
Articles
https://doi.org/10.1038/s42256-021-00388-x

1Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany. 2Department of Physiology, University of Bern, Bern, Switzerland. 3Siemens
AI lab, Siemens AG Technology, Munich, Germany. 4These authors contributed equally: J. Göltz, L. Kriener. ✉e-mail: julian.goeltz@kip.uni-heidelberg.de;
laura.kriener@unibe.ch; mihai.petrovici@unibe.ch

In recent years, the machine learning landscape has been domi-
nated by deep learning methods. Among the benchmark prob-
lems they have managed to crack, some remained elusive for a

long time1–3. It is thus not an exaggeration to say that deep learning
dominates our understanding of ‘artificial intelligence’4–8.

Compared to the abstract neural networks used in deep learning,
the more biological archetypes—spiking neural networks—still lag
behind in terms of performance and scalability9. The reasons for
this difference in success are numerous; for example, unlike abstract
neurons, even an individual biological neuron represents a com-
plex system, with finite response times, membrane dynamics and
spike-based communication10,11, making it more challenging to find
reliable coding and computation paradigms12–14. Furthermore, one
of the major driving forces behind the success of deep learning, the
backpropagation of errors algorithm15–17, has remained incompat-
ible with spiking neural networks until only very recently18,19.

Despite these challenges, spiking neural networks promise to
present some important advantages. The time information inher-
ent to spikes allows a coding scheme for spike-based communica-
tion that utilizes both spatial and temporal dimensions20, unlike
spike-count-based approaches21–24, where the information of spike
times is at least partially diluted due to temporal or population aver-
aging. Owing to the inherent parallelism of all biological, as well
as many biologically inspired, spiking neuromorphic systems25, this
promises fast, sparse and energy-efficient information processing,
and provides a blueprint for computing architectures that could one
day rival the efficiency of the brain itself9,25–27. This makes spiking
neural networks implemented on specialized neuromorphic devices
potentially more powerful—at least in principle—than the ‘con-
ventional’, simple machine learning models currently used on von
Neumann machines, even though this potential still remains mostly
unexploited9.

Many attempts have been made to reconcile spiking neural net-
works with their abstract counterparts in terms of functionality, for

example, by featuring spike-based inference models28–36 and deep
models trained on target spike times by shallow learning rules37,38
or using spike-compatible versions of the error backpropagation
algorithm39–41. Especially for tasks operating on static informa-
tion, a particularly elegant way of utilizing the temporal aspect of
exact spike times is the time-to-first-spike (TTFS) coding scheme42.
Here, a neuron encodes its real-valued response to a stimulus as the
time elapsed before its first spike in reaction to that stimulus. Such
single-spike coding enables fast information processing by explicitly
encouraging the emission of as few spikes as early as possible, which
meets the physiological constraints and reaction times observed in
humans and animals42–45. Apart from biological plausibility, such
a fast and sparse coding scheme is a natural fit for neuromorphic
systems that offer energy-efficient and fast emulation of spiking
neural networks46–52.

For hierarchical TTFS networks, a gradient-descent-based learn-
ing rule was proposed in refs. 53,54, using error backpropagation on a
continuous function of output spike times. However, this approach
is limited to a neuron model without leak, which is neither biologi-
cally plausible nor compatible with most analogue very-large-scale
integration (VLSI) neuron dynamics25. We propose a solution for
leaky integrate-and-fire (LIF) neurons with current-based (CuBa)
synapses—a widely used dynamical model of spiking neurons with
realistic integration behaviour55–57. An early version of this work was
presented in ref. 58.

For several specific configurations of time constants, we provide
analytical expressions for first-spike timing, which, in turn, allow
the calculation of exact gradients of any differentiable cost function
that depends on these spike times. In hierarchical networks of LIF
neurons using the TTFS coding scheme, this enables exact error
backpropagation, allowing us to train such networks as universal
classifiers on both continuous and discrete data spaces.

As our algorithm only requires knowledge about the afferent
and efferent spike times of all neurons, it lends itself to emulation

Fast and energy-efficient neuromorphic deep
learning with first-spike times
J. Göltz   1,2,4 ✉, L. Kriener   2,4 ✉, A. Baumbach1, S. Billaudelle1, O. Breitwieser1, B. Cramer   1, D. Dold1,3,
A. F. Kungl1, W. Senn2, J. Schemmel1, K. Meier1 and M. A. Petrovici   1,2 ✉

For a biological agent operating under environmental pressure, energy consumption and reaction times are of critical
importance. Similarly, engineered systems are optimized for short time-to-solution and low energy-to-solution characteris-
tics. At the level of neuronal implementation, this implies achieving the desired results with as few and as early spikes as
possible. With time-to-first-spike coding, both of these goals are inherently emerging features of learning. Here, we describe
a rigorous derivation of a learning rule for such first-spike times in networks of leaky integrate-and-fire neurons, relying
solely on input and output spike times, and show how this mechanism can implement error backpropagation in hierarchical
spiking networks. Furthermore, we emulate our framework on the BrainScaleS-2 neuromorphic system and demonstrate its
capability of harnessing the system’s speed and energy characteristics. Finally, we examine how our approach generalizes to
other neuromorphic platforms by studying how its performance is affected by typical distortive effects induced by neuromor-
phic substrates.

NAture MAChiNe iNteLLiGeNCe | VOL 3 | SePTeMBer 2021 | 823–835 | www.nature.com/natmachintell 823

mailto:julian.goeltz@kip.uni-heidelberg.de
mailto:laura.kriener@unibe.ch
mailto:mihai.petrovici@unibe.ch
http://orcid.org/0000-0002-5378-932X
http://orcid.org/0000-0001-5275-9199
http://orcid.org/0000-0001-7948-4391
http://orcid.org/0000-0003-2632-0427
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-021-00388-x&domain=pdf
http://www.nature.com/natmachintell

Articles NATure MAcHiNe iNTelligeNce

on neuromorphic hardware. The accelerated, yet power-efficient
BrainScaleS-2 platform48,59 pairs especially well with the sparseness
and low latency already inherent to TTFS coding. We show how
an implementation of our algorithm on BrainScaleS-2 can obtain
similar classification accuracies to software simulations, while dis-
playing highly competitive time and power characteristics, with a
combination of 48 μs and 8.4 μJ per classification.

By incorporating information generated on the hardware for
updates during training, the algorithm automatically adapts to
potential imperfections of neuromorphic circuits, as implicitly
demonstrated by our neuromorphic implementation. In further
software simulations, we show that our model deals well with vari-
ous levels of substrate-induced distortions such as fixed-pattern
noise and limited parameter precision and control, thus providing
a rigorous algorithmic backbone for a wide range of neuromor-
phic substrates and applications. Such robustness with respect to
imperfections of the underlying neuronal substrate represents an
indispensable property for any network model aiming for biological
plausibility and for every application geared towards physical com-
puting systems33,34,60–64.

In the following, we first introduce the CuBa LIF model and
the TTFS coding scheme, before we demonstrate how both infer-
ence and training via error backpropagation can be performed
analytically with such dynamics. Finally, the presented model is
evaluated both in software simulations and neuromorphic emula-
tions, before studying the effects of several types of substrate-induced
distortion.

results
Leaky integrate-and-fire dynamics. The dynamics of an LIF neu-
ron with CuBa synapses is given by

Cmu̇(t) = gℓ[Eℓ − u(t)] +
∑

i
wi

∑

ti

θ(t− ti) exp
(

−
t− ti

τs

)

,

(1)

with membrane capacitance Cm, leak conductance gℓ (from which
the membrane time constant τm = Cm/gℓ follows), weights wi and
spike times ti of presynaptic neuron i, synaptic time constant τs and
where θ is the Heaviside step function. The first sum runs over all
presynaptic neurons and the second over all spikes for each pre-
synaptic neuron. The neuron elicits a spike at time T when the pre-
synaptic input pushes the membrane potential above a threshold ϑ.
After spiking, a neuron becomes refractory for a time period τref,
which is modelled by clamping its membrane potential to a reset
value ϱ: u(t′) = ϱ for T ≤ t′ ≤ T+ τref . For convenience and with-
out loss of generality, we set the leak potential Eℓ = 0. Equation (1)
can be solved analytically and yields subthreshold dynamics as
described by equation (9). The choice of τm and τs ultimately influ-
ences the shape of a postsynaptic potential (PSP), starting from a
simple exponential (τm ≪ τs), to a difference of exponentials (with
an alpha function for the special case of τm = τs) and to a graded
step function (τm ≫ τs) (Fig. 1a). Note that all of these scenarios
are conserved under exchange of τs and τm, as is apparent from the
symmetry of the analytical solution (equation (9)).

c

Time (a.u.)

N
eu

ro
n

ID

d

Time (a.u.)

P
S

P
s

(a
.u

.)

τm/τs → ∞

a
ϑ

ϑ

Eℓ

Eℓ

b

Time (a.u.)

M
em

br
an

e
vo

lta
ge

τm/τs = 2

τm/τs = 1

τm/τs → 0

Fig. 1 | time-to-first-spike coding and learning. a, Postsynaptic potential (PSP) shapes for different ratios of time constants τs and τm for single neurons.
The finiteness of time constants causes the neuron to gradually forget prior input. b, One key challenge of this finite memory arises when small variations
of the synaptic weights result in disappearing/appearing output spikes, which elicits a discontinuity in the function describing output spike timing. Plots
for single neurons are shown in a and b. c,d, Application to feedforward hierarchical networks. c, Network structure. The geometric shape of the neurons
represents a notation of their respective types (input, squares; hidden, circles; label, triangles). The shading of the input neurons (black, grey and white
squares) represents the corresponding data, such as pixel brightness. The colour of the label neurons represents their respective class (blue, red, green
triangles). d, TTFS coding exemplified in a raster plot. As an example of input encoding, the brightness of an input pixel is encoded in the lateness of
a spike. Note that, in our framework, TTFS coding simultaneously refers to two individual aspects, namely the input-to-spike-time conversion and the
determination of the inferred class by the identity of the first label neuron to fire (red triangle). a.u., arbitrary units.

NAture MAChiNe iNteLLiGeNCe | VOL 3 | SePTeMBer 2021 | 823–835 | www.nature.com/natmachintell824

http://www.nature.com/natmachintell

ArticlesNATure MAcHiNe iNTelligeNce

The first two cases with finite membrane time constant τm
are markedly different from the last one, which is also known
as either the non-leaky integrate-and-fire (nLIF) or simply the
integrate-and-fire (IF) model and was used in previous work53. In
the nLIF model, input to the membrane is never forgotten until a
neuron spikes, as opposed to the LIF model, where the PSP reaches a
peak after finite time and subsequently decays back to its baseline. In
other words, presynaptic spikes in the LIF model have a purely local
effect in time, unlike in the nLIF model, where only the onset of a
PSP is localized in time, but the postsynaptic effect remains forever,
or until the postsynaptic neuron spikes. A pair of finite time con-
stants thus assigns much more importance to the time differences
between input spikes and introduces discontinuities in the neuronal
output that make an analytical treatment more difficult (Fig. 1b).

First-spike times. Our spike-timing-based neural code follows an
idea first proposed in ref. 53. Unlike coding in artificial neural net-
works (ANNs), and different from spike-count-based codes in spik-
ing neural networks (SNNs), this scheme explicitly uses the timing
of individual spikes for encoding information. In TTFS coding, the
presence of a feature in a stimulus is reflected by the timing of a
neuron’s first spike after the onset of the stimulus, with earlier spikes
representing a more strongly manifested feature. This has the effect
that important information inherently propagates quickly through

the network, with potentially only few spikes needed for the
network to process an input. Consequently, this scheme enables
efficient processing of inputs, both in terms of time-to-solution
and energy-to-solution (assuming the latter depends, in general on
the total number of spikes and the time required for the network
to solve, for example, an input classification problem).

To formulate the optimization of a first-spike time T as a
gradient-descent problem, we derive an analytical expression
for T. This is equivalent to finding the time of the first threshold
crossing by solving u(T) = ϑ for T. Even though there is no general
closed-form solution for this problem, analytical solutions exist for
specific cases. For example, we show that (Methods)

T = τs
{

b
a1

−W

[

−
gℓϑ
a1

exp
(

b
a1

)]}

for τm = τs (2)

and

T = 2τsln
[

2a1
a2 +

√

a22 − 4a1gℓϑ

]

for τm = 2τs, (3)

where W is the Lambert W function and using the shorthand nota-
tions an and b for sums over the set of causal presynaptic spikes

1.0 2.0
Input time, tx (τs)

1.0 2.0
Input time, tx (τs)

0.5

1.0

1.5

2.0

a

d

0

1
Before training

b

0

1
After training

0

1

u
(a

.u
.)

0

1

u
(a

.u
.)

0

1

0

1

1
2
3

During training

1
2
3

t s
pi

ke
 (

τ s)

0 50
Epochs

1
2
3

0 1 2
t (τs)

500
1,000

O
cc

ur
re

nc
e

0 1 2

500
1,000

Correct label neuron
Wrong label neuron

10−1

100

V
al

id
at

io
n

lo
ss

c

0 100 200 300
Epochs

10−1

100

V
al

id
at

io
n

er
ro

r

20 seeds
Seed in b, d, e, f

Yin Yang Dot

Predicted class

Yin

Yang

Dot

T
ru

e
cl

as
s

0.97 0.01 0.01

0.03 0.95 0.02

0.01 0.04 0.94

f

1.0 2.0

0.5

1.0

1.5

2.0
Yin neuron

e

1.0 2.0

Yang neuron

1.0 2.0

Dot neuron

0.2

0.4

0.6

0.8 T
est accuracy

0

0.5

1.0

1.5

2.0

In
pu

t t
im

e,
 t y

 (
τ s)

0.5

1.0

1.5

2.0

In
pu

t t
im

e,
 t y

 (
τ s)

t (τs)

Input time, tx (τs) Input time, tx (τs) Input time, tx (τs)

In
pu

t t
im

e,
 t y

 (
τ s)

tneuron – m
in

i∈
{label neurons} ti (τ

s)

Fig. 2 | Classification of the Yin-Yang dataset. a, Illustration of the Yin-Yang dataset. The samples are separated into three classes, Yin (blue circles), Yang
(red circles) and Dot (green circles). The yellow symbols (square, triangle and diamond) mark samples for which the training process is illustrated in b. Input
times tx and ty correspond to the spike time of the inputs associated with the x and y coordinates of individual samples. Units of τs indicate times that are
measured in multiples of the synaptic time constant, τs. b, Training mechanism for three example data samples (cf. a). For the first three rows, the left and
middle columns depict voltage dynamics in the label layer before and after training for 300 epochs, respectively. The voltage traces of the three label neurons
are colour-coded according to their corresponding class as in a. Before training, the random initialization of the weights causes the label neurons to show
similar voltage traces and almost indistinguishable spike times. After training, there is a clear separation between the spike time of the correct label neuron
and all others, with the correct neuron spiking first. The evolution of the label spike times during training is shown in the right column for the first 70 epochs.
Bottom row: spike histograms over all training samples. Our learning algorithm induces a clear separation between the spike times of correct and wrong label
neurons. c, Training progress (validation loss as given in equation (6) and error rate) over 300 epochs for 20 training runs with random initializations (grey).
The run shown in b and d–f is plotted in blue. d, Classification result on the test set (1,000 samples). The colour of each sample indicates the class determined
by the trained network. The wrongly classified samples (marked with black X) all lie very close to the border between classes. e, Spike times of the Yin, Yang
and Dot neurons for all test samples after training. For each sample, spike times were normalized by subtracting the earliest spike time in the label layer. Bright
yellow denotes zero difference, that is, the respective label neuron was the first to spike and the sample was assigned to its class. The bright yellow areas
resemble the shapes of the Yin, Yang and Dot areas, reflecting the high classification accuracy after training. f, Confusion matrix for the test set after training.

NAture MAChiNe iNteLLiGeNCe | VOL 3 | SePTeMBer 2021 | 823–835 | www.nature.com/natmachintell 825

http://www.nature.com/natmachintell

Articles NATure MAcHiNe iNTelligeNce

C = {i∣ti < T} (equations (11) and (12)). We note that, when calcu-
lating the output spike time for a large number of input neurons,
determining C can be computationally intensive (Methods). One
inherent advantage of physical emulation is the reduction of this
calculational burden.

The above equations are differentiable with respect to synaptic
weights and presynaptic spike times. As will be shown in the follow-
ing, this directly translates to solving the credit assignment prob-
lem and thus allows exact error propagation through networks of
spiking neurons. For easier reading, we focus on one specific case
(τm = τs), but the others can be treated analogously.

Exact error backpropagation with spikes. Learning in SNNs
requires the ability to relate efferent spiking to both afferent weights
and spike times. For the output spike time of a neuron k with pre-
synaptic partners i, the first relationship can be formally described
by the derivative of the output spike time with respect to the pre-
synaptic weights (equation (22)). Using certain properties of W , we
can find a simple expression that can also be made to depend on the
output spike time tk itself:

∂tk
∂wki

= −
1
a1

exp
(

ti
τs

)

W(z) + 1 (tk − ti) , (4)

with a1 and z representing functions of wki and ti as defined in equa-
tions (11) and (18). Using the output spike time as additional infor-
mation optimizes learning in scenarios where the exact neuron
parameters are unknown and the real output spike time differs from
the one calculated under ideal assumptions, as discussed later.

Second, the capability to relate errors in the output spike time
to errors in the input spike times allows us to recursively propagate
changes from neurons to their presynaptic partners:

∂tk
∂ti

= −
1
a1

exp
(

ti
τs

)

W(z) + 1
wki
τs

(tk − ti − τs) . (5)

Together, equations (4) and (5) effectively and exactly solve the
credit assignment problem in appropriately parametrized LIF
networks of arbitrary architecture.

We can now apply the findings above to study learning in
a layered network. Figure 1c shows a schematic of our feed forward
networks and their spiking activity. The input uses the same
coding scheme as all other neurons: more prominent features
are encoded by earlier spikes. The output of the network is defined
by the identity of the label neuron that spikes first (Fig. 1d).

We denote by t(l)k the output spike time of the kth neuron in the
lth layer. For example, in a network with N layers, t(N)

n is the spike
time of the nth neuron in the label layer. The weight projecting to
the kth neuron of layer l from the ith neuron of layer l − 1 is denoted
by w(l)

ki .
To apply the error backpropagation algorithm15,17, we choose

a loss function that is differentiable with respect to synaptic
weights and spike times. During learning, the objective is to
maximize the temporal difference between the correct and all
other label spikes. The following loss function fulfils the above
requirements:

L[t(N), n∗] = dist
(

t(N)
n∗ , t(N)

n̸=n∗
)

= log
[

∑

n
exp

(

−
t(N)n −t(N)n∗

ξτs

)]

,
(6)

where t(N) denotes the vector of label spike times t(N)
n , n* the index of

the correct label and ξ ∈ R
+ is a scaling parameter. This loss func-

tion represents a cross entropy between the true label distribution
and the softmax-scaled label spike times produced by the network
(Methods). Reducing its value therefore increases the temporal dif-
ference between the output spike of the correct label neuron and
all other label neurons. Notably, it only depends on the spike time
difference and is invariant under absolute time shifts, making it
independent of the concrete choice of the experiment start, which
defines t = 0. In the case of a non-spiking label neuron, we treat its
spike time as t(N)

n = ∞. In this case, however, equation (2) is not
defined and neither are its derivatives. We therefore introduce a
simple, local heuristic to encourage spiking behaviour in large por-
tions of the network (Methods). In some scenarios, learning can be
facilitated by the addition of a spike-time-dependent regularization
term (Methods).

Gradient descent on the loss function equation (6) can now
be easily performed by repeated application of the chain rule.

0 1 2 3 4 5 6 7 8 9

Predicted class

0

1

2

3

4

5

6

7

8

9

T
ru

e
cl

as
s

0.98 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00

0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.96 0.01 0.00 0.00 0.01 0.00 0.02 0.00

0.00 0.00 0.00 0.97 0.00 0.01 0.00 0.00 0.01 0.00

0.00 0.00 0.00 0.00 0.98 0.00 0.01 0.00 0.00 0.01

0.00 0.00 0.00 0.01 0.00 0.97 0.01 0.00 0.01 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00

0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.96 0.01 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.98 0.00

0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.02 0.93

b

0 50 100 150

10−1

100
V

al
id

at
io

n
lo

ss 10 seeds

Seed in b

a

0 50 100 150

Epochs

10−1

100

V
al

id
at

io
n

er
ro

r

0

0.2

0.4

0.6

0.8

T
est accuracy

Fig. 3 | Classification of the MNiSt dataset. a, Training progress of a network over 150 epochs for 10 different random initializations. The run drawn in
blue is the one that produced the results in b. b, Confusion matrix for the test set after training.

NAture MAChiNe iNteLLiGeNCe | VOL 3 | SePTeMBer 2021 | 823–835 | www.nature.com/natmachintell826

http://www.nature.com/natmachintell

ArticlesNATure MAcHiNe iNTelligeNce

Using the exact derivatives, equations (4) and (5), this yields the
synaptic plasticity rule

Δw(l)
ki ∝ −

∂L[t(N) ,n∗]
∂w(l)

ki

= −
∂t(l)k
∂w(l)

ki

∂L[t(N) ,n∗]
∂t(l)k

︸ ︷︷ ︸

δ(l)k

= −
∂t(l)k
∂w(l)

ki

∑

j

∂t(l+1)
j

∂t(l)k
δ(l+1)
j . (7)

A compact formulation for hierarchical networks that highlights the
backpropagation of errors can be found in equations (38) to (40). In
either form, only the label layer error and the neuron spike times are
required for training, which can either be calculated using equation
(2) or by simulating (or emulating) the LIF dynamics (equation (1)).

The computational complexity of the synaptic plasticity rule—a
potential limiting factor for on-chip implementations—can be dras-
tically reduced by appropriate approximations. In Supplementary
Section D we present early results using such an approach. Note that
the simplification is only used in Supplementary Section D and all
other results we report in the following were produced using the full
analytical equations (4) and (5).

Simulations. After deriving the learning algorithm in the previous
chapter, we show its classification capabilities in software simula-
tions. In these simulations we demonstrate successful learning
and provide a baseline for the hardware emulations that follow.
We use two datasets that emphasize different aspects of interesting
real-world scenarios. As an example for low-dimensional, ‘continu-
ous’ data spaces, in which points belonging to different classes can be
arbitrarily close together (thus making separation particularly chal-
lenging), we chose the Yin-Yang dataset65. For higher-dimensional,
discrete input, we used the MNIST dataset66 as a small-scale image
classification scenario.

The results in this section are based on equation (2) for calcu-
lating the spike times in the forward pass, and equation (40) for
calculating weight updates. Details regarding implementation are
provided in the Methods. For the hyperparameters of the discussed
experiments, see Supplementary Tables F1 and F2.

Yin-Yang classification task. The first dataset consists of points in the
yin-yang figure (Fig. 2a). Each point is defined by a pair of Cartesian
coordinates (x, y) ∈ [0, 1]2. To build in redundancy and capture the
intrinsic symmetry of the yin-yang motive, the dataset is augmented
with mirrored coordinates (1 − x, 1 − y), enabling networks of neu-
rons without trainable bias to learn the task65. The three classes are
labelled according to the respective area they occupy, that is, Yin,
Yang or Dot. This augmented dataset was specifically designed to
require latent variables for classification: a shallow non-spiking
classifier reaches (64.3 ± 0.2)% test accuracy, an ANN with one hid-
den layer of size 120 typically around (98.7 ± 0.3)%. Because of this
large gap, our Yin-Yang dataset represents an expressive test of error
backpropagation in our hierarchical spiking networks. At the same
time, it can be learned by networks that are compatible in size with
the current revision of BrainScaleS-2 67.

After translation of the four features to spike times (Fig. 1 and
Methods), they were joined with a bias spike at fixed time, and these
five spikes served as input to a network with 120 hidden and three
label neurons. We illustrate the training mechanism with voltage
traces for three samples belonging to different classes (Fig. 2b). The
algorithm changes the weights to create a separation in the label
spike times (cf. the left and middle column) that corresponds to cor-
rect classification. Note that the voltage traces were just recorded for
illustration, as only spike times are required for calculating weight
updates. After 300 epochs our networks reached (95.9 ± 0.7)% test
accuracy for training with 20 different random seeds (Fig. 2c). The
classification failed only for samples that were extremely close to
the border between two classes (Fig. 2d). Figure 2e shows the spike

a

100

10−1V
al

id
at

io
n

lo
ss

b

0 200 400
Epochs

10−1

100

V
al

id
at

io
n

er
ro

r

10 seeds

Run in c, d, e
Yin Yang Dot

Predicted class

Yin

Yang

DotT
ru

e
cl

as
s 0.95 0.03 0.02

0.02 0.96 0.03

0.03 0.03 0.95

c

5 10

5

10

Yin neuron

5 10

Yang neuron

5 10

Dot neuron

0 20 40

f

0 20 40
Epochs

10 seeds

Run in g, h

0 1 2 3 4 5 6 7 8 9
Predicted class

0
1
2
3
4
5
6
7
8
9

T
ru

e
cl

as
s

0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.97 0.00 0.00 0.00 0.00 0.01 0.00 0.00

0.00 0.00 0.01 0.96 0.00 0.01 0.00 0.00 0.01 0.01

0.00 0.00 0.00 0.00 0.97 0.00 0.01 0.00 0.00 0.01

0.00 0.00 0.00 0.01 0.00 0.97 0.00 0.00 0.00 0.01

0.01 0.00 0.00 0.00 0.01 0.01 0.97 0.00 0.00 0.00

0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.98 0.00 0.00

0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.95 0.01

0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.95

g

u
(a

.u
.)

0

h

u
(a

.u
.)

1

u
(a

.u
.)

3

0 10 20
Time (µs)

u
(a

.u
.)

8

0.
2

0.
4 0.

6
0.

8

Test accuracy

0

5

10

0

0.2

0.4

0.6

0.8 T
est accuracy

BrainScaleS-2
ASIC

100

10−1V
al

id
at

io
n

lo
ss

10−1

100

V
al

id
at

io
n

er
ro

r

5 10

5

10

d

In
pu

t t
im

e,
 t y

 (
µs

)

Input time, tx (µs)
Input time, tx

(µs)
Input time, tx

(µs)
Input time, tx

(µs)

In
pu

t t
im

e,
 t y

 (
µs

)

tneuron – m
in

i∈
{label neurons} ti (µs)

e

Fig. 4 | Classification on the BrainScaleS-2 neuromorphic platform. a, Photograph of a BrainScaleS-2 chip. b–e, results for the Yin-Yang dataset.
b, Training progress over 200 epochs for 11 different random initializations. The run drawn in blue also produced the results shown in c–e. c, Confusion
matrix for the test set after training. d, Classification result on the test set. For each input sample the colour indicates the class determined by the trained
network. Wrong classifications are marked with a black X. The wrongly classified samples all lie very close to the border between two classes. e, Separation
of label spike times (cf. Fig. 2e). For each of the label neurons, bright yellow dots represent data samples for which it was the first to spike, thereby
assigning them its class. Similarly to the software simulations, the bright yellow areas align well with the shapes of the Yin, Yang and Dot areas of the
dataset. f–h, results for the MNIST dataset. f, evolution of training over 50 epochs for 10 different random initializations. The run drawn in blue is the one
that produced the results shown in g and h. g, Confusion matrix for the test set after training. h, exemplary membrane voltage traces on BrainScaleS-2
after training. each panel shows colour-coded voltage traces of four label neurons for one input that was presented repeatedly to the network (the insets
show the input and its correct class). each trace was recorded four times to highlight the trial-to-trial variations.

NAture MAChiNe iNteLLiGeNCe | VOL 3 | SePTeMBer 2021 | 823–835 | www.nature.com/natmachintell 827

http://www.nature.com/natmachintell

Articles NATure MAcHiNe iNTelligeNce

times of the label neurons. These vary continuously for inputs
belonging to other classes, but drop abruptly at the boundary of
the area belonging to their own class, which denotes a clear separa-
tion—see, for example, the abrupt change from red (late spike time)
to yellow (early spike time) of the Yin neuron when moving from
Yang to Yin (Fig. 2e, left).

MNIST classification task. To study the scalability of our approach
to larger and more high-dimensional datasets, we applied it to the
classification of MNIST handwritten digits66. Figure 3 shows training
results for networks with 784-350-10 neurons (input-hidden-label
layer size), where pixel intensities were translated to spike times.
During training, noise was added to the input samples to aid
generalization, but no bias spikes were used. As seen in Fig. 3a,
training converges for 10 different initial random seeds, reaching a
final test accuracy of (97.1 ± 0.1)%. Similar results are also achieved
for deeper architectures with multiple hidden layers (Supplementary
Table B1 provides additional simulation runs with different network
architectures).

For reference, we consider several other results obtained with
spiking-time coding. In ref. 53, a maximum test accuracy of 97.55%
using a network with a hidden layer of 800 neurons is reported.
Note that this work uses non-leaky neurons with effectively infi-
nite membrane memory. Also for non-leaky neurons, but using an
approximative approach for calculating gradients, Kheradpisheh
and Masquelier54 report 97.4% using 400 hidden neurons. In ref. 68,
a maximum test accuracy of 97.96% was achieved using 340 hidden
neurons, supported by a regular spike grid and extensive hyper-
parameter search.

We note that there also exist trial-averaging and spike-count-based
approaches that have the benefit of more straightforward learning
rules, but these approaches sacrifice precision, neuronal real-estate
or time-to-solution in comparison to frameworks based on the
precise timing of single output spikes. For example, Esser et al.61
report 92.7% using 512 neurons, while Tavanaei et al.69 require 1,000
hidden neurons to achieve 96.6%.

Fast neuromorphic classification. In our framework, the time to
solution is a function of the network depth and the time constants
τm and τs. Assuming typical biological timescales, most input pat-
terns in the above scenario are classified within several millisec-
onds. By leveraging the speedup of neuromorphic systems such
as BrainScaleS46,67, with intrinsic acceleration factors of 103 to 104,

the same computation can be achieved within microseconds. In
the following, we present an implementation of our framework
on BrainScaleS-2 and discuss its performance in conjunction with
the achieved classification speed and energy consumption. For a
proof-of-concept implementation on its predecessor BrainScaleS-1,
see Supplementary Section A.

The advantages of such a neuromorphic implementation come at
the cost of reduced control. Training needs to cope with phenomena
such as spike jitter, limited weight range and granularity, as well as
neuron parameter variability, among others. In general, an impor-
tant aspect of any theory aiming for compatibility with physical sub-
strates, be they biological or artificial, is its robustness to substrate
imperfections; our results on BrainScaleS-2 implicitly represent a
powerful demonstration of this property. To further substantiate the
generalizability of our algorithm to different substrates, we comple-
ment our experimental results with a simulation study of various
substrate-induced distortive effects.

Learning on BrainScaleS-2. BrainScaleS-2 is a mixed-signal acceler-
ated neuromorphic platform with 512 physical neurons, each being
able to receive inputs via 256 configurable synapses. These neurons
can be coupled to form larger logical neurons with a correspond-
ingly increased number of inputs. At the heart of each neuron is an
analogue circuit emulating LIF neuronal dynamics with an accelera-
tion factor of 103 to 104 compared to biological timescales.

Owing to variations in the manufacturing process, the real-
ized circuits systematically deviate from each other (fixed-pattern
noise). Although these variations can be reduced by calibrating each
circuit70, considerable differences remain (standard deviation on
the order of 5% on BrainScaleS-2) and pose a challenge for possible
neuromorphic algorithms—along with other features of physical
model systems such as spike time jitter or spike loss33,34,63,71.

The chip’s synaptic arrays were configured to support arbitrary
fully connected networks of up to 256 emulated neurons with a
maximum of 256 inputs per neuron. Each such logical connection
was realized via two physical synapses to allow transitions between
an excitatory and an inhibitory regime. Synaptic weights on the chip
are configurable with 6-bit precision. More details about our set-up
are available in the Methods.

We used an in-the-loop training approach23,33,72, where inference
runs emulated on the neuromorphic substrate were interleaved with
host-based weight update calculations. For emulating the forward
pass, the spike times for each sample in a mini-batch were joined
sequentially into one long spike train and then injected into the
neuromorphic system via a field-programmable gate array (FPGA).
The latter was also used to record the spikes emitted by the hidden
and label layers.

Figure 4a–d shows the results of training a spiking network
with 120 hidden neurons on BrainScaleS-2 on the Yin-Yang dataset.
The system quickly learned to discriminate between the presented
patterns, with an average test accuracy of (95.0 ± 0.9)%.

The hardware emulation performs similarly to the software
simulations (Fig. 2), with the wrong classifications still only hap-
pening along the borders of the areas with different labels (Fig. 4c).
The remaining difference in performance after training is attribut-
able to the substrate variability (cf. Fig. 4h). Considering that one
of the specific challenges built into the Yin-Yang dataset resides
in the continuity of its input space and abrupt class switch between
bordering areas, this result highlights the robustness of our
approach.

To classify the MNIST dataset using the BrainScaleS-2 system,
we emulated and trained a network of size 256-246-10 (Fig. 4f–h).
Owing to the restrictions imposed by the hardware on the input
dimensionality, we used downsampled images of 16 × 16 pixels.
Across multiple initializations, we achieved a test accuracy of
(96.9 ± 0.1)%; similarly to the Yin-Yang dataset, this is only slightly

Table 1 | Summary of the presented results

Dataset hidden
neurons

Accuracy (%)

test train

Yin-Yang

In SW 120 95.9 ± 0.7 96.3 ± 0.7

On HW 120 95.0 ± 0.9 95.3 ± 0.7

MNiSt

In SW 350 97.1 ± 0.1 99.6 ± 0.1

In SW (τs = 2τm) 350 97.2 ± 0.1 99.7 ± 0.1

MNiSt 16 × 16

In SW 246 97.4 ± 0.2 99.2 ± 0.1

On HW 246 96.9 ± 0.1 98.2 ± 0.1

Accuracies are given as mean and standard deviation. results are distinguished between software
simulations (SW) and hardware emulations (HW). For comparison, on the Yin-Yang dataset
a linear classifier achieves (64.3 ± 0.2)% test accuracy, while a (non-spiking, not particularly
optimized) ANN with 120 hidden neurons achieves (98.7 ± 0.3)%. As a reference for the MNIST
dataset we trained a 784-350-10 fully connected ANN, which reached an average test accuracy of
(98.2 ± 0.1)%. The results in this table were obtained without extensive hyperparameter tuning.

NAture MAChiNe iNteLLiGeNCe | VOL 3 | SePTeMBer 2021 | 823–835 | www.nature.com/natmachintell828

http://www.nature.com/natmachintell

ArticlesNATure MAcHiNe iNTelligeNce

lower than in software simulations of equally sized networks (Table 1).
The ability of our framework to achieve reliable classification
despite such substrate-induced distortions is well illustrated by
post-training membrane dynamics measured on the chip (Fig. 4h).
In all cases shown here, the correct label neuron spikes before 10 μs
and is clearly separable from all other label neurons.

Because of its short intrinsic time constants and overall
energy efficiency, the BrainScaleS-2 system enables very fast and
energy-efficient acquisition of classification results. Classification
of the 10,000 MNIST test samples takes a total of 0.937 s, including
data transmission, emulation of dynamics and return of the
classification results. The total time on the BrainScaleS-2 chip was
480 ms (a detailed breakdown of the execution time is shown in
Supplementary Section E). The power consumption of the chip,
measured during runtime, including all chip components needed
for spike generation and processing (that is, excluding the host
and FPGA) amounted to 175 mW. For measurement details and
scalability considerations we refer to Supplementary Section E.
This results in an average energy consumption of 8.4 μJ per clas-
sification. Table 2 provides a comparison to other neuromorphic
platforms.

Note that the networks on the other neuromorphic platforms
differ in their architectures, coding schemes and training methods,
and while we list some of these differences in the table, a direct
comparison in terms of individual numbers remains difficult.

This table only includes references in which measurements for
both classification rate and energy are reported. A more compre-
hensive overview, including studies that lack some of the above
measurements, is provided in Supplementary Table F3.

Our current experimental set-up leaves room for substantial
optimization. For an estimation of possible improvements and their
potential effect on classification rate and energy consumption, see
Supplementary Section E and ref. 72. With these improvements we
expect to increase the classification rate by up to a factor of four
while simultaneously decreasing the energy-per-classification value
by up to a factor of three.

Robustness of time-to-first-spike learning. As noted earlier, a
learning scheme operating only on spike times combined with our
coding represents a natural fit for neuromorphic hardware, both for
requiring commonly accessible observables (that is, spike times, as

opposed to, for example, membrane potentials or synaptic currents)
and due to its intrinsic efficiency, as it emphasizes few and early
spikes. An important indicator of a model’s feasibility for neuro-
morphic emulation is its robustness towards substrate-induced
distortions. By experimentally demonstrating its capabilities on
BrainScaleS-2, we have implicitly provided one substantive data
point for our framework. Here, we present a more comprehensive
study of the robustness of our approach.

Most physical neuronal substrates have several forms of variabil-
ity in common (chapter 5 in ref. 73). In both digital and mixed-signal
systems, synaptic weights are typically limited in both range and
resolution. Additionally, the parameters of analogue neuron and
synapse circuits exhibit a certain spread. To study the impact of
these effects, we included them in software simulations of our
model applied to the Yin-Yang classification task.

In this context, we highlight the importance of a detail men-
tioned in the derivation of equation (4). The output spike time given
in equation (2) depends only on neuron parameters, presynaptic
spike times and weights, so its derivatives share the same depen-
dencies (equations (22) and (23)). With some manipulations, the
equation for the actual output spike time can be inserted (equations
(24) and (25)), producing a version of the learning rule that directly
depends on the output spike time itself. This version thus allows the
incorporation of additional information gained in the forward pass
and is therefore expected to be substantially more stable, which is
confirmed below.

Using dimensionless weight units (scaled by the inverse thresh-
old), we observe that an upper weight limit of ~3 is sufficient for
achieving peak performance (Fig. 5a). This weight value is equiva-
lent to a PSP that covers the distance between leak potential and
firing threshold.

If this is not achievable within the typical parametrization range
of a neuromorphic chip, the effective maximum weight to the
hidden layer can be increased by multiplexing each input into the
network (Methods).

In the experiments with limited weight resolution (both in
software and on hardware), a floating-point-precision ‘shadow’
copy of synaptic weights was kept in memory. The forward
and backward pass used discretized weight values, while the
calculated weight updates were applied to the shadow weights74.
Our model shows approximately constant performance for weight

Table 2 | Comparison of pattern recognition models on the MNiSt dataset emulated on neuromorphic back-ends, sorted by
classification speed

Platform type technology Coding input
resolution

Network
size/
structure

Data augmentation/
regularization

energy per
classification

Classifications
per seconda

test
accuracy
(%)

ref. (year)

Nvidia Tesla
P100

Digital 14 nm ANN 28 × 28 CNNb Dropout 852 μJ 125,000 99.2 Supplementary
Section SI.e.2

SpiNNaker Digital 130 nm rate 28 × 28 784-600-
500-10

Noisy input encoding 3.3 mJ 91 95.0 82 (2015)

True North Digital 28 nm rate 28 × 28 CNN Noisy input encoding 0.27 μJ 1,000 92.7 61 (2015)

True North Digital 28 nm rate 28 × 28 CNN Noisy input encoding 108 μJ 1,000 99.4 61 (2015)

Loihi Digital 14 nm Bin. rate (20 × 20)c 400-400-10 Not available 2.5 μJ 5,917 96.2 83 (2021)

Unnamed
(Intel)

Digital 10 nm Temporal (28 × 28)d 236-20 Stochastic spike loss 1.0 μJ 6,250 88.0 84 (2018)

BrainScaleS-2 Mixed 65 nm Temporal 16 × 16 256-246-10 Input noise 8.4 μJ 20,800 96.9 This work;
Supplementary
Section SI.e.1

aNote that some platforms achieve a high number of classifications per second simply by processing a large number of samples in parallel, while other platforms rely on the sequential (but fast) processing
of individual samples. bStandard architecture given as an example in the PyTorch repository, for details see Supplementary Section SI.e.2. cFour (empty) pixels on each margin are cropped to yield the
20 × 20 centre from the 28 × 28 image. dThe 28 × 28 image is preprocessed using 5 × 5 Gabor filters and 3 × 3 pooling before being sent into the chip. For reference, an ANN running on a graphics processing
unit is included in the top row. Note that we include only references that present measurements for both energy and throughput in addition to accuracy. An extended table containing results with partial or
estimated measurements is provided as Supplementary Table F3.

NAture MAChiNe iNteLLiGeNCe | VOL 3 | SePTeMBer 2021 | 823–835 | www.nature.com/natmachintell 829

http://www.nature.com/natmachintell

Articles NATure MAcHiNe iNTelligeNce

resolutions down to 5 bit, followed by gradual degradation below
(Fig. 5b).

Interestingly, adding variability to the synapse and membrane
time constants has no discernible effects (Fig. 5c). This is a direct
consequence of having used the true output spike times for the
learning rule in the backward pass. A comparison to ‘naïve’ gra-
dient descent without this information is shown in Fig. 5d. These
simulations show that the algorithm can be expected to adequately
cope with a large amount of fixed-pattern noise on the time con-
stants if the mean of the distributions for τm and τs match reasonably
well with the values assumed by the learning rule (up to 10–20%
difference).

Additionally, in Supplementary Section C we investigate trained
networks regarding their robustness to adverse effects that appear
only after training, such as temperature-induced parameter varia-
tions or inactivation of neurons. Our simulations show that trained
networks can cope with such effects, suggesting that our training
algorithm develops network structures robust even to distortions
not present during training.

Finally, we note that all of the effects addressed above also have
biological correlates. Although not directly reflecting the variability
of biological neurons and synapses, our simulations do suggest that
biological variability does not present a fundamental obstacle to our
form of TTFS computation.

Discussion
We have proposed a model of first-spike-time learning that builds
on a rigorous analysis of neuro-synaptic dynamics with finite time
constants and provides exact learning rules for optimizing first-spike
times. The resulting form of synaptic plasticity operates on pre- and
postsynaptic spike times and effectively solves the credit assignment
problem in spiking networks. For the specific case of hierarchical feed-
forward topologies, it yields a spike-based form of error backpropaga-
tion. In this Article, we have applied this algorithm to networks with
one and two hidden layers. Given the reported results, we are con-
fident that our approach scales to even larger and deeper networks.

Although TTFS coding is an exceptionally appealing paradigm
for reasons of speed and efficiency, our approach is not restricted
to this particular coding scheme. Our learning rules enable a rigor-
ous manipulation of spike times and can be used for a variety of
loss functions that target other relationships between spike timings.
The time-to-first-spike scenario studied here merely represents the
simplest, yet arguably also the fastest and most efficient paradigm
for spike-based classification of static patterns. Additionally, our
derived theory is applicable to more complex, for example, recur-
rent, network structures and multi-spike coding schemes, which are
needed for processing temporal data streams.

First-spike coding schemes are particularly relevant in the
context of biology, where decisions often have to be taken under

1.0 1.5 2.0 3.0 5.0 None

wclip

T
es

t a
cc

ur
ac

y

a

2 3 4 5 6 Double

Weight resolution (bit)

0.80

0.85

0.90

0.95

wclip = 2.0

wclip = 3.0

wclip = 5.0

b

0 0.1 0.2 0.3 0.4

T
es

t a
cc

ur
ac

y

c

0.6 0.8 1.0 1.2 1.4

0.85

0.90

0.95

With tspike
(equations (24) and (25))

Without tspike
(equations (22) and (23))

d

0.80

0.85

0.90

T
es

t a
cc

ur
ac

y
T

es
t a

cc
ur

ac
y

0.95

0.85

0.90

0.95

στs/m
 (τs)¯ τm (τs)¯

Fig. 5 | effects of substrate imperfections. Modelled constraints were added artificially into simulated networks. All panels show the median, quartiles,
minimum and maximum of the final test accuracy on the Yin-Yang dataset for 20 different initializations. a, Limited weight range. The weights were clipped
to the range [−wclip, wclip] during training and evaluation. The triangle, square and circle mark the clip values that are used in b. b, Limited weight resolution.
For the three weight ranges marked in a, the weight resolution was reduced from a double precision float value down to 2 bits. Here, n-bit precision denotes
a set-up where the interval [−wclip, wclip] is discretized into 2 × 2n − 1 samples (n weight bits plus sign). c, Time constants with fixed-pattern noise. For these
simulations, each neuron received a random τs and τm independently drawn from the normal distribution N(τ̄s, στs/m). This means that the ratio of time
constants was essentially never the one assumed by the learning rule. d, Systematic shift between time constants. Here τs was drawn from N(τ̄s, στs/m)
while τm was drawn from N(τ̄m, στs/m) for each neuron for varying mean τ̄m and fixed στs/m = 0.1τ̄s. The orange curve illustrates a training where the
backward pass performs ‘naïve’ gradient descent, without using explicit information about output spike times. The blue curve, as all other panels, has the
output spike time as an observable.

NAture MAChiNe iNteLLiGeNCe | VOL 3 | SePTeMBer 2021 | 823–835 | www.nature.com/natmachintell830

http://www.nature.com/natmachintell

ArticlesNATure MAcHiNe iNTelligeNce

pressure of time. The action to be taken in response to a stimulus
can be considerably sped up by encoding it in first-spike times. In
turn, such fast decision making on the order of ~100 ms (refs. 42,43)
will have a particularly sensitive dependence on exact spike times
and thus require a corresponding precision of parameters.

At first glance, demands for precision appear at odds with the
imperfect, variable nature of microscopic physical substrates, both
biological and artificial. We met this challenge by incorporating
output spike times directly into the backward pass. With this, the
theoretical requirement of exact ratios of membrane to synaptic
time constants is substantially softened, which greatly extends the
applicability of our framework to a wide range of substrates, includ-
ing, in particular, BrainScaleS-2.

By requiring only spike times, the proposed learning framework
has minimal demands for neuromorphic hardware and becomes
inherently robust towards substrate-induced distortions. This further
enhances its suitability for a wide range of neuromorphic platforms.

Bolstered by the design characteristics of the BrainScaleS-2 sys-
tem, our implementation achieves a time to classification of ~10 μs
after receiving the first spike. Including relaxation between pat-
terns and communication, the complete MNIST test set with 10,000
samples is classified in less than 1 s with an energy consumption
of ~8.4 μJ per classification, which compares favourably with other
neuromorphic solutions for pattern classification. The time char-
acteristics of this implementation do not deteriorate for increased
layer sizes because neurons communicate asynchronously and their
dynamics are emulated independently. For the current incarnation
of BrainScaleS-2, an increase in spiking activity only has a negligible
effect on power consumption. Furthermore, for larger numbers of
neurons we would expect only a weak increase of the power drain.

We also stress that, in contrast to, for example, graphics process-
ing units, our system was used to process input data sequentially.
Our reported classification speed is thus a direct consequence of our
coding scheme combined with the system’s accelerated dynamics.
Further increasing the throughput by parallelization (simultane-
ously using multiple chips) is straightforward and would not affect
the required energy per classification.

Due to the complexity of our exact gradient-based rules, our
hardware networks were trained using updates calculated off-chip
based on emulated spike times. Early, promising simulations using a
substantially simplified learning rule, however, suggest the possibil-
ity of an on-chip implementation of our framework. Furthermore,
we note that our learning rules require three components that can
all be made available at the locus of the synapse: pre- and postsyn-
aptic spikes, as in classical spike-timing-dependent plasticity, and
an error term, which could be propagated by mechanisms such as
those proposed in, for example, refs. 75,76. This raises the intriguing
possibility for our framework to help explain learning in biological
substrates as well.

Because, compared to the von Neumann paradigm, artificial
brain-inspired computing is only in its infancy, its range of possible
applications still remains an open question. This is reflected by most
state-of-the-art neuromorphic approaches to information processing,
which, to accommodate a wide range of spike-based computational
paradigms, aim for a large degree of flexibility in network topology
and parametrization. Despite the obvious efficiency trade-off of such
general-purpose platforms, we have shown that an embedded ver-
sion of our framework can achieve a powerful combination of per-
formance, speed, efficiency and robustness. This gives us confidence
that a more specialized neuromorphic implementation of our model
represents a competitive alternative to current solutions based on
von Neumann architectures, especially in edge computing scenarios.

Methods
Preliminaries. In this section we derive the equations from the main Article,
starting with the learning rule for τm → ∞, then τm = τs, equation (2) and finally

τm = 2τs, equation (3). The case τm → ∞ has already been discussed in ref. 53 and was
reproduced here for completeness and comparison. Owing to the symmetry in τm and
τs of the PSP (equation (14)), the τm = 2τs case describes the τm = 1

2 τs case as well.
For each, a solution for the spike time T, defined by

u(T) = ϑ, (8)

has to be found, given LIF dynamics

u(t) =
1
Cm

τmτs
τm − τs

∑

spikes ti

wiκ(t − ti), (9)

κ(t) = θ(t)
[
exp

(
−

t
τm

)
− exp

(
−

t
τs

)]
, (10)

with membrane time constant τm = Cm/gℓ and the PSP kernel κ given by a difference
of exponentials. Here we already assumed our TTFS use case in which each neuron
only produces one relevant spike and the second sum in equation (1) reduces to a
single term.

For convenience, we use the following definitions:

an :=
∑

i∈C
wi exp

(
ti
nτs

)
, (11)

b :=
∑

i∈C
wi

ti
τs

exp
(

ti
τs

)
, (12)

with summation over the set of causal presynaptic spikes C = {i∣ti < T}.
In practice, this definition of the causal set C is not a closed-form expression

because the output spike time T depends explicitly on C. However, it can be
computed straightforwardly by iterating over the ordered sets of input spike
times (for n presynaptic spikes there are n sets C̃i each comprising the i first input
spikes). For each set C̃i one calculates an output spike time Ti and determines if this
happens later than the last input of this set and before the next input (the i + 1th
input spike). The earliest such spike Ti is the actual output spike time and the
corresponding C̃i is the correct causal set. If no such causal set C̃i exists, the neuron
did not spike and we assign it the spike time T = ∞.

The nLIF learning rule for τm → ∞. With this choice of τm, the first term in
equation (10) becomes 1 and we recover the nLIF case discussed in ref. 53. Given
the existence of an output spike, in equation (8) the spike time T appears only in
one place and simple reordering yields

T
τs

= ln
[

a1
a∞ − ϑCm/τs

]
, (13)

where we used equation (11) for n = 1 and n = ∞, the latter being the sum over the
weights.

The learning rule for τm = τs. According to l’Hôpital’s rule, in the limit τm → τs,
equation (9) becomes a sum over α-functions of the form

u(t) =
1
Cm

∑

i
wiθ(t − ti)(t − ti) exp

(
−

t − ti
τs

)
. (14)

Using these voltage dynamics for the equation of the spike time equation (8), together
with the definitions of equations (11) and (12) and τm = Cm/gℓ, we get the equation

0 = gℓϑ exp
(

T
τs

)
+ b − a1

T
τs︸ ︷︷ ︸

=: y

. (15)

The variable y is introduced to bring the equation into the form

h exp (h) = z (16)

which can be solved with the differentiable Lambert W function h = W(z).
The goal is now to bring equation (15) into this form, and this is achieved by
reformulation in terms of y:

0 = gℓϑ exp
(

b
a1

)
exp

(
−

y
a1

)
+ y (17)

y
a1︸︷︷︸

=: h

exp
(

y
a1

)
= −

gℓϑ

a1 exp
(

b
a1

)

︸ ︷︷ ︸
=: z

. (18)

NAture MAChiNe iNteLLiGeNCe | VOL 3 | SePTeMBer 2021 | 823–835 | www.nature.com/natmachintell 831

http://www.nature.com/natmachintell

Articles NATure MAcHiNe iNTelligeNce

With the definition of the Lambert W function the spike time can be written as

T
τs

=
b
a1

− W

[
−

gℓϑ
a1

exp
(

b
a1

)]
. (19)

Branch choice. Given that a spike happens, there will be two threshold crossings:
one from below at the actual spike time and one from above when the voltage
decays back to the leak potential (Supplementary Fig. F1a,b). Correspondingly, the
Lambert W function (Supplementary Fig. F1c,d) has two real branches (in addition
to infinite imaginary ones), and we need to choose the branch that returns the
earlier solution. In case the voltage is only tangent to the threshold at its maximum,
the Lambert W function only has one solution.

For choosing the branch in the other cases we need to look at h from the
definition, that is

h =
y
a1

=
b
a1

−

T
τs
. (20)

In a setting with only one strong enough input spike, the summations in an and b
reduce to yield h = (ti − T)/τs. Because the maximum of the PSP for τm = τs occurs at
ti + τs, we know that the spike must occur at T ≤ ti + τs and therefore

−1 ≤

ti − T
τs

= h. (21)

This corresponds to the branch cut of the Lambert W function, meaning we must
choose the branch with h ≥ −1. For a general setting, if we know a spike exists,
we expect an and b to be positive. To get the earlier threshold crossing, we need
the branch that returns the larger W (Supplementary Fig. F1d), that is, where
W = h > −1.

Derivatives. The derivatives for ti in the causal set i ∈ C come down to

∂T
∂wi

(w, t) =
τs
a1

exp
(

ti
τs

)[
zW′

(z) +
(

ti
τs

−

b
a1

)(
1 − zW′

(z)
)]

, (22)

∂T
∂ti

(w, t) =
wi

a1
exp

(
ti
τs

)[
1 +

(
ti
τs

−

b
a1

)(
1 − zW′

(z)
)]

. (23)

A crucial step is to reinsert the definition of the spike time where possible (cf. Fig. 5d).
For this we need the derivative of the Lambert W function zW′(z) =

W(z)
W(z)+1

that follows from differentiating its definition equation (16) with h = W(z) with
respect to z. With this equation one can calculate the derivative of equation (19)
with respect to incoming weights and times as functions of presynaptic weights,
input spike times and output spike time:

∂T
∂wi

(w, t, T) = −

1
a1

1
W(z) + 1 exp

(
ti
τs

)
(T − ti) , (24)

∂T
∂ti

(w, t, T) = −

1
a1

1
W(z) + 1 exp

(
ti
τs

)
wi

τs
(T − ti − τs) . (25)

These equations are equivalent to equations (4) and (5) shown in the main text.

The learning rule for τm = 2τs. Inserting the voltage (equation (9)) into the spike
time (equation (8)) yields

gℓϑ = exp
(
−

T
τm

) ∑
i∈C

wi exp
(

ti
τm

)

− exp
(
−

T
τs

) ∑
i∈C

wi exp
(

ti
τs

)
.

(26)

Reordering and rewriting this in terms of a1, a2 and τs (with τm = 2τs) we get

0 = −a1
[
exp

(
−

T
2τs

)]2
+ a2 exp

(
−

T
2τs

)
− gℓϑ . (27)

This is written such that its quadratic nature becomes apparent, making it possible
to solve for exp(−T/2τs) and thus

T
τs

= 2ln
[

2a1
a2 +

√
a22 − 4a1gℓϑ

]
. (28)

Branch choice. The quadratic equation has two solutions that correspond to the
voltage crossing at spike time and relaxation towards the leak later; again, we want
the earlier of the two solutions. It follows from the monotonicity of the logarithm

that the earlier time is the one with the larger denominator. Due to an output spike
requiring an excess of recent positively weighted input spikes, an are positive and
the + solution is the correct one.

Derivatives. Using the definition x =
√

a22 − 4a1gℓϑ for brevity, the derivatives of
equation (28) are

∂T
∂wi

(w, t) = 2τs
[1
a1

+
2gℓϑ

(a2 + x)x

]
exp

(
ti
τs

)
−

2τs
x

exp
(

ti
2τs

)
, (29)

∂T
∂ti

(w, t) = 2wi

[1
a1

+
2gℓϑ

(a2 + x)x

]
exp

(
ti
τs

)
−

wi

x
exp

(
ti
2τs

)
. (30)

Again, inserting the output spike time yields

∂T
∂wi

(w, t, T) =
2τs
a1

[
1 +

gℓϑ
x

exp
(

T
2τs

)]
exp

(
ti
τs

)
−

2τs
x

exp
(

ti
2τs

)
, (31)

∂T
∂ti

(w, t, T) =
2wi

a1

[
1 +

gℓϑ
x

exp
(

T
2τs

)]
exp

(
ti
τs

)
−

wi

x
exp

(
ti
2τs

)
. (32)

Error backpropagation in a layered network. Our goal is to update the network’s
weights such that they minimize the loss function L[t(N), n*]. For weights projecting
into the label layer, updates are calculated via

Δw(N)
ni ∝ −

∂L[t(N), n∗]
∂w(N)

ni
= −

∂t(N)n

∂w(N)
ni

∂L[t(N), n∗]
∂t(N)n

. (33)

The weight updates of deeper layers can be calculated iteratively by application of
the chain rule:

Δw(l)
ki ∝ −

∂L[t(N), n∗]
∂w(l)

ki

= −

∂t(l)k

∂w(l)
ki

δ(l)
k , (34)

where the second term is a propagated error that can be calculated recursively with
a sum over the neurons in layer (l + 1):

δ(l)
k :=

∂L[t(N), n∗]
∂t(l)k

=
∑

j

∂t(l+1)
j

∂t(l)k

δ(l+1)
j . (35)

In the following we treat the τm = τs case, but the calculations can be performed
analogously for the other cases. Rewriting equations (24) and (25) in a layer-wise
setting, the derivatives of the spike time for a neuron k in arbitrary layer l are

∂t(l)k

∂w(l)
ki

(w, t(l−1), t(l)) = −

1
a1

exp
(

t(l−1)
i
τs

)
1

W(z) + 1

(
t(l)k − t(l−1)

i

)
, (36)

∂t(l)k

∂t(l−1)
i

(w, t(l−1), t(l)) = −

1
a1

exp
(

t(l−1)
i
τs

)
1

W(z) + 1
w(l)
ki
τs

(
t(l)k − t(l−1)

i − τs
)
.

(37)

Inserting equations (35) to (37) into equations (33) and (34) yields a synaptic
learning rule that implements exact error backpropagation on spike times.

This learning rule can be rewritten to resemble the standard error backpropa-
gation algorithm for ANNs:

δ(N)
=

∂L
∂t(N) , (38)

δ(l−1)
=

(
B̂(l)

− 1
)
⊙ ρ(l−1)

⊙

(
w(l),Tδ(l)

)
, (39)

Δw(l)
= −ητs

(
δ(l)ρ(l−1),T

)
⊙ B̂(l), (40)

where ⊙ is the element-wise product, the T superscript denotes the transpose of a
matrix and δ(l − 1) is a vector containing the backpropagated errors of layer (l − 1).
The individual elements of the tensors above are given by

ρ(l)
i = −

1
a1

exp
(

t(l)i
τs

)
1

W(z) + 1 , (41)

B̂(l)
ki =

t(l)k − t(l−1)
i

τs
. (42)

NAture MAChiNe iNteLLiGeNCe | VOL 3 | SePTeMBer 2021 | 823–835 | www.nature.com/natmachintell832

http://www.nature.com/natmachintell

ArticlesNATure MAcHiNe iNTelligeNce

BrainScaleS-2. The application-specific integrated circuit (ASIC) is built around
an analogue neuromorphic core that emulates the dynamics of neurons and
synapses. All state variables, such as membrane potentials and synaptic currents,
are physically represented in their respective circuits and evolve continuously
in time. Considering the natural time constants of such integrated analogue
circuits, this emulation takes place at 1,000-fold accelerated timescales compared
to the biological nervous system. One BrainScaleS-2 chip features 512 adaptive
exponential leaky integrate-and-fire (AdEx) neurons, which can be freely
configured; these circuits can be restricted to LIF dynamics as required by our
training framework77. Both the membrane and synaptic time constants were
calibrated to 6 μs.

Each neuron circuit is connected to one of four synapse matrices on the chip,
and integrates stimuli from its column of 256 CuBa synapses59. Each synapse
holds a 6-bit weight value. Its sign is shared with all other synapses located on the
same synaptic row. The presented training scheme, however, allows weights to
continuously transition between excitation and inhibition. We therefore allocated
pairs of synapse rows to convey the activity of single presynaptic partners, one
configured for excitation and the other one for inhibition.

Synapses receive their inputs from an event routing module allowing to
connect neurons within a chip as well as to inject stimuli from external sources.
Events emitted by the neuron circuits are annotated with a time stamp and
then sent off-chip. The neuromorphic ASIC is accompanied by an FPGA to
handle communication with the host computer. It also provides mechanisms for
low-latency experiment control, including the timed release of spike trains into
the neuromorphic core. The FPGA is also used to record events and digitized
membrane traces originating from the ASIC. BrainScaleS-2 only permits recording
one membrane trace at a time. Each membrane voltage shown in Fig. 4h therefore
originates from a different repetition of the experiment.

The ASIC is controlled by a layered software stack78 that exposes the necessary
interfaces to a high-level user via Python bindings. These were used in our
framework, which is described in the following.

Simulation software. Our experiments were performed using custom modules for
the deep learning library PyTorch79. The network module implements layers of LIF
neurons whose spike times are calculated according to equation (2). This method
of determining the spike times of the neurons is fastest, but also memory-intensive.
An alternative implementation integrates the dynamical equations of the LIF
neurons in a layer, which also yields the neuron spike times. Even though both
approaches are technically equivalent, this method is slower and should only be
employed if the computing resources are limited.

The activations passed between the layers during the forward pass are the spike
times. The equations describing the weight updates for the network (equation (40))
are realized in a custom backward-pass module for the network.

Training and regularization methods. To train a given dataset using our learning
framework, the input data have to be translated into spike times first. We do this
by defining the times of the earliest and latest possible input spike tearly and tlate and
mapping the range of input values linearly to the time interval [tearly, tlate].

If the dataset requires a bias to be solvable, our framework allows its addition.
These bias spikes essentially represent additional input spikes for a layer, which
have the same spike time for any input. The weights from the neurons to these
‘bias sources’ are learned in the same way as all the other synaptic weights. For
the Yin-Yang dataset, the addition of a bias spike facilitated training. For some
samples, due to the low number of inputs, the relatively low activity that is received
by the network is spread out over a long time interval. The additional spike in the
middle of the available interval decreases the maximum distance between input
spikes for the hidden layer. In contrast, the MNIST dataset has a much higher input
dimensionality and the spikes are more distributed over the input time interval.
Therefore, the activity provided to the hidden layer at any point in time is high,
even without additional bias.

Implementing our learning algorithm as custom PyTorch modules allows
us to use the training architecture provided by the library. The simulations
were performed using mini-batch training in combination with with the Adam
optimizer80 and learning rate scheduling (the parameters are provided in
Supplementary Tables F1 and F2).

To assist learning we employ several regularization techniques. The term
+α

[
exp

(
t(N)n∗ /βτs

)
− 1

]
 with scaling parameters α, β ∈ R

+, can be added to the
loss in equation (6). This regularizer further pushes the correct neuron towards
earlier spike times.

Gaussian noise on the input spike times can be used to combat overfitting. This
proved beneficial for the training of the MNIST dataset.

Weight updates Δw with absolute value larger than a given hyperparameter are
set to zero to compensate divergence for vanishing denominator in equation (40).

As noted previously, the weight update equations are only defined for neurons
that elicit a spike. To prevent fully quiescent networks we add a hyperparameter
that controls how many neurons without an output spike are allowed. If the portion
of non-spiking neurons is above this threshold, we increase the input weights
of the silent neurons. In the case of multiple layers where this applies, only the
first such layer with insufficient spikes is boosted. If neurons in a layer are too

inactive multiple times in direct succession, the boost to the weights increases
exponentially.

Training on hardware. In principle, our training framework can be used to train
any neuromorphic hardware platform that (1) can receive a set of input spikes
and yield the output spike times of all neurons in the emulated network and (2)
can update the weight configuration on the hardware according to the calculated
weight updates. In our framework, the hardware replaces the computed forward
pass through the network. For the calculation of the loss and the following
backward pass, the hardware output spikes are treated as if they had been produced
by a forward pass in simulation. The backward pass is identical to pure simulation.

As accessible value ranges of neuron parameters are typically determined by the
hardware platform in use, a translation factor between the neuron parameters and
weights in software and the parameters realized on hardware needs to be determined.
In our experiments with BrainScaleS-2, the translation between hardware and
software parameter domain was determined by matching of PSP shapes and spike
times predicted by a software forward pass to the ones produced by the chip.

The implicit assumption of having only the first spike emitted by every neuron
be relevant for downstream processing can effectively be ensured by using a long
enough refractory period. Because the only information-carrying signal that is not
reset upon firing is the synaptic current, which is forgotten on the timescale of τs,
we found that, in practice, setting the refractory time τref > τs leads to most neurons
eliciting only one spike before the classification of a given input pattern.

For training the Yin-Yang dataset on BrainScaleS-2, having only five inputs
proved insufficient due to the combination of limited weights and neuron
variability. We therefore multiplexed each logical input into five physical spike
sources, totalling 25 inputs spikes per pattern. Adding further copies of the inputs
effectively increased the weights for each individual input. This method has the
added benefit of averaging out some of the effects of the fixed-pattern noise on the
input circuits as multiple of them are employed for the same task.

Data availability
We used the MNIST66 and the Yin-Yang dataset65. For the latter, see https://github.
com/lkriener/yin_yang_data_set.

Code availability
Code for the simulations81 is available at https://github.com/JulianGoeltz/
fastAndDeep.

Received: 17 November 2020; Accepted: 30 July 2021;
Published online: 17 September 2021

references
 1. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with

deep convolutional neural networks. In Advances in Neural Information
Processing Systems 1097–1105 (NIPS, 2012).

 2. Silver, D. et al. Mastering the game of Go without human knowledge. Nature
550, 354–359 (2017).

 3. Brown, T. B. et al. Language models are few-shot learners. Preprint at https://
arxiv.org/pdf/2005.14165.pdf (2020).

 4. Brooks, R., Hassabis, D., Bray, D. & Shashua, A. Is the brain a good model for
machine intelligence?. Nature 482, 462–463 (2012).

 5. Ng, A. What artificial intelligence can and can’t do right now. Harvard
Business Review (9 November 2016).

 6. Hassabis, D., Kumaran, D., Summerfield, C. & Botvinick, M.
Neuroscience-inspired artificial intelligence. Neuron 95, 245–258 (2017).

 7. Sejnowski, T. J. The Deep Learning Revolution (MIT Press, 2018).
 8. Richards, B. A. et al. A deep learning framework for neuroscience.

Nat. Neurosci. 22, 1761–1770 (2019).
 9. Pfeiffer, M. & Pfeil, T. Deep learning with spiking neurons: opportunities and

challenges. Front. Neurosci 12, 774 (2018).
 10. Gerstner, W. What is different with spiking neurons? In Plausible Neural

Networks for Biological Modelling. Mathematical Modelling: Theory and
Applications Vol 13. (eds Mastebroek, H. A. K. & Vos, J. E.) 23–48
(Springer, 2001).

 11. Izhikevich, E. M. Which model to use for cortical spiking neurons?
IEEE Trans. Neural Netw. 15, 1063–1070 (2004).

 12. Gerstner, W. Spiking Neurons (MIT Press, 1998).
 13. Maass, W. Searching for principles of brain computation. Curr. Opin.

Behav. Sci. 11, 81–92 (2016).
 14. Davies, M. Benchmarks for progress in neuromorphic computing.

Nat. Mach. Intell. 1, 386–388 (2019).
 15. Linnainmaa, S. The Representation of the Cumulative Rounding Error of an

Algorithm as a Taylor Expansion of the Local Rounding Errors. Master’s thesis
(in Finnish), Univ. Helsinki 6–7 (1970).

 16. Werbos, P. J. Applications of advances in nonlinear sensitivity analysis. In
System Modeling and Optimization. Lecture Notes in Control and Information
Sciences Vol. 38 (eds Drenick, R. F. & Kozin, F.) 762–770 (Springer, 1982).

NAture MAChiNe iNteLLiGeNCe | VOL 3 | SePTeMBer 2021 | 823–835 | www.nature.com/natmachintell 833

https://github.com/lkriener/yin_yang_data_set
https://github.com/lkriener/yin_yang_data_set
https://github.com/JulianGoeltz/fastAndDeep
https://github.com/JulianGoeltz/fastAndDeep
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2005.14165.pdf
http://www.nature.com/natmachintell

Articles NATure MAcHiNe iNTelligeNce

 17. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by
back-propagating errors. Nature 323, 533–536 (1986).

 18. Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T. & Maida, A.
Deep learning in spiking neural networks. Neural Netw 111, 47–63 (2018).

 19. Neftci, E. O., Mostafa, H. & Zenke, F. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to
spiking neural networks. IEEE Signal Process. 36, 51–63 (2019).

 20. Gütig, R. & Sompolinsky, H. The tempotron: a neuron that learns spike
timing-based decisions. Nat. Neurosci. 9, 420–428 (2006).

 21. Cao, Y., Chen, Y. & Khosla, D. Spiking deep convolutional neural networks
for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66 (2015).

 22. Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U. & Neftci, E. Conversion
of artificial recurrent neural networks to spiking neural networks for
low-power neuromorphic hardware. In Proc. 2016 IEEE International
Conference on Rebooting Computing (ICRC) 1–8 (IEEE, 2016).

 23. Schmitt, S. et al. Neuromorphic hardware in the loop: training a deep spiking
network on the BrainScaleS wafer-scale system. In Proc. 2017 International
Joint Conference on Neural Networks (IJCNN) 2227–2234 (2017).

 24. Wu, J., Chua, Y., Zhang, M., Yang, Q., Li, G., & Li, H. Deep spiking neural
network with spike count based learning rule. In International Joint
Conference on Neural Networks 1–6 (IEEE, 2019).

 25. Thakur, C. S. T. et al. Large-scale neuromorphic spiking array processors: a
quest to mimic the brain. Front. Neurosci. 12, 891 (2018).

 26. Mead, C. Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990).
 27. Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence

with neuromorphic computing. Nature 575, 607–617 (2019).
 28. Petrovici, M. A., Bill, J., Bytschok, I., Schemmel, J. & Meier, K. Stochastic

inference with deterministic spiking neurons. Preprint at https://arxiv.org/
pdf/1311.3211.pdf (2013).

 29. Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K. & Cauwenberghs, G.
Event-driven contrastive divergence for spiking neuromorphic systems.
Front. Neurosci. 7, 272 (2014).

 30. Petrovici, M. A., Bill, J., Bytschok, I., Schemmel, J. & Meier, K. Stochastic
inference with spiking neurons in the high-conductance state. Phys. Rev. E
94, 042312 (2016).

 31. Neftci, E. O., Pedroni, B. U., Joshi, S., Al-Shedivat, M. & Cauwenberghs, G.
Stochastic synapses enable efficient brain-inspired learning machines.
Front. Neurosci. 10, 241 (2016).

 32. Leng, L. et al. Spiking neurons with short-term synaptic plasticity form
superior generative networks. Sci. Rep. 8, 10651 (2018).

 33. Kungl, A. F. et al. Accelerated physical emulation of Bayesian inference in
spiking neural networks. Front. Neurosci. 13, 1201 (2019).

 34. Dold, D. et al. Stochasticity from function-why the Bayesian brain may need
no noise. Neural Netw. 119, 200–213 (2019).

 35. Jordan, J. et al. Deterministic networks for probabilistic computing. Sci. Rep.
9, 18303 (2019).

 36. Hunsberger, E. & Eliasmith, C. Training spiking deep networks for
neuromorphic hardware. Preprint at https://arxiv.org/pdf/1611.05141.pdf (2016).

 37. Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J. & Masquelier, T.
STDP-based spiking deep convolutional neural networks for object
recognition. Neural Netw. 99, 56–67 (2018).

 38. Illing, B., Gerstner, W. & Brea, J. Biologically plausible deep learning-but how
far can we go with shallow networks?. Neural Netw 118, 90–101 (2019).

 39. Bohte, S. M., Kok, J. N. & La Poutré, J. A. Spikeprop: backpropagation for
networks of spiking neurons. In 8th European Symposium on Artificial Neural
Networks 419–424 (2000).

 40. Zenke, F. & Ganguli, S. Superspike: supervised learning in multilayer spiking
neural networks. Neural Comput. 30, 1514–1541 (2018).

 41. Huh, D. & Sejnowski, T. J. Gradient descent for spiking neural networks.
In Advances in Neural Information Processing Systems Vol. 31, 1433–1443
(NIPS, 2018).

 42. Thorpe, S., Delorme, A. & Van Rullen, R. Spike-based strategies for rapid
processing. Neural Netw. 14, 715–725 (2001).

 43. Thorpe, S., Fize, D. & Marlot, C. Speed of processing in the human visual
system. Nature 381, 520–522 (1996).

 44. Johansson, R. S. & Birznieks, I. First spikes in ensembles of human tactile
afferents code complex spatial fingertip events. Nat. Neurosci. 7, 170–177
(2004).

 45. Gollisch, T. & Meister, M. Rapid neural coding in the retina with relative
spike latencies. Science 319, 1108–1111 (2008).

 46. Schemmel, J. et al. A wafer-scale neuromorphic hardware system for
large-scale neural modeling. In Proc. 2010 IEEE International Symposium on
Circuits and Systems 1947–1950 (IEEE, 2010).

 47. Akopyan, F. et al. TrueNorth: design and tool flow of a 65 mW 1 million
neuron programmable neurosynaptic chip. IEEE Trans. Comput. Aided Design
Integrated Circuits Syst. 34, 1537–1557 (2015).

 48. Billaudelle, S. et al. Versatile emulation of spiking neural networks on an
accelerated neuromorphic substrate. In IEEE International Symposium on
Circuits and Systems 1–5 (IEEE, 2020).

 49. Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip
learning. IEEE Micro 38, 82–99 (2018).

 50. Mayr, C., Höppner, S., & Furber, S. SpiNNaker 2: a 10 million core processor
system for brain simulation and machine learning-keynote presentation. In
Communicating Process Architectures 2017 & 2018 277–280 (IOS Press, 2019).

 51. Pei, J. et al. Towards artificial general intelligence with hybrid Tianjic chip
architecture. Nature 572, 106–111 (2019).

 52. Moradi, S., Qiao, N., Stefanini, F. & Indiveri, G. A scalable multicore
architecture with heterogeneous memory structures for dynamic neuromorphic
asynchronous processors (dynaps). IEEE Trans. Biomed. Circuits Syst. 12,
106–122 (2017).

 53. Mostafa, H. Supervised learning based on temporal coding in spiking neural
networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235 (2017).

 54. Kheradpisheh, S. R. & Masquelier, T. S4NN: temporal backpropagation for
spiking neural networks with one spike per neuron. Int. J. Neural Syst. 30,
2050027 (2020).

 55. Rauch, A., La Camera, G., Luscher, H.-R., Senn, W. & Fusi, S. Neocortical
pyramidal cells respond as integrate-and-fire neurons to in vivo-like input
currents. J. Neurophysiol. 90, 1598–1612 (2003).

 56. Gerstner, W. & Naud, R. How good are neuron models? Science 326,
379–380 (2009).

 57. Teeter, C. et al. Generalized leaky integrate-and-fire models classify multiple
neuron types. Nat. Commun. 9, 709 (2018).

 58. Göltz, J. Training Deep Networks with Time-to-First-Spike Coding on the
BrainScaleS Wafer-Scale System. Master’s thesis, Universität Heidelberg (2019);
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3909

 59. Friedmann, S. et al. Demonstrating hybrid learning in a flexible neuromorphic
hardware system. IEEE Trans. Biomed. Circuits Syst. 11, 128–142 (2017).

 60. Prodromakis, T. & Toumazou, C. A review on memristive devices and
applications. In Proc. 2010 17th IEEE International Conference on Electronics,
Circuits and Systems 934–937 (IEEE, 2010).

 61. Esser, S. K., Appuswamy, R., Merolla, P., Arthur, J. V. & Modha, D. S.
Backpropagation for energy-efficient neuromorphic computing. In Advances
in Neural Information Processing Systems 1117–1125 (NIPS, 2015).

 62. van De Burgt, Y., Melianas, A., Keene, S. T., Malliaras, G. & Salleo, A.
Organic electronics for neuromorphic computing. Nat. Electron. 1,
386–397 (2018).

 63. Wunderlich, T. et al. Demonstrating advantages of neuromorphic
computation: a pilot study. Front. Neurosci. 13, 260 (2019).

 64. Feldmann, J., Youngblood, N., Wright, C., Bhaskaran, H. & Pernice, W.
All-optical spiking neurosynaptic networks with self-learning capabilities.
Nature 569, 208–214 (2019).

 65. Kriener, L., Göltz, J. & Petrovici, M. A. The yin-yang dataset. Preprint at
https://arxiv.org/pdf/2102.08211.pdf (2021).

 66. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

 67. Schemmel, J., Billaudelle, S., Dauer, P. & Weis, J. Accelerated analog
neuromorphic computing. Preprint at https://arxiv.org/pdf/2003.11996.pdf
(2020).

 68. Comsa, I. M. et al. Temporal coding in spiking neural networks with alpha
synaptic function. In Proc. 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) 8529–8533 (IEEE, 2020).

 69. Tavanaei, A., Kirby, Z. & Maida, A. S. Training spiking ConvNets by STDP
and gradient descent. In Proc. 2018 International Joint Conference on Neural
Networks (IJCNN) 1–8 (IEEE, 2018).

 70. Aamir, S. A. et al. An accelerated LIF neuronal network array for a large-scale
mixed-signal neuromorphic architecture. IEEE Trans. Circuits Syst. I Regular
Papers 65, 4299–4312 (2018).

 71. Petrovici, M. A. et al. Characterization and compensation of network-level
anomalies in mixed-signal neuromorphic modeling platforms. PLoS ONE 9,
e108590 (2014).

 72. Cramer, B. et al. Training spiking multi-layer networks with surrogate
gradients on an analog neuromorphic substrate. Preprint at https://arxiv.org/
pdf/2006.07239.pdf (2020).

 73. Petrovici, M. A. Form Versus Function: Theory and Models for Neuronal
Substrates (Springer, 2016).

 74. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R. & Bengio, Y. Quantized
neural networks: training neural networks with low precision weights and
activations. J. Mach. Learn. Res. 18, 6869–6898 (2017).

 75. Payeur, A., Guerguiev, J., Zenke, F., Richards, B. A. & Naud, R.
Burst-dependent synaptic plasticity can coordinate learning in hierarchical
circuits. Preprint at bioRxiv https://doi.org/10.1101/2020.03.30.015511 (2020).

 76. Sacramento, J., Ponte Costa, R., Bengio, Y. & Senn, W. Dendritic cortical
microcircuits approximate the backpropagation algorithm. In Advances in
Neural Information Processing Systems Vol. 31, 8721–8732 (NIPS, 2018).

 77. Aamir, S. A. et al. A mixed-signal structured AdEx neuron for accelerated
neuromorphic cores. IEEE Trans. Biomed. Circuits Syst. 12, 1027–1037 (2018).

 78. Müller, E. et al. Extending BrainScaleS OS for BrainscaleS-2. Preprint at
https://arxiv.org/pdf/2003.13750.pdf (2020).

NAture MAChiNe iNteLLiGeNCe | VOL 3 | SePTeMBer 2021 | 823–835 | www.nature.com/natmachintell834

https://arxiv.org/pdf/1311.3211.pdf
https://arxiv.org/pdf/1311.3211.pdf
https://arxiv.org/pdf/1611.05141.pdf
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3909
https://arxiv.org/pdf/2102.08211.pdf
https://arxiv.org/pdf/2003.11996.pdf
https://arxiv.org/pdf/2006.07239.pdf
https://arxiv.org/pdf/2006.07239.pdf
https://doi.org/10.1101/2020.03.30.015511
https://arxiv.org/pdf/2003.13750.pdf
http://www.nature.com/natmachintell

ArticlesNATure MAcHiNe iNTelligeNce

 79. Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems Vol. 32,
8024–8035 (NIPS, 2019).

 80. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint
at https://arxiv.org/pdf/1412.6980.pdf (2014).

 81. Göltz, J. et al. Fast and energy-efficient neuromorphic deep learning with
first-spike times (Zenodo, 2021); https://doi.org/10.5281/zenodo.5115007

 82. Stromatias, E. et al. Scalable energy-efficient, low-latency implementations of
trained spiking deep belief networks on SpiNNaker. In Proc. 2015
International Joint Conference on Neural Networks (IJCNN) 1–8 (2015).

 83. Renner, A., Sheldon, F., Zlotnik, A., Tao, L. & Sornborger, A. The
backpropagation algorithm implemented on spiking neuromorphic hardware.
Preprint at https://arxiv.org/pdf/2106.07030.pdf (2021).

 84. Chen, G. K., Kumar, R., Sumbul, H. E., Knag, P. C. & Krishnamurthy, R. K.
A 4096-neuron 1M-synapse 3.8-pJ/SOP spiking neural network with on-chip
STDP learning and sparse weights in 10-nm FinFET CMOS. IEEE J. Solid
State Circuits 54, 992–1002 (2018).

Acknowledgements
We thank J. Jordan and N. Gürtler for valuable discussions, S. Schmitt for assistance with
BrainScaleS-1, V. Karasenko, P. Spilger and Y. Stradmann for taming physics, as well as
M. Davies and Intel for their ongoing support (L.K., W.S., M.A.P.). Some calculations
were performed on UBELIX, the HPC cluster at the University of Bern. Our work has
greatly benefitted from access to the Fenix Infrastructure resources, which are partially
funded from the European Union’s Horizon 2020 research and innovation programme
through the ICEI project under grant agreement no. 800858. Some simulations were
performed on the bwForCluster NEMO, supported by the state of Baden–Württemberg
through bwHPC and the German Research Foundation (DFG) through grant no. INST
39/963-1 FUGG. We gratefully acknowledge funding from the European Union for the

Human Brain Project under grant agreements 604102 (J.S., K.M., M.A.P.), 720270 (S.B.,
O.B., B.C., J.S., K.M., M.A.P.), 785907 (S.B., O.B., B.C., W.S., J.S., K.M., M.A.P.), 945539
(L.K., A.B., S.B., O.B., B.C., W.S., J.S., M.A.P.) and the Manfred Stärk Foundation (J.G.,
A.B., D.D., A.F.K., K.M., M.A.P.).

Author contributions
J.G., A.B. and M.A.P. designed the conceptual and experimental approach. J.G. derived
the theory, implemented the algorithm and performed the hardware experiments.
L.K. embedded the algorithm into a comprehensive training framework and performed
the simulation experiments. A.B. and O.B. offered substantial software support. S.B.,
B.C., J.G. and A.F.K. provided low-level software for interfacing with the hardware.
J.G., L.K., D.D., S.B. and M.A.P. wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42256-021-00388-x.

Correspondence and requests for materials should be addressed to
J. Göltz, L. Kriener or M. A. Petrovici.

Peer review information Nature Machine Intelligence thanks the anonymous reviewers
for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

NAture MAChiNe iNteLLiGeNCe | VOL 3 | SePTeMBer 2021 | 823–835 | www.nature.com/natmachintell 835

https://arxiv.org/pdf/1412.6980.pdf
https://doi.org/10.5281/zenodo.5115007
https://arxiv.org/pdf/2106.07030.pdf
https://doi.org/10.1038/s42256-021-00388-x
http://www.nature.com/reprints
http://www.nature.com/natmachintell

	Fast and energy-efficient neuromorphic deep learning with first-spike times
	Results
	Leaky integrate-and-fire dynamics.
	First-spike times.
	Exact error backpropagation with spikes.
	Simulations.
	Yin-Yang classification task
	MNIST classification task

	Fast neuromorphic classification.
	Learning on BrainScaleS-2

	Robustness of time-to-first-spike learning.

	Discussion
	Methods
	Preliminaries
	The nLIF learning rule for τm → ∞
	The learning rule for τm = τs
	Branch choice
	Derivatives

	The learning rule for τm = 2τs
	Branch choice
	Derivatives

	Error backpropagation in a layered network
	BrainScaleS-2
	Simulation software
	Training and regularization methods
	Training on hardware

	Acknowledgements
	Fig. 1 Time-to-first-spike coding and learning.
	Fig. 2 Classification of the Yin-Yang dataset.
	Fig. 3 Classification of the MNIST dataset.
	Fig. 4 Classification on the BrainScaleS-2 neuromorphic platform.
	Fig. 5 Effects of substrate imperfections.
	Table 1 Summary of the presented results.
	Table 2 Comparison of pattern recognition models on the MNIST dataset emulated on neuromorphic back-ends, sorted by classification speed.

