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Abstract—Image datasets are commonly used in psychophysi-
cal experiments and in machine learning research. Most publicly
available datasets are comprised of images of realistic and natural
objects. However, while typical machine learning models lack any
domain specific knowledge about natural objects, humans can
leverage prior experience for such data, making comparisons
between artificial and natural learning challenging. Here, we
introduce DELAUNAY, a dataset of abstract paintings and non-
figurative art objects labelled by the artists’ names. This dataset
provides a middle ground between natural images and artificial
patterns and can thus be used in a variety of contexts, for example
to investigate the sample efficiency of humans and artificial neural
networks. Finally, we train an off-the-shelf convolutional neural
network on DELAUNAY, highlighting several of its intriguing
features.

I. INTRODUCTION

Deep Neural Networks (DNNs) have for many years demon-
strated human and even super-human performance in many
different tasks (see [1] for a review). One of their most
famous achievements is super-human natural image classifi-
cation: during the 2017 edition of the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC), the winning team
achieved a classification error of 2.251%, using a network
trained on a subset of ImageNet containing 1000 categories
and 1.2 million images ([2], [3]). In comparison, the estimated
human classification error on the same task is 5.1% ([4], [5]).
They also perform extremely well in other vision-related tasks,
such as boundary detection, semantic segmentation, semantic
boundaries, surface normals, saliency, human anatomy, and
object detection ([6]). DNNs and the human visual system
share architectural similarities, but their link may be even
deeper than merely structural, as the activity of different
artificial cells in a DNNs can be mapped to, and subsequently
used to predict, the recorded activity of cells in a living
subject ([7], [8]). Furthermore, recent years have witnessed
the emergence of a multitude of models linking learning in
DNNs to synaptic plasticity in cortex ([9], [10], [11], [12],
[13], [14], [15]).

Despite these successes, a number of critical shortcomings
of these systems have been observed over the recent years.
For example, DNNs are notorious for the large amount of
labeled training data required ([16]). Humans, in contrast,
are extremely efficient learners, able to learn new categories

from very few samples. Furthermore, human perception is
much more robust to rotations, occlusions or even abstraction
of image content. These observations suggest that DNNs
and humans leverage fundamentally different strategies for
learning.

The learning performance of a system is intimately linked
to its prior knowledge of the task domain and inductive
biases ([17]). Thus, one may hypothesize that the difference
in sample efficiency between neural networks and human
subjects may significantly depends on the considered task.
For example, classification tasks involving images with natural
structures may be learnt faster by humans, by exploiting biases
and priors which were developed over evolutionary timescales
and acquired over the lifetime of an organism. However,
classifying artificial inputs, such as pseudo-random patterns
or QR-codes may take humans longer to learn, effectively
resulting in memorization, leading to lower sample efficiency
and poor extrapolation.

A number of researchers have started to compare natural
and artificial learning leveraging psychophsyics and machine
learning with the twin goals of furthering our understanding
of brain function and improving artificial intelligence ([18],
[19], [20], [21]). In a similar spirit, to measure how much
prior knowledge and inductive biases contribute to the learning
speed of humans, one may design psychophysical experiments
comparing the sample efficiency of DNNs and human subjects
on visual classification tasks in which the statistical similarity
of the datasets to natural images is controlled:

1) A task with realistically structured objects, for example
ImageNet ([5]).

2) A task with images of unusual structures, for example
abstract art.

3) A task with completely unstructured images, for exam-
ple QR codes, or shuffled MNIST ([22], [23]).

In addition, the second task, i.e., the classification of abstract
art, could consider two different subject groups, consisting
of naive viewers and art experts, respectively. Both the naive
group in task 2 and all subjects in task 3 can be considered
lacking prior task-related knowledge which should lead to a
significant drop in sample efficiency.

If these expectations turn out to be correct, i.e., if we
observe a significant difference in the relative sample ef-
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Fig. 1: Samples from DELAUNAY. DELAUNAY consists of images of abstract artwork from a variety of different artists.
Here, 96 random samples across all artists are shown. Note the diverse non-figurative properties of images.

ficiency of humans compared to DNNs depending on the
statistical similarity of the dataset to natural images, this
would provide support for the hypothesis that fast natural and
artificial learning heavily relies on prior domain knowledge,
as speculated for example by [24].

Our main contribution here is to provide a new dataset
consisting of images of abstract art (as opposed to other
databases of paintings: [25], [26]), suitable for psychophysical
experiments and machine learning research.

II. DATASET

DELAUNAY (Dataset for Experiments on Learning with
Abstract and non-figurative art for Neural networks and Arti-
ficial intelligence) is named after artists Sonia [27] and Robert
Delaunay [28].

Several museums and other institutions worldwide offer
remote access to large databases, such as the Solomon R.
Guggenheim Museum in New-York [29], the MET [30], the
Bibliothèque Nationale de France (BNF) through its open-
access online tool Gallica [31], the digital collections of the
Library of Congress [32], the French Réunion des Musées
Nationaux - Grand Palais (Rmn-GP) [33], the online library
of the Institut National d’Histoire de l’Art (INHA) [34], the
Bridgeman Art Library [35], the National Portrait Gallery [36],
as well as the Alamy and Getty Images photo libraries [37].

We leveraged these online databases to construct DELAU-
NAY. First, we selected 53 artists well known for their abstract
art (see the full list in Annex). Second, we scraped the
aforementioned databases for images of their artworks. Finally,
we removed false positives (e.g., photographs of the artists),
duplicates, and cropped images containing texts and/or other
artifacts.

The final dataset comprises 11, 503 samples across 53
classes, i.e., artists (mean number of samples per artist: 217.04;
standard deviation: 58.55), along with their source URLs.
These samples are split between a training set of 9202 images

and a test set of 2301 images. Due to the heterogeneous nature
of sources, images vary significantly in their resolution, from
80px × 80px for the smallest sample to 3365px × 4299px for
the largest. A random subset of samples illustrating their non-
figurative (not representing a natural object) nature and high
diversity is shown in Figure 1.

III. TRAINING RESULTS

To illustrate some of the unique features of this new dataset,
we train a standard convolutional neural network (CNN) to
classify samples according to their authoring artist. We used a
similar approach as in [19]: images were resized to 256×256
pixels (not preserving their aspect ratio) and classified using
the ResNet152 architecture ([38]) distributed as part of Py-
Torch ([39]). Parameters were randomly initialized according
to PyTorch’s defaults. We trained the network using a cross
entropy loss with the ADAM optimizer ([40]) with a learning
rate γ = 0.003, weight decay parameter λ = 0.003, and batch
size 20.

Both validation and test accuracies are significantly higher
(respectively 29.46% and 29.73%) than the accuracy expected
from a greedy classifier associating all images to the class
having the highest sample count (3.28%) (Figure 2).

To investigate these results further, we consider class-level
error metrics. Percentages of correct predictions for all 53
classes in the test set range from 0.0% to 68.75% (Figure
3). This wide distribution suggests that while some artists
can be easily recognized by the trained CNN, some seem
to withstand meaningful extrapolation from the training to
the test set. Indeed, artists with low accuracies appear to
have a multimodal, eclectic style in contrast to other artists
who maintain a more systematic style throughout their works
(compare for example Georges Vantongerloo to Richard Paul
Lohse, Figure 3). Furthermore, the confusion matrix of the
test dataset contains several significant off-diagonal entries
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Fig. 2: Training results of a ResNet152 on DELAUNAY.
Curves represent training and validation accuracy over epochs.
Marker indicates test accuracy. Dashed line represent perfor-
mance of a greedy classifier with output fixed to the most
common class. For training details see Section III.

(Figure 4), indicating that some artists are particularly often
confused by the trained CNN, likely due to a high similarity
of their works. From an historical perspective, such a high
degree of similarity is not surprising: rather than working in
isolation, artists are often significantly influenced by specific
artistic movements and their personal environment such as
close friends and family. For example, we observe a high
degree of confusion between the works of Naum Gabo and his
brother Antoine Pevsner, which indeed can be traced back to
a high degree of similarity samples from these classes (Figure
4).

IV. DISCUSSION/CONCLUSION

We have introduced DELAUNAY, a dataset of images of
abstract and non-figurative artworks from 53 different artists.
It provides a middle ground between natural images typically
used in machine learning research and unnatural, structureless
patterns at the opposite side of the spectrum. We believe
the unique properties of this dataset make it useful for both
machine learning as well as psychophsyics research, for exam-
ple to investigate the hypothesis that sample efficiency scales
inversely with the statistical similarity of samples to natural
images for humans but not for DNNs.

Here we illustrated two intriguing properties of the dataset
which make it challenging for classical deep-learning ap-
proaches: first, the intra-class variance for some classes is
large, and second the inter-class variance for some classes is
(relatively) small. We believe that addressing these challenges,
supported by insights about human strategies obtained from
psychophysical experiments, is a fruitful direction to both
further understanding brain function as well as developing new
machine learning methods. We are excited about seeing the
community put this dataset to creative use.

CODE AND DATA AVAILABILITY

Link to the dataset (including the original URLs for all
samples), as well as scripts used for the creation of the dataset,
for training the CNN, and analysis of the results are available
from https://github.com/camillegontier/DELAUNAY dataset.
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ANNEX

Artists included in the dataset: Josef Albers, Jean Arp, Olle Bærtling, Jean Bazaine,

Étienne Béothy, Roger Bissière, Anthony Caro, Jean Degottex, Sonia and Robert

Delaunay, César Domela, Jean Dubuffet, Jean Fautrier, Lucio Fontana, Sam Francis,

Otto Freundlich, Naum Gabo, Léon Gischia, Jean Gorin, Hans Hartung, Auguste

Herbin, Vassily Kandinsky, Ellsworth Kelly, Yves Klein, Franz Kline, František Kupka,

Charles Lapicque, Berto Lardera, Fernand Léger, Richard Paul Lohse, Morris Louis,

Alberto Magnelli, Alfred Manessier, Georges Mathieu, Joan Mitchell, László Moholy-

Nagy, Piet Mondrian, François Morellet, Aurélie Nemours, Kenneth Noland, Antoine

Pevsner, Leon Polk Smith, Ad Reinhardt, Mark Rothko, Gustave Singier, Pierre Soulages,

Sophie Taeuber-Arp, Pierre Tal Coat, Theo van Doesburg, Georges Vantongerloo, Victor

Vasarely, Emilio Vedova, Maria Helena Vieira da Silva, Charmion Von Wiegand.
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Fig. 3: High intra-class variability in DELAUNAY leads to low test accuracies for some classes. Left: Histogram over
accuracies for all 53 classes in the test set. Highlighted are two artists with low and high test accuracies, respectively. Right:
Example of works from Georges Vantongerloo (top) and Richard Paul Lohse (bottom). Note the high and low variability of
samples within these classes, respectively.
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Fig. 4: Low inter-class variability leads to high degree of confusion for some class pairs. Left: Confusion matrix for all 53
classes in the test set. Diagonal entries were removed. Right: Example of works from Naum Gabo (top) and Antoine Pevsner
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Artist Sample count
Josef Albers 285

Jean Arp 337
Olle Bærtling 151
Jean Bazaine 207

Étienne Béothy 207
Roger Bissière 198
Anthony Caro 261
Jean Degottex 212

Sonia and Robert Delaunay 176
César Domela 171
Jean Dubuffet 364
Jean Fautrier 269

Lucio Fontana 159
Sam Francis 280

Otto Freundlich 181
Naum Gabo 261
Léon Gischia 79
Jean Gorin 208

Hans Hartung 251
Auguste Herbin 222

Vassily Kandinsky 377
Ellsworth Kelly 216

Yves Klein 123
Franz Kline 180

František Kupka 259
Charles Lapicque 250

Berto Lardera 203
Fernand Léger 169

Richard Paul Lohse 194
Morris Louis 225

Alberto Magnelli 265
Alfred Manessier 283
Georges Mathieu 199

Joan Mitchell 91
László Moholy-Nagy 232

Piet Mondrian 176
François Morellet 201
Aurélie Nemours 190
Kenneth Noland 229
Antoine Pevsner 218
Leon Polk Smith 196

Ad Reinhardt 167
Mark Rothko 300

Gustave Singier 256
Pierre Soulages 176

Sophie Taeuber-Arp 186
Pierre Tal Coat 195

Theo van Doesburg 197
Georges Vantongerloo 170

Victor Vasarely 312
Emilio Vedova 202

Maria Helena Vieira da Silva 223
Charmion Von Wiegand 164
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