik@pyl.unibe.ch
Walter Senn
senn@pyl.unibe.ch
Department of Physiology, University of Bern, CH-3012 Bern, Switzerland

We investigate a recently proposed model for decision learning in a pop-
ulation of spiking neurons where synaptic plasticity is modulated by a
population signal in addition to reward feedback. For the basic model,
binary population decision making based on spike/no-spike coding, a de-
tailed computational analysis is given about how learning performance
depends on population size and task complexity. Next, we extend the
basic model to n-ary decision making and show that it can also be used
in conjunction with other population codes such as rate or even latency
coding.

1 Introduction

Behavioral decision making in the brain results from processes occurring at
widely differing spatial scales. In a rough account, one might consider the
release of single vesicles as the most microscopic level, with the actions of
many vesicles being aggregated into a total synaptic release. Disregarding
dendritic processing, the next level is a neuron aggregating many synaptic
releases into a postsynaptic response. Next, in population coding (Pouget,
Dayan, & Zemel, 2000; Averbeck, Latham, & Pouget, 2006), such postsy-
naptic neuronal responses are again aggregated by a readout that may be a
decision-making circuitry (Wang, 2002).

In contrast to this, in mathematical theories of reinforcement learning
the learning system is just a collection of elementary entities called agents
(Williams, 1992). Each agent responds to a stimulus with an action, and the
set of these actions determines whether the collective behavior is rewarded.
Reward generates a feedback signal driving the adaptation of the agents.
Due to this reinforcement procedure, the system can evolve toward a state-
maximizing reward, even if the agents are oblivious of each other’s actions
and of how the collective behavior determines reward.

Neural Computation 22, 1698–1717 (2010) C© 2010 Massachusetts Institute of Technology

Learning Spike-Based Population Codes 1699

There is obviously considerable flexibility in mapping these mathemati-
cal concepts onto the structures in the brain. While considering the vesicles
as corresponding to the agents seems far-fetched, initial work on reinforce-
ment learning in spiking neurons treated the synapses as agents (Seung,
2003), whereas in later work, the agents were assumed to be the neurons
(Fiete & Seung, 2006; Pfister, Toyoizumi, Barber, & Gerstner, 2006; Florian,
2007; Izhikevich, 2007). Most recently, for decision learning, we have sug-
gested treating an entire feedforward population of neurons as an agent
(Urbanczik & Senn, 2009). In all of these mappings, the agents adapt by
modification of synaptic strengths, but the different approaches result in
plasticity rules that differ greatly in biophysical mechanism and in learning
performance. In particular, the synapse-agent approach leads to a learning
rule where synaptic plasticity is determined only by the presynaptic fir-
ing times (besides reward). In neuron-agent approaches (e.g., Pfister et al.,
2006), plasticity is also modulated by postsynaptic firing. Simulation results
for single-neuron learning indicate that such pre-post rules yield a dramatic
performance increase compared to pre-only rules (Gütig & Sompolinsky,
2006). Analytically, similar results have been obtained for linear neurons
by Werfel, Xie, and Seung (2005). On the next level, synaptic plasticity
in the population-agent approach is also modulated by a feedback signal
encoding the population response. Again, learning in the feedforward pop-
ulation is faster with the population-agent approach, compared to treating
population neurons as single agents. In particular for the population-agent
procedure, learning speeds up with increasing population size, whereas it
becomes slower and slower with the neural-agent approach (Urbanczik &
Senn, 2009).

In neurons, the backpropagating action potential provides a near-
instantaneous record of postsynaptic firings that can be read out by a
synapse to modulate plasticity. As a consequence, neuron-agent learning
can in principle be used even when the delivery of reward is contingent on
the production of precisely timed postsynaptic spikes. In contrast, putative
delivery mechanisms for a population response, such as changes in neu-
rotransmitter concentrations (Matsuda, Marzo, & Otani, 2006; Seol et al.,
2007) or axonal backpropagation (Harris, 2008), operate on much longer
timescales, placing restrictions on the postsynaptic code that can be used in
conjunction with population-agent learning.

The purpose of this letter is to provide a detailed computational anal-
ysis of population-agent learning. We first revisit the framework in which
the approach was introduced: a single population with a binary decision-
making readout assuming a postsynaptic spike/no-spike code. For this
case, we provide a detailed account of the scaling properties with respect to
both the population size and the dimensionality of the spike patterns repre-
senting the stimuli. We next demonstrate that n-way decision problems can
be learned by using more than one population. Finally, we investigate the
use of different postsynaptic coding strategies for the population neurons

1700 J. Friedrich, R. Urbanczik, and W. Senn

and show that the approach can be used in conjunction with a standard
rate code but also with a latency code. However, for the latency code, a
modification of the synaptic plasticity rule is needed. So in contrast to the
case of lower-level agents, in population learning there is a link between
how a neuron codes and its synaptic plasticity rule.

2 The Population Model

2.1 Single Neuron Model. Our model population consists of the escape
noise neurons introduced by Pfister et al. (2006): leaky integrate-and-fire
neurons with an instantaneous firing rate that is a function of the somatic
potential. In response to an input spike pattern X, the escape neuron pro-
duces an output spike train Y with a probability Pw(Y | X) modulated by
its synaptic weight vector w.

In more detail, an input spike train Xi (represented as a set of spike
times) for the ith afferent of the neuron leads, in spike response parlance,
to a postsynaptic potential given at time t by

PSPi (t; X) =
∑
s∈Xi

ε(t − s).

The output spike train Y (also a set of spike times) generates a reset potential
given by

RP(t; Y) =
∑
s∈Y

κ(t − s),

and, in combination, the resulting somatic potential is

u(t) = Urest − RP(t; Y) +
∑

i

wi PSPi (t; X).

For the postsynaptic response kernel, we assume ε(t) = (e−t/τm − e−t/τs)/
(τm − τs) if t is positive; otherwise, ε(t) = 0. We use τm = 10 for the mem-
brane time constant and τs = 1.4 (here and in the sequel, time is in millisec-
onds). The reset kernel is κ(t) = e−t/τm for t > 0; otherwise, κ(t) = 0. The
value of the resting potential is Urest = −1 (arbitrary units).

The likelihood of producing the postsynaptic spike train Y is governed by
a stochastic intensity φ(u(t)), so the probability that the neuron fires at time
t, that is, t ∈ Y, is given by φ(u(t)) δt, where δt represents an infinitesimal
time window. (In the simulation, we use δt = 0.2 and φ(u) = e5u/100.) As
Pfister et al. (2006) showed, we now have

log Pw(Y | X) =
∑
t∈Y

log φ(u(t)) −
∫ T

0
dt φ(u(t)) (2.1)

Learning Spike-Based Population Codes 1701

for an observation period running from t = 0 to t = T . To keep this letter
self-contained, a derivation of this is given in appendix B. In reinforcement
learning, we need the gradient of log Pw(Y | X) with respect to the synaptic
strength (Williams, 1992). For the escape noise neuron,

∂

∂wi
log Pw(Y | X) =

∫ T

0
dt �i (t) with

�i (t) =
⎛
⎝∑

s∈Yt

φ′(u(t))
φ(u(t))

δ(t − s) − φ′(u(t))

⎞
⎠ PSPi (t; X). (2.2)

2.2 Population Model. In our population model, N escape noise neu-
rons receive highly correlated inputs coming from an input layer with M
sites, where each site projects with probability p = 0.8 onto each of the
neurons. So a given stimulus, corresponding to a fixed spike pattern X
presented in the input layer is seen by the νth neuron as a spike pattern
Xν consisting (on average) of 0.8M of the M spike trains in X. Of course,
full connectivity (p = 1) would likely enhance learning, but using p = 0.8
takes into account that it seems unrealistic that all neurons in a biological
population receive exactly the same input.

The postsynaptic spike trains Yν (ν = 1, . . . , N) elicited by a stimulus
will differ from one neuron to the next, and a coding procedure is needed
to combine the diverse responses into a single population decision. For
this, we assume that each Yν is read out as a numerical value given by a
scoring function c(Yν). In a rate code, for instance, c(Yν) might just count
the number of spikes in Yν . Technically, however, it is convenient if the
values of c(Yν) are balanced around zero. So in the sequel, in a rate code,
c(Yν) will be the difference between the number of spikes in Yν and an
appropriate threshold value. The population readout can now aggregate the
postsynaptic responses based on simply summing the scores. In particular,
we assume that the population decision D, determining the behavioral
decision, is obtained as

D = sign

(
N∑

ν=1

c(Yν)

)
. (2.3)

When one and the same stimulus X is presented in different trials, the
population decision may fluctuate due to the noisy neural processing.
The likelihood of this happening can be assessed based on the population
activity

A = 1√
N

N∑
ν=1

c(Yν). (2.4)

1702 J. Friedrich, R. Urbanczik, and W. Senn

The neurons are conditionally independent given a stimulus, so the
conditional distribution Pw(A | X) becomes gaussian in a large population,
and its variance stays on the order of 1. Consequently, since D = sign(A),
the population decision is unlikely to fluctuate if the conditional mean of
A, E(A | X), has a large absolute value. In this sense, the magnitude of A
provides a measure for the reliability of the decision D.

2.3 Population Learning. The population decision elicits reinforcement
feedback encoded in a binary variable R, with R = ±1 signaling that the
decision was correct or incorrect. In the neuron-agent approach, this global
feedback leads to the following learning update:

wν
i = η (R − b)

∂

∂wν
i

log Pwν (Yν | X). (2.5)

Here wν is the vector of the synaptic strengths of neuron ν, and the derivative
with respect to wν

i is obtained by applying equation 2.2 to each of the N
neurons. The learning rate η and the reinforcement baseline b are parameters
that can be tuned to optimize performance.

As mentioned in section 1, learning slows down with increasing popu-
lation size in this approach. The reason becomes apparent when one con-
siders binary codes where c(Yν) = ±1. The overall decision D can now be
regarded as representing the majority decision of the population neurons.
Consequently a dissenting neuron should not get the same reward as a
majority neuron; indeed, if c(Yν) = −D, the appropriate reinforcement is
−R, not R. In general terms, the appropriate reinforcement for neuron ν is
RDc(Yν). This differs from neuron to neuron, but the update, equation 2.5,
uses the same reinforcement R for all neurons. Further, for generic choices
of the synaptic strengths, the population vote will initially tend to be split
almost evenly. Then the global reward signal R provides the wrong rein-
forcement for nearly half of the population neurons.

In Urbanczik and Senn (2009, Supplementary Information), this has led
us to mathematically derive a new gradient learning rule for the task. For
this (stochastic) gradient rule, feedback about reward R and population
activity A modulates synaptic plasticity just when the stimulus ends. Such
instantaneous feedback is biologically unrealistic, so to allow for delays in
feedback delivery, we also considered the modified, approximate gradient
rule described below.

A key finding in the new approach is that plasticity should be modu-
lated by the neuron-specific reward signal RDc(Yν), so the neuron-agent
learning problem could be overcome by assuming a second feedback signal
encoding the population decision D. It turns out, however, that it is even
better if graded information about the population activity A, and not just
D = sign(A), is fed back. The reason is that in a large population, each neu-
ron does not have to respond correctly to each stimulus, and, in fact, it is
desirable to have a division of labor between the neurons. If plasticity is

Learning Spike-Based Population Codes 1703

based on the graded feedback A, in case of a correct decision, learning can
be attenuated (or even stop completely) once |A| becomes sufficiently large
to ensure a reliable population decision.

The synaptic quantity in the proposed rule is not ∂
∂wν

i
log Pwν (Yν | X)

because the computation requires an integration over the duration of the
stimulus (see equation 2.2). Synapses are unlikely to know when stimuli
start and end, so, for the sake of biological realism, the model instead uses
the low-pass-filter approximation

τM Ėν
i = −Eν

i + �ν
i (t). (2.6)

Here �ν
i (t) is the integrand introduced in equation 2.2, and τM is a time

constant that should be at least roughly matched to stimulus duration.
We assume 500 ms stimuli and, accordingly, τM = 500. In the model, each
neuron has a memory mechanism encoding some information about its
response Yν to the stimulus. For this, a calcium-like variable Ỹν is introduced
and is set to 1 each time neuron ν fires; at other times, it decays exponentially.
Formally,

τM
˙̃Y

ν = −Ỹν(t) + τM

∑
s∈Yν

(1 − Ỹν(s)) δ(t − s). (2.7)

Note that the time constant is the same as for Eν
i , since for both, the relevant

timescale is typical stimulus duration.
Information about the reinforcement R and the population activity A is

delivered to the synapses via continuously changing signals R̃(t) and Ã(t).
The signals will be described in detail below, together with the following
population learning rule that changes synaptic strength in continuous time
according to

ẇν
i = η |R̃| (sign(R̃Ãc(Ỹν)) − 1)a (R̃, Ã) Eν

i . (2.8)

Here, to reduce clutter, we do not make the time dependence of the quanti-
ties on the right-hand side explicit in the notation. For a trial ending at time
T , R̃(t) will be negligibly small except during a time window of some 100 ms
after time T . So the modulation with |R̃| in equation 2.8 in effect confines
synaptic plasticity to a short time window after trial ending. The feedback
signals R̃ and Ã are such that in this time window, (1) R = sign(R̃(t)) and
(2) D = sign(Ã(t)). Ideally we also have a readout function c(Ỹν) for the neu-
ronal memory trace, satisfying (3) c(Yν) = c(Ỹν(t)). If the three conditions
hold during the poststimulus time window, the sign(R̃Ãc(Ỹν)) term in the
update rule is equal to RDc(Yν); that is, it computes the correct reward
signal for neuron ν. Subtracting 1 from this term amounts to choosing the
reinforcement baseline such that synaptic changes occur only to correct a

1704 J. Friedrich, R. Urbanczik, and W. Senn

neuronal response deemed wrong. Finally, a (R̃, Ã) provides for attenuating
the learning. This is achieved by choosing

a (R̃, Ã) =
{

1 for R̃(t) ≤ 0

|Ã(t)| for R̃(t) > 0
.

Due to the first clause, no attenuation of learning occurs if the population
decision was wrong. In the model, the magnitude of the population feed-
back |Ã(t)| is proportional to e−A2

, so the second clause leads to a strong
reduction in the effective learning rate in case of a correct and reliable
population decision.

In the detailed modeling for R̃ and Ã, the signals are taken to be de-
livered by changes in ambient concentration levels of neurotransmitters.
Reinforcement is assumed to change the release rate of a neurotransmitter
(e.g., dopamine) for a duration of 50 ms. Due to a linear degradation pro-
cess, this has only a transient effect on the concentration level, which in due
course returns to baseline. R̃(t) is the difference between the current and
the baseline concentration of the neurotransmitter and is given by

τrew
˙̃R = −R̃ + R150(t − T). (2.9)

Here 150(s) is the indicator function on the interval [0, 50] = zero unless
0 ≤ s ≤ 50, in which case 150(s) = 1. Population feedback is delivered sim-
ilarly by a second neurotransmitter. Since this signal should depend on the
magnitude of the population activity, we use

τpop
˙̃A = −Ã+ γ De−A2

150(t − T), (2.10)

where γ is a positive parameter. In case of reward, this parameter modulates
the value of the attenuation factor a (R̃, Ã) in equation 2.8. The choice of γ

thus tunes the balance between the learning from correct and incorrect
population decisions (see appendix A).

2.4 Learning Task and Simulation Protocol. The description above of
the plasticity rule is couched in terms of learning a single stimulus-response
relationship. Of course, ultimately, the task is to learn multiple (m) such re-
lationships, where each stimulus, represented as a particular input spike
pattern, has a specific target value for the population decision. For this, the m
spike patterns are presented in random order to the network (with no delay
period between the successive trials). The neuronal and synaptic learning
equations 2.6 to 2.8 are simply used verbatim, that is, the population neurons
and their synapses are oblivious of stimulus boundaries. Only the interpre-
tation of the equations describing feedback delivery, equations 2.9 and 2.10,

Learning Spike-Based Population Codes 1705

changes slightly. These are now valid only up to the time T ′ when the pre-
sentation of a subsequent stimulus X′ ends. From then on, in equations 2.9
and 2.10, the values for reinforcement and population response pertaining
to X′ are used (and T is replaced by T ′).

The m input spike patterns used in each task are statistically indepen-
dent with an equal number of patterns for each target decision. Each spike
pattern is made up of M independent 5 Hz Poisson spike trains with 500 ms
duration.

3 Simulation Results

3.1 Scaling Properties of Population Learning. Here we quantify the
speed-up of learning with increasing population size N in dependence on
the dimensionality M of the spike patterns and of the number m of the
patterns to be learned. We assume that the population is read out based on
a spike/no-spike code, that is, c(Yν) = −1 if neuron ν did not fire at all in
response to the stimulus, and otherwise c(Yν) = 1. For the neuronal readout
of the memory trace, we use

c(Ỹν(t)) = sign(Ỹν(t) − ϑ). (3.1)

For an appropriate choice of the threshold ϑ , namely, ϑ = e−1, we have
c(Yν) = c(Ỹν(T)) at time T when the stimulus ends; we then have a perfect
match between the population readout and the neuronal readout. This is
one reason for adopting such a reduced, binarized version of a rate code. A
related reason is that for the binary code, the update rule, equation 2.8, can
be mathematically understood as a gradient rule in the limit that feedback
delivery is instantaneous after stimulus presentation (Urbanczik & Senn,
2009, Supplementary Information). In the simulations, of course, feedback
delivery is not instantaneous. Hence, a slightly smaller value of the thresh-
old ϑ seems appropriate; we use ϑ = e−1.1 to account for the fact that the
bulk of the synaptic changes induced by equation 2.8 takes place some
50 ms after a trial has ended.

To assess performance, we counted the total number E of erroneous
population decisions during the repeated trials needed to learn a task. As
can be seen in Figure 1a, the error count E does not diverge as the number
of trials is increased, but due to learning, it converges toward an asymptotic
value. For a perfect one-shot learner, the asymptotic value would on average
be E = 1

2 m, since for half of the m patterns, the initial guess happens to be
the right one and since the wrong responses on the remaining patterns
are instantly corrected (without introducing new mistakes). While in our
simulations,E decreases markedly with increasing population size, the error
counts we were able to obtain with population learning remain higher than
the one-shot value.

1706 J. Friedrich, R. Urbanczik, and W. Senn

E/
m

50 100 150 200

2

4

6

8

10
a M = 50

α = 0.2

α = 0.6

N
50 100 150 200

2

4

6

8

10
b M = 200

α = 0.2

α = 0.6

N

Figure 1: Speed-up of learning with population size N for different input di-
mensions M and different numbers m = αM of patterns to be learned in each
task. Note that for a given N, the parameter α determines the synaptic load. The
total number of errors E was counted based on 40m trials (large circles). (a) To
demonstrate convergence, the E-values after 25m trials (medium circles) and
10m trials (small circles) are also shown. In the insets, the total error counts in
the 40m trials are replotted as log(E

m − 1
2) versus log N. Data points are averages

over 20 runs with different initial conditions and different task instances. Error
bars show 1 SEM of the mean in a , but in b, they show the standard devia-
tions for the fluctuations from run to run. The simulation setup is detailed in
section 2.4.

When learning m = αM patterns with a given number N of population
neurons, the parameter α determines the synaptic load. Hence, for fixed N
and α, one expects total learning time to scale linearly with the dimensional-
ity M of the input. Figure 1b shows the result obtained when rerunning the
simulations for Figure 1a with M = 200 instead of M = 50. The error counts
per pattern in the two panels are very similar, confirming the linear scaling.

It has been previously shown that on average, single-neuron perfor-
mance does not increase with population size and may in fact decrease
slowly (Urbanczik & Senn, 2009). So the speed-up in learning occurs be-
cause in a larger population, errors of single neurons are less likely to
corrupt the population decision. An additional benefit of this, besides im-
proved average population performance, can be read of from Figure 1b.
There, in contrast to the 1 SEM values of Figure 1a, the error bars show the
fluctuations in performance from run to run (with different sets of stimulus-
response pairs and different initial synaptic strengths). One reason for the
difference in presentation between Figures 1a and 1b is that for M = 200,
the 1 SEM values would hardly exceed the size of the symbols. More im-
portant, the error bars shown in Figure 1b highlight that the fluctuations in
learning performance decrease with population size; that is, it becomes less
likely that learning happens to become unexpectedly slow for a certain set
of patterns. This is a definite advantage when failing to learn a specific task
incurs a severe penalty (e.g., getting eaten).

Learning Spike-Based Population Codes 1707

When replotted on logarithmic scales, the data points for different pop-
ulation sizes fall nearly on a straight line (insets). This may be indicative
of an algebraic decay of E with increasing N toward the E = 1

2 m value for
one-shot learning. But convergence is rather slow; extrapolation from the
simulation data suggests that some 10,000 neurons are needed to achieve
E = 0.6m (for α = 0.2, M = 50).

The analysis presented is based on the cumulative error count E and
not on estimating population performance by a running average similar to
equation 3.2 below. Since the latter approach is more customary, a few words
of explanation are in order. In choosing the time window (or time constant)
for running average estimation, there is a bias-variance trade-off because
for a large time window, the estimator on average lags behind the true
performance, whereas the variance is large with a short time window. The
trade-off becomes troublesome when learning is so fast that it approaches
one-shot learning, even if the main goal is just to determine performance
after a given number of trials. But for comparing the learning speed in
different settings as we do, the statistical problem in fact is to estimate the
number of trials needed to achieve a given performance level; for this, the
bias-variance trade-off is even more pernicious. Say, we run the simulations
up to the time need to achieve a 99% probability of correct decisions, as
indicated by our running mean estimator and then record this stopping
time. Now, stopping will likely be triggered by run-to-run fluctuations for
which the running mean is unexpectedly large. This creates a stopping
bias toward underestimating the required learning time. But due to the lag
introduced by the time window, we have a bias toward overestimating the
learning time. So the net bias in the stopping time depends in a complicated
manner on the length of the time window, the number m of patterns, and the
learning speed of the system. Its direction is hence different in the different
settings, and this makes it difficult to compare learning times. In contrast,
the bias in the cumulative error count E is relatively easy to control for by
checking for convergence, as shown above. Further, the bias is uniform,
in that it will tend to underestimate the number of errors committed by
slow learners. This means that with regard to the speed-up of learning
with population size, the above findings are conservative because we are,
if anything, underestimating E in the case of small populations.

3.2 Flexibility of the Online Scheme. Behavioral adaptation takes
many forms, and there is certainly more to reinforcement learning than
just binary decisions based on a spike/no-spike code. Hence, we provide
examples showing that the above scheme can be applied as well to some
other learning scenarios with little or no modification.

We first consider the case that more than two responses to a stimulus are
possible. This can be addressed by assuming several (n) populations of neu-
rons, each responding with a binary decision to a stimulus. The behavioral
response is then determined by the combined output of the populations and

1708 J. Friedrich, R. Urbanczik, and W. Senn

R
A1 A2

a

P
er

fo
rm

an
ce

(%
)

0 2000 4000
25

50

75

100b

Trial Number

Population
read–out 1

Population
read–out 2

Critic

Figure 2: Learning of four-way decisions by two populations. (a) Sketch of the
feedback structure used for the task. (b) Learning curve for two populations
with N = 33 neurons each. The number of patterns to be learned was m = 24,
with six patterns allocated to each of the four output classes. The reported values
are for M = 50, averaged over 40 runs.

can thus have one of 2n values. The global reinforcement signal R encodes
whether this combined output is correct. Now if each of the n populations
has its individual population feedback, the above online procedure can
simply be used for each of the populations. So as sketched in Figure 2a,
learning at the level of the single neuron is based on its own response to the
stimulus, on feedback about the output of the population it belongs to, and
on the global reinforcement assessing the behavioral response. Simulation
results for two populations learning a four-way decision task are shown in
Figure 2b. The performance percentages are computed as a running mean
p̄ that is updated after each pattern presentation as

p̄ ← (1 − λ) p̄ + λp. (3.2)

Here p = 100% if the presented stimulus was classified correctly; otherwise,
p = 0. The timing parameter was set to λ = 0.01.

Next we investigate the use of different coding strategies at the level of
the single neuron. Until now, we have assumed that in decoding postsynap-
tic spike trains, the population readout considers only whether the neuron
does or does not fire. While this suggests itself for its theoretical simplicity,
the readout is somewhat involved, since for this spike/no-spike code, a
neuron firing more than once in response to the stimulus should have the
same impact on the population decision as a neuron that emits just a single
spike. In contrast, for a rate code, only the total number of spike emitted by
the population needs to be considered. To obtain a proper firing rate code,
we redefine the scoring function c(Yν) used by the population readout to be

c(Yν) = card(Yν) − 2
3
,

where card(Yν) denotes the number of spikes emitted by neuron ν in re-
sponse to the stimulus. To balance c(Yν) around zero, we have subtracted 2

3 ,

Learning Spike-Based Population Codes 1709

P
er

fo
rm

an
ce

(%
)

0 2000
50

75

100

0 1 2 3 4 5 100 200 300 400 ms

P
er

fo
rm

an
ce

(%
)

0 2000 4000 6000 8000
50

75

100

0 1 2 3 4 5

100 200 300 400 ms

a b c

ed

Trial Number

Figure 3: Different coding strategies for a binary decision task. (a) Learning
curve (blue) when the population readout assumes a firing rate code (N = 33
and 30 patterns). For comparison, the corresponding curve for the spike/no-
spike code is shown in red. For both curves, the performance values are obtained
with equation 3.2. After learning with the firing rate code: (b) distribution of
the number of spikes in response to a stimulus; (c) distribution of the spike
times within stimulus duration. In panels b and c, dark (light) blue gives the
contribution from the patterns with target output 1 (−1). (d) Learning curve
for the spike-early/spike-late code (N = 67, 30 patterns) and the corresponding
spike number histogram (d, inset) and spike timing histogram (e). Dark (light)
green is for target 1 (−1) patterns. The values reported are averages over 30 runs
with M = 50.

not 1
2 . This choice takes into account that a neuron may occasionally spike

more than once in response to a stimulus. As the learning curve in Figure 3a
shows, using a firing rate code instead of the spike/no-spike code has only
a minor effect on performance. For simplicity, we are still using the same
plasticity rule as for the spike/no-spike code, although the exact number
of postsynaptic spikes cannot be determined from Ỹν . But given the low
activity level (see Figure 3b), the limited information about the postsynaptic
rate readout from Ỹν by equation 3.1 is sufficient for learning to succeed.

We are assuming throughout that inputs are fixed low-activity spike
patterns, so the neuronal outputs are highly dependent on relative input
spike times. But the two output codes considered up to now do not take
postsynaptic spike timing into account, leading to a code switch between
inputs and outputs. While this could be avoided by assuming mean firing

1710 J. Friedrich, R. Urbanczik, and W. Senn

rate inputs, it is of interest to ask if population learning itself can be based
on a spike-timing-dependent output code. For this, we now study a spike-
early/spike-late code. In particular, we use as a scoring function c(Yν) = 1
if there are more spikes in Yν during the second half of stimulus duration
than during the first; otherwise, c(Yν) = −1. (For an equal number of spikes
and in the case of no spike, c(Yν) = 0.)

As shown in Figure 3d, population learning can be based on such a
spike-timing-dependent output, even if it is slower than for the rate codes.
The spike-early/spike-late coding is easily seen as the difference between
target 1 and target −1 patterns in the timing histogram (see Figure 3e)
whereas firing rates do not distinguish between the two target classes (see
Figure 3d, inset).

For learning with the timing-dependent code, the readout of the neu-
ronal memory traces had to be modified. The first change is a larger value
for the threshold in equation 3.1, since the comparison of the calcium-
like variable Ỹν to ϑ must now reflect the spike-early/spike-late decision
instead of the spike/no-spike decision. In addition, the case that the spike-
early/spike-late scoring function yields zero because the stimulus elicited
no postsynaptic spike has to be addressed. For this, we set c(Ỹν) to zero
when Ỹν is small by replacing equation 3.1 with

c(Ỹν(t)) = sign(Ỹν(t) − ϑ) � (Ỹν(t) − ϑ̂), (3.3)

where ϑ = e−0.55, ϑ̂ = e−1.1, and � is the Heaviside step function.
Even using equation 3.3, the value of c(Ỹν) will often differ from the cor-

rect value c(Yν) if two or more postsynaptic spikes are produced in response
to a stimulus. The spike-early/spike-late code is simply too complicated to
be exactly represented by a single concentration variable Ỹν . Nevertheless,
this is addressed rather simply by introducing noise to make the errors
less systematic. In particular, instead of updating Ỹν to 1 whenever neuron
ν produces a postsynaptic spike at time t, this update is skipped with a
probability Ỹν(t), that is, Ỹν simply ignores some postsynaptic spikes. This
stochastic dithering helps because it decorrelates the deviations between
c(Ỹν) and c(Yν) from the underlying spike train Yν without destroying the
correlation of c(Ỹν) with c(Yν).

The memory trace with stochastic dithering is more flexible than the
deterministic one and can also be used in conjunction with the other coding
strategies. The flexibility, however, comes at a price. For the spike/no-spike
code, we observed a twofold increase in learning times when using the
stochastic instead of the deterministic memory trace (data not shown).

4 Discussion

We have presented a computational analysis of reinforcement learning in
populations of spiking neurons when synaptic plasticity is modulated not

Learning Spike-Based Population Codes 1711

just by global reinforcement but also by feedback about the population re-
sponse, as well as by a memory trace encoding a neuron’s past firing behav-
ior. Learning now speeds up with increasing population size, in contrast
to the case where only global reinforcement is available. For the simula-
tions, we have assumed as specific neuronal model the escape noise neuron
(Pfister et al., 2006). This suggests itself because the synaptic variable in
the plasticity rule depends on the relative timing of pre- and postsynaptic
spikes, as well as on the somatic potential. But our population approach is
not confined to this model and could readily be adapted to use other rein-
forcement learning procedures at the single neuron level (Seung, 2003; Fiete
& Seung, 2006; Florian, 2007). Obviously, in absolute terms, population per-
formance will depend on the specifics of the neuronal model and associated
plasticity rule. But considering the scaling of the performance, we expect
our findings to be generic: with just global reinforcement, the performance
degrades with increasing population size, but it improves when plasticity is
properly modulated by the population response and the neuronal memory
trace.

In the scaling analysis, we have focused on learning time as function
of population size N. One might, of course, also ask how the maximal
number of stimulus-response association that can be memorized depends
on N. Results from statistical physics for related architectures may suggest
that this storage capacity increases with population size. There (Monasson
& Zecchina, 1996; Urbanczik, 1997), a slightly supralinear increase with
N was found for the case that the population neurons are perceptrons
and not spiking neurons. But at the capacity limit, almost by definition,
there is no redundancy in the system. So the capacity will depend strongly
on minute details such as synaptic accuracy. Also, population decisions
become finely balanced as the limit is approached and thus rely critically
on the performance of each single neuron. The main biological interest
in population coding, however, is that it provides a means to aggregate
fluctuating but redundant neuronal responses into reliable decisions. This
is why we have considered only values of the load parameter α, which are
likely to be far below the technical capacity limit.

The model assumes a fixed population readout with plasticity confined
to the population neurons that learn to identify salient features in the input.
Pouget et al. (2000) have pointed out that learning is much simpler if one
assumes an architecture that in essence is dual to ours: plasticity confined
to the readout with the population neurons themselves just serving as fixed
feature detectors. This seems adequate for basic sensory-motor integration
tasks when stimuli can be described by a few features such as spatial lo-
cation or angle. Further, in this case, the topographically organized lateral
connectivity observed in sensory areas can provide an effective way of
damping neuronal response variability. But for learning complex stimuli, a
prohibitively large population size is necessary if just the readout is plastic.
In particular, for feature neurons with gaussian tuning curves, the flexibility

1712 J. Friedrich, R. Urbanczik, and W. Senn

of readout learning is severely compromised unless the population size in-
creases exponentially with the stimulus dimension (Pouget et al., 2000). It
thus seems unlikely that plasticity in higher cortical areas is confined to a
population readout.

Further, the population-agent approach described here addresses head-
on a problem implicit in many mean firing rate models of learning. A rate
in such models is often taken to represent an ensemble average over a pop-
ulation of spiking neurons, since interpreting the rate as a temporal average
over a single neuron would lead to unrealistically slow information process-
ing. But for an ensemble average, even in cases where the rate description
of the spiking population is itself carefully established (Fusi, Asaad, Miller,
& Wang, 2007), it is often unclear what the mean firing rate plasticity rule
actually means at the level of the single-spiking neuron. In particular, an in-
terpretational conundrum arises when plasticity is modulated by the mean
postsynaptic rate, as in Hebbian learning. Since this rate is really a popula-
tion average, it is not immediately available at the synaptic level and may
differ from the true postsynaptic behavior of any single neuron. Our model
resolves this conundrum by explicitly describing a biophysically reason-
able delivery mechanism for the population response and showing how
differences between the population-averaged rate and the actual neuronal
rates can be resolved when each neuron keeps a memory trace of its recent
spiking behavior.

We have not considered here how the postsynaptic code is read out. To
monitor the population for the duration of the stimulus, a neural integra-
tor is needed. This is likely to involve a combination of cellular mecha-
nisms (e.g., plateau potentials) and recurrent network connectivity (Major
& Tank, 2004). In addition, for a spike-timing-dependent output code, the
time elapsed since stimulus onset would have to be measured. While this
can be seen as a special case of a neural integrator, dedicated implementa-
tions of such neural clocks are also possible (Durstewitz, 2004; Reutimann,
Yakovlev, Fusi, & Senn, 2004). A detailed neuronal model based on two
competing integrators has been presented in Wang (2002) for reading out
a binary decision encoded in the accumulated activity difference between
two input populations. This decision circuitry readily specializes to the sin-
gle population case considered here, when the neurons code by firing rate.
Just assume that the population projects to one of the integrators, whereas
to provide the threshold, the other integrator receives input at a fixed rate.

Our population learning model offers a functional interpretation for the
abundant experimental observations that synaptic plasticity is regulated
by various neuromodulators (see Foehring & Lorenzon, 1999; Centonze,
Gubellini, Pisani, Bernardi, & Calabresi, 2003, for reviews); in different
combinations, some neuromodulators can even switch the polarity of the
long-term synaptic change (Matsuda et al., 2006; Seol et al., 2007). But the
model also makes the general prediction that synaptic plasticity should
depend on postsynaptic coding. In its basic form, the learning rule for

Learning Spike-Based Population Codes 1713

the escape noise neuron just changes the probability that a postsynaptic
spike train generated in response to a stimulus is produced again on a
further presentation of the same stimulus. So the neuron can in principle
be reinforced to learn any output code—in contrast to, for example, the
tempotron (Gütig & Sompolinsky, 2006), where the spike/no-spike code is
hardwired into the plasticity rule. However, in population-agent learning,
the universality of the escape noise rule is compromised when plasticity
is modulated by a comparison between the population response and the
neuronal memory trace. The outcome of this comparison depends on the
code used in reading out the population, so the local modulatory factor
in the plasticity rule must be matched to the postsynaptic code. One of
our spike-early/spike-late neurons, for instance, would not be able to learn
with the mismatched feedback signals arising from a firing rate readout.
Given the high performance of population-agent learning, the need for such
matching may be indicative of unavoidable trade-offs between efficiency
and universality in plasticity mechanisms. So in dependence on the neu-
ronal code, plasticity mechanisms may differ from one brain area to the
next. In fact, our more general finding—that synaptic plasticity should be
tailored to the network architecture—suggests further reasons for expect-
ing such differences. Obviously the brain has many subnetworks that do
not resemble our population model and will require other plasticity rules.
Hence, an interesting question for future theoretical research is to identify
other specific network architectures where reinforcement learning speeds
up when plasticity is modulated, in addition to the external reward, by a
limited number of internally generated feedback signals.

Appendix A: Simulation Details

Here we provide the remaining simulation details. We first discuss the
choice of the parameter γ determining the magnitude of the population
signal in equation 2.10. In a binary decision task, consider a situation where
for a given stimulus, the expected magnitude of A is small. The population
decision is then essentially random, and on any single trial, the reward
R = 1 is as likely as R = −1. Hence the magnitude of the synaptic update
should not depend on the value of R. In view of equation 2.8, this magnitude
is determined by the time integral of |R̃|a (R̃, Ã). When choosing γ = 2.5,
the value of this integral is approximately the same for R = 1 as for R = −1
when A is small. Hence, we used this value for γ in all binary decision
tasks. For a four-way decision task, the situation is slightly different because
success (R = 1) is more informative than failure (R = −1), at least initially
during learning. To get a larger synaptic update for R = 1 in this task, we
used γ = 5.

In the simulations for binary decision making with spike/no-spike and
with the rate code, the learning rate was η = 640

(α+0.2)M . For the four-way

1714 J. Friedrich, R. Urbanczik, and W. Senn

decision task, η = 8 was used, and for the latency code simulations, η = 2.
In all simulations, initial synaptic strengths were chosen from a gaussian
distribution with zero mean and standard deviation 40/

√
M.

Appendix B: Probability of a Postsynaptic Spike Train

Here we give a derivation of the expression 2.1 for log Pw(Y | X).
Let Y = {t1, t2, . . . , tn} be a spike train with n spikes between T1 and T2.

To have a unique representation, we assume that the ti are in ascending
order and that, in particular, T1 < t1 < t2 < · · · < tn ≤ T2. Let Yn be the set
of all possible spike trains with n spikes between T1 and T2. Let φ be a (rate)
function that takes on nonnegative values.

Now consider the function

h(Y) = h(t1, t2, . . . , tn) = e−
∫ T2

T1
dt φ(t)

n∏
i=1

φ(ti). (B.1)

Since h(Y) is nonnegative, we can use it as a density to define a measure
μ on Yn in the standard way, μ(�) = ∫

�
dt1dt2 . . . dtn h(t1, t2, . . . , tn), for any

measurable subset � ⊂ Yn. By applying this for different n, we obtain a
measure, which we also denote by μ, on the set Y = ∪∞

n=0 Yn of all spike
trains between T1 and T2.

We now determine the measure μ(Yn) of observing exactly n spikes. First,

μ(Yn) =
∫ T21

T1

dt1

∫ T2

t1
dt2

∫ T2

t2
dt3 . . .

∫ T2

tn−1

dtn h(t1, t2, . . . , tn)

= 1
n!

∫ T2

T1

dt1

∫ T2

T1

dt2 . . .

∫ T2

T1

dtn h(t1, t2, . . . , tn),

where the second equality holds because h(t1, t2, . . . , tn) does not change
when permuting the spike times and because there are n! permutations.
Now the integral factorizes since the contribution from the different spike
times to h(t1, t2, . . . , tn) is given by a simple product. Hence,

μ(Yn) = 1
n!

e−
∫ T2

T1
dt φ(t)

n∏
i=1

∫ T2

T1

dti φ(ti)

= 1
n!

e−
∫ T2

T1
dt φ(t)

(∫ T2

T1

dt φ(t)
)n

. (B.2)

The last line is the textbook definition for the probability that an inho-
mogeneous Poisson process with rate function φ generates n events in the
time interval [T1, T2], so μ is not just measure on Y but in fact a probability
measure. Further, since equation B.2 holds for all time intervals [T1, T2] , the

Learning Spike-Based Population Codes 1715

function h(Y) in equation B.1 is the probability density that the spike train
Y is generated by the inhomogeneous Poisson process.

In passing, we note that μ(Yn) can be written as μ(Yn) = e−κκn/n! with
κ = ∫ T2

T1
dt φ(t). This motivates the name Poisson process. Further, if φ is dif-

ferentiable, setting δ = T2 − T1, we have μ(Y0) = 1 − O(δ), that is, we are
most likely to observe no event in a small time interval. Also

μ(Y1) = φ(T1)δ + O(δ2) and 1 − μ(Y0) − μ(Y1) = O(δ2).

The last equation means that the probability of observing two or more
events in a small time interval is negligible, and hence the first equation,
giving the probability of a single event, motivates calling φ the rate function.

Now, equation 2.1 is obtained from equation B.1 by taking the loga-
rithm and using as a rate function the stochastic intensity computed from
the membrane potential. So the above demonstrates equation 2.1 for the
case that postsynaptic spikes do not reset the membrane potential. For
the case with reset, we write h(t1, t2, . . . , tn) as h(t1, t2, . . . , tn;φ, T1, T2) to
make all dependencies explicit and denote by φY the stochastic intensity
in the case that the observed spike train is Y = {t1, t2, . . . , tn}. We note
that

h(t1, t2, . . . , tn;φY, T1, T2) = h(t1;φY, T1, t1) h(t2, . . . , tn;φY, t1, T2).

(B.3)

When this decomposition is used, the correctness of equation 2.1 is readily
shown for the general case by induction over the number of spikes n. The
equation is correct for n = 0, (if the neuron does not fire) because then
the reset plays no role. It is correct, for the same reason, even for n = 1 if
the single spike occurs at the end of the observation period; the probability
density is then given by h(t1;φY, T1, t1), the first term on the right-hand side
of equation B.3. Now we may by induction assume correctness for the n − 1
spikes occurring in the time window between t1 and T2, corresponding to
the second term on the right-hand side of equation B.3, and thus equation
B.3 implies the correctness of equation 2.1 also for the n spikes in the whole
observation period T1 to T2

Acknowledgments

This work was supported by the Swiss National Science Foundation (SNSF),
grant K-32K0-1180, and a grant from the Swiss SystemsX.ch initiative (eval-
uated by the SNSF).

1716 J. Friedrich, R. Urbanczik, and W. Senn

References

Averbeck, B., Latham, P., & Pouget, A. (2006). Neural correlations, population coding
and computation. Nature Rev. Neurosci., 7, 358–366.

Centonze, D., Gubellini, P., Pisani, A., Bernardi, G., & Calabresi, P. (2003). Dopamine,
acetylcholine and nitric oxide systems interact to induce corticostriatal synaptic
plasticity. Rev. Neurosci., 14, 207–216.

Durstewitz, D. (2004). Neural representation of interval time. Neuroreport, 15, 745–
749.

Fiete, I., & Seung, H. (2006). Gradient learning in spiking neural networks by dynamic
perturbation of conductances. Phys. Rev. Letts., 97, 048104.

Florian, R. (2007). Reinforcement learning through modulation of spike-timing-
dependent synaptic plasticity. Neural Computation, 19, 1468–1502.

Foehring, R., & Lorenzon, N. (1999). Neuromodulation, development and synaptic
plasticity. Can. J. Exp. Psychol., 53, 45–61.

Fusi, S., Asaad, W., Miller, E., & Wang, X.-J. (2007). A neural circuit model of flexible
sensori-motor mapping, learning and forgetting on multiple timescales. Neuron,
54, 319–333.

Gütig, R., & Sompolinsky, H. (2006). The tempotron, a neuron that learns spike
timing–based decision. Nature Neurosci., 9, 420–428.

Harris, K. (2008). Stability of the fittest, organizing learning through retroaxonal
signals. Trends in Neurosci., 31, 130–136.

Izhikevich, E. (2007). Solving the distal reward problem through linkage of STDP
and dopamine signaling. Cerebral Cortex, 17, 2443–2452.

Major, G., & Tank, D. (2004). Persistent neural activity, prevalence and mechanisms.
Curr. Opin. Neurobiol., 14, 675–684.

Matsuda, Y., Marzo, A., & Otani, S. (2006). The presence of background dopamine
signal converts long-term synaptic depression to potentiation in rat prefrontal
cortex. J. Neurosci., 26, 4803–4810.

Monasson, R., & Zecchina, R. (1996). Learning and generalization theories of large
committee machines. Mod. Phys. Lett. B, 9, 1887–1897.

Pfister, J., Toyoizumi, T., Barber, D., & Gerstner, W. (2006). Optimal spike-timing-
dependent plasticity for precise action potential firing in supervised learning.
Neural Computation, 18, 1318–1348.

Pouget, A., Dayan, P., & Zemel, R. (2000). Information processing with population
codes. Nature Rev. Neurosci., 1, 125–132.

Reutimann, J., Yakovlev, V., Fusi, S., & Senn, W. (2004). Climbing neuronal activ-
ity as an event-based cortical representation of time. J. Neurosci., 24(13), 3295–
330.

Seol, G., Ziburkus, J., Huang, S., Song, L., Kim, I., Takamiya, K., et al. (2007). Neu-
romodulators control the polarity of spike-timing-dependent synaptic plasticity.
Neuron, 55, 919–929. Erratum in, Neuron 56, 754.

Seung, H. (2003). Learning in spiking neural networks by reinforcement of stochastic
synaptic transmission. Neuron, 40, 1063–1073.

Urbanczik, R. (1997). Storage capacity of the fully connected committee machine. J.
Phys. A, 30, L387–L391.

Learning Spike-Based Population Codes 1717

Urbanczik, R., & Senn, W. (2009). Reinforcement learning in populations of spiking
neurons. Nature Neurosci., 12, 250–252.

Wang, X. (2002). Probabilistic decision making by slow reverberation in cortical
circuits. Neuron, 36, 955–968.

Werfel, J., Xie, X., & Seung, H. S. (2005). Learning curves for stochastic gradient
descent in linear feedforward networks. Neural Computation, 17, 2699–2718.

Williams, R. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8, 229–256.

Received May 4, 2009; accepted October 28, 2009.

This article has been cited by:

