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Abstract

The response time of physical computational elements is finite, and neurons are no
exception. In hierarchical models of cortical networks each layer thus introduces
a response lag. This inherent property of physical dynamical systems results in
delayed processing of stimuli and causes a timing mismatch between network
output and instructive signals, thus afflicting not only inference, but also learning.
We introduce Latent Equilibrium, a new framework for inference and learning in
networks of slow components which avoids these issues by harnessing the ability
of biological neurons to phase-advance their output with respect to their mem-
brane potential. This principle enables quasi-instantaneous inference independent
of network depth and avoids the need for phased plasticity or computationally
expensive network relaxation phases. We jointly derive disentangled neuron and
synapse dynamics from a prospective energy function that depends on a network’s
generalized position and momentum. The resulting model can be interpreted as
a biologically plausible approximation of error backpropagation in deep cortical
networks with continuous-time, leaky neuronal dynamics and continuously ac-
tive, local plasticity. We demonstrate successful learning of standard benchmark
datasets, achieving competitive performance using both fully-connected and con-
volutional architectures, and show how our principle can be applied to detailed
models of cortical microcircuitry. Furthermore, we study the robustness of our
model to spatio-temporal substrate imperfections to demonstrate its feasibility for
physical realization, be it in vivo or in silico.§

1 Introduction

Physical systems composed of large collections of simple, but intricately connected elements can
exhibit powerful collective computational properties. A prime example are animals’ nervous systems,
and most prominently the human brain. Its computational prowess has motivated a large, cross-
disciplinary and ongoing endeavor to emulate aspects of its structure and dynamics in artificial
substrates, with the aim of being ultimately able to replicate its function. The speed of information
processing in such a system depends on the response time of its components; for neurons, for example,
it can be the integration time scale determined by their membrane time constant.

*Senior authors.
§Code is available at https://github.com/unibe-cns/le_NeurIPS_code.
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If we consider hierarchically organized neural networks composed of such elements, each layer in the
hierarchy causes a response lag with respect to a changing stimulus. This lag introduces two related
critical issues. For one, the inference speed in these systems decreases with their depth. In turn, this
induces timing mismatches between instructive signals and neural activity, which disrupts learning.
For example, recent proposals for bio-plausible implementations of error backpropagation (BP) [1–4]
in the brain all require some form of relaxation, both for inference and during learning [5–11].
Notably, this also affects some purely algorithmic methods involving auxiliary variables [12]. To
deal with this inherent property of physical dynamical systems, two approaches have been suggested:
either phased plasticity that is active only following a certain relaxation period, or long stimulus
presentation times with small learning rates. Both of these solutions entail significant drawbacks: the
former is challenging to implement in asynchronous, distributed systems such as cortical networks or
neuromorphic hardware, while the latter results, by construction, in slow learning. This has prompted
the critique that any algorithm requiring such a settling process is too slow to describe complex brain
function, particularly when involving real-time responses [13]. To the best of our knowledge this
fundamental problem affects all modern models of approximate BP in biological substrates [5–11].

To overcome these issues, we propose a novel framework for fast computation and learning in physical
substrates with slow components. As we show below, this framework jointly addresses multiple
aspects of neuronal computation, including neuron morphology, membrane dynamics, synaptic
plasticity and network structure. In particular, it provides a biologically plausible approximation of
BP in deep cortical networks with continuous-time, leaky neuronal dynamics and local, continuous
plasticity. Moreover, our model is easy to implement in both software and hardware and is well-suited
for distributed, asynchronous systems.

In our framework, inference can be arbitrarily fast (up to finite simulation resolution or finite communi-
cation speed across physical distances) despite a finite response time of individual system components;
downstream responses to input changes thus become effectively instantaneous. Conversely, responses
to instructive top-down input that generate local error signals are also near-instantaneous, thus effec-
tively removing the need for any relaxation phase. This allows truly phase-free learning from signals
that change on much faster time scales than the response speed of individual network components.

Similarly to other approaches [5, 6, 9, 14, 15], we derive neuron and synapse dynamics from a joint
energy function. However, our energy function is designed to effectively disentangle these dynamics,
thus removing the disruptive co-dependencies that otherwise arise during relaxation. This is achieved
by introducing a simple, but crucial new ingredient: neuronal outputs that try to guess their future
state based on their current information, a property we describe as “prospective” (which should not
be confused with the “predictive” in predictive coding, as we also discuss below). Thereby, our
framework also constructs an intimate relationship between such “slow” neuronal networks and
artificial neural network (ANN)1, thus enabling the application of various auxiliary methods from
deep learning.

2 The problems of slow components

To illustrate the issue with relaxation, we consider two neurons arranged in a chain (Fig. 1a).
Biological neuronal membrane potentials u are conventionally modeled as leaky integrators of
their input I: Cmu̇ = −glu + I , where the membrane capacitance Cm and leak conductance gl
determine the membrane time constant τm := Cm/gl and thereby its response speed. These dynamics
attenuate and delay input, resulting in significant differences between neuronal output rates and those
expected in an instantaneous system (Fig. 1b). This mismatch increases with every additional layer: a
feedforward network with n layers has an effective relaxation time constant of approximately nτm.

Besides slow inference, this delayed response leads to critical issues during learning from downstream
instructive signals. Consider the typical scenario where such a target signal is present in the output
layer and plasticity is continuously active (and not phased according to some complicated schedule).
If the system fulfills its task correctly, the target signal corresponds to the output of the relaxed system
and no learning should take place. However, due to delays in neuronal responses, the output signal
differs from the target during relaxation, which causes plasticity to adapt synaptic weights in an effort
to better match the target. As a result, the system “overshoots” during early relaxation and has to

1To differentiate between biologically plausible, leaky neurons and abstract neurons with instantaneous
response, we respectively use the terms “neuronal” and “neural”.
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Figure 1: Prospective coding solves the relaxation problem. (a) A simple, functionally feedforward network
of two neurons. Note the recurrence induced by the propagation of both bottom-up signals and top-down errors.
(b) Neuronal firing rates (blue) and membrane potentials (purple) for an input sequence consisting of a quickly
but smoothly changing stimulus followed by two constant stimuli. Dashed black lines denote instantaneous
(relaxed) rates. Red shading highlights the mismatch between instantaneous and actual firing rates that disrupts
both inference and learning. (c) Continuous learning during relaxation without prospective coding in the network
from (a). Dotted black: target membrane potential. Solid lines: trajectories for vanishing learning rates. Dashed
lines: trajectories for nonzero learning rates. Purple: membrane potentials. Note the overshoot when learning is
continuously active. Green/red: presynaptic weights of 1st/2nd neuron. (d) Sketch of neuron model derived
from Latent Equilibrium (LE). The membrane potential still reacts slowly to input, but the output firing rate
uses the prospective membrane potential ŭm. (e) Same as (b), but with LE. Note the instantaneous reaction to
input changes of the second neuron. (f) Sketch of the mismatch energy Ei for a hidden neuron during learning
for an input with several jumps (for clarity, we assume the jumps to be upwards for consecutive inputs). In
LE (orange), the energy itself jumps with the input, but then remains constant while neuron dynamics (ui, uj)
evolve. Without LE (purple), the energy changes transiently and plasticity follows incorrect gradients before
relaxation. The trajectories for E = 0 correspond to the scenario from (c). Planes of constant energy are drawn
for visual guidance and do not represent constant-energy manifolds.

undo these synaptic changes through further learning in the late relaxation phase (Fig. 1c). Also,
since output errors need inputs to propagate forward through the entire network before propagating
backwards themselves, the input layer only observes correct errors after about 2nτm. We refer to this
issue as the “relaxation problem”. In the following, we present a solution for this problem, combining
prospective neuron dynamics with continuously active, local synaptic plasticity.

3 Fast computations in slow substrates

Inspired by the canonical coordinates from classical mechanics, we describe the state of a neuronal
network by its position in phase space (u, u̇), with the generalized position u and the generalized
momentum u̇. The relation between these two components describes the physics of the system. To
obtain the leaky integrator dynamics that characterize biological neurons, we first define the abstract
network state ŭm as

ŭm := u+ τmu̇ . (1)
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We next define an energy function E that characterizes this state:

E(ŭm) :=
1

2
‖ŭm −Wϕ(ŭm)− b‖2 + βL(ŭm) . (2)

Here, W and b represent the weight matrix and bias vector, ϕ is the neuronal activation function
and the loss L is scaled by a constant β; we use bold font for matrices, vectors, and vector-valued
functions. Intuitively speaking, E measures the difference between “what neurons guess that they
will be doing in the future” (ŭm) and “what their biases and presynaptic afferents believe they should
be doing” (b+Wϕ(ŭm)). Furthermore, for a subset of neurons, it adds a loss L that provides an
external measure of the error for the states of these neurons, determined by instructive signals such as
labels, reconstruction errors or rewards. This formulation of the energy function is very generic and
can, by appropriate choice of parameters, apply to different network topologies, including multilayer
perceptrons, convolutional architectures and recurrent networks. Note that this energy can be written
as a neuron-wise sum over mismatch energies plus, for factorizing loss functions, a local loss term
Ei(ŭ

m
i , ri,pre) =

1
2 (ŭ

m
i −Wiri,pre − bi)

2
+ βLi (ŭ

m
i ), where ri,pre := ϕ(ŭm

i,pre) is the presynaptic
input vector for the ith neuron in the network.

We can now derive neuronal dynamics as extrema of the energy function from Eqn. 2:

∇ŭmE = 0 =⇒ τmu̇ = −u+Wϕ(ŭm) + b+ e , (3)

with presynaptic bottom-up input Wϕ(ŭm) and top-down error signals

e = ϕ′(ŭm)W T [ŭm −Wϕ(ŭm)− b] (4)

for hidden neurons and e = −β∇ŭmL for neurons which directly contribute to the loss. Plugging
Eqn. 3 into Eqn. 4, it is easy to see that in hierarchical networks these errors can be expressed
recursively over layers `, e` = ϕ′(ŭm)W T

`+1e`+1, thus instantiating a variant of BP. Eqn. 3 can be
interpreted as the dynamics of a structured pyramidal neuron receiving presynaptic, bottom-up input
via its basal dendrites and top-down input via its apical tree (Fig. 1d). We provide a more detailed
description of our model’s biophysical implementation in Section 5. We note that our approach is in
contrast to previous work that introduced neuron dynamics via gradient descent on an energy function,
such as [5, 6, 16], whereas we require a stationary energy function with respect to ŭm. Indeed, this
difference is crucial for solving the relaxation problem, as discussed below. Since for a given input
our network moves, by construction, within a constant-energy manifold, we refer to our model as
Latent Equilibrium (LE).

We can now revisit our choice of ŭm from a functional point of view. Instead of the classical
output rate ϕ(u), our neurons fire with ϕ(ŭm), which depends on both u and u̇ (Eqn. 1). As neuron
membranes are low-pass filters (Eqn. 3), ŭm can be viewed as a prospective version of u: when firing,
the neuron uses its currently available information to forecast the state of its membrane potential after
relaxation. The prospective nature of ŭm also holds in a strict mathematical sense: the breve operator
˘m := (1 + τmd/dt) is the exact inverse of an exponential low-pass filter (see SI). While neuronal
membranes continue to relax slowly towards their steady states, neuronal outputs use membrane
momenta to compute a correct instantaneous reaction to their inputs, even in the case of jumps
(Fig. 1e). Thus, information can propagate instantaneously throughout the network, similarly to an
ANN, counterintuitively even when membrane dynamics are never in equilibrium. The activity of the
output layer hence reflects arbitrarily fast changes in the input – even on time scales smaller than the
neuronal time constant τm – rather than responding with a significant time lag and attenuation as in
previous, gradient-based models.

The idea of incorporating derivatives into the input-output function of a system has a long history in
control theory [17] and also represents a known, though often neglected feature of (single) biological
neurons [18, 19]. A related, but different form of neuronal prospectivity has also been considered in
other models of bio-plausible BP derived from a stationary action [20, 21]. At the level of neuronal
populations with additive Gaussian noise, there exists a long tradition of studying faster-than-τm

responses, both with [22] and without [23] recurrent connectivity. Similar observations also hold for
single neurons in the presence of noise [24, 25]. Building on these insights and integrating them into a
unified theory of neuronal dynamics and learning, our model proposes a specific form of prospective
coding that can also be learned by local adaptation mechanisms, as we discuss in Section 6.

We should also stress the difference between the terms “prospective” and “predictive”. Predictive
coding, or more generally, predictive processing, is a theory of brain function which proposes that
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brains maintain internal models of their environment which they update and learn by trying to predict
sensory input at the same moment in time. Originally based on a specific Bayesian model and
error communication scheme [14], the notion of predictive coding can be generalized to layers in a
hierarchical model predicting the activities of subsequent layers. This principle is instantiated in our
networks as well, as will become clear in the following sections. In contrast, prospective coding in
our framework refers to the ability of neurons to “look forward in time” using the current state of
the membrane potential in phase space (position and velocity), as described above.2 Prospective and
predictive coding are thus complementary: our specific prospective mechanism provides a cure for
relaxation in predictive coding networks, thus significantly speeding up both learning and inference,
as we describe below.

Note that, even for functionally feedforward networks, our resulting network structure is recurrent,
with backward coupling induced by error inputs to the apical tree. As a non-linear recurrent network,
it cannot settle instantaneously into the correct state; rather, in numerical simulations, it jumps quickly
towards an estimated stationary activity state and reaches equilibrium within several such jumps
(of infinitesimal duration). In practice, saturating activation functions can help avoid pathological
behavior under strong coupling. Moreover, we can introduce a very short exponential low-pass
filter τ s on top-down signals, slightly larger than the temporal resolution of the simulation. Thus, in
physical systems operating in continuous time, τ s can effectively become infinitesimal as well and
does not affect the speed of information propagation through the network. In particular, as we discuss
below, the perpetual consistency between input and output allows our model to continuously learn to
reduce the loss, obviating the need for network relaxation phases and the associated global control of
precisely timed plasticity mechanisms.

4 Fast learning in slow substrates

Based on our prospective energy function (Eqn. 2), we define synaptic weight dynamics, i.e., learning,
as time-continuous stochastic gradient descent with learning rate ηW :

Ẇ ∝ −∇WE =⇒ Ẇ = ηW [ŭm −Wr − b] rT . (5)

Thus, weights evolve continuously in time driven by local error signals without requiring any
particular schedule. Neuronal biases are adapted according to the same principle. Note that this rule
only uses quantities that are available at the locus of the synapse (see also Section 5). Intuitively,
this locality is enabled by the recurrent nature of the network: errors in the output units spread
throughout the system, attributing credit locally through changes in neuronal membrane potentials.
These changes are then used by synapses to update their weight in order to reduce the network loss.
However, our learning rule is not an exact replica of BP, although it does approximate it in the limit
of infinitely weak supervision β → 0 (often referred to as “nudging”); strictly speaking, it minimizes
the energy function E, which implicitly minimizes the loss L. This form of credit assignment can be
related to previous models which similarly avoid a separate artificial backward pass (as necessary
in classical BP) by allowing errors to influence neuronal activity [27]. Plasticity in the weights
projecting to output neurons depends on the choice of L; for example, for an L2 loss, plasticity in the
output layer corresponds to the classical delta rule [28]: ẆN = ηWβ [r∗N − rN ] rT

N−1.

Despite similarities to previous work, learning in our framework does not suffer from many of the
shortcomings that we have already noted. Since activity propagates quasi-instantaneously throughout
the network, our plasticity can be continuously active without disrupting learning performance. This
is true by construction and most easily visualized for a sequence of (piecewise constant) input patterns:
following a change in the input, membrane dynamics take place in a constant-energy manifold (Eqn. 3)
across which synaptic weight dynamics remain unchanged, i.e., they equally and simultaneously pull
downward on all points of this manifold (Fig. 1f). This disentangling of membrane and synaptic
weight dynamics constitutes the crucial difference to previous work, where the neuronal mismatch
energies Ei change as dynamics evolve and thus can not represent the true errors in the network
before reaching a fixed point. We further note that LE also alleviates the problem of unlearning in
these other models: due to the misrepresentation of errors during relaxation, continuous learning

2A similar concept has also been discussed in [26], but with the aim of implementing the future discounted
states required for temporal difference learning; this form of prospectivity thus addresses a different problem
and results in very different neuronal and synaptic dynamics.
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Figure 2: Learning with LE. (a) Fourier synthesis with fully connected (FC) network of size 50-30-1, receiving
sinusoidal inputs with equidistant frequencies between 10 and 510 Hz. Teaching signal only present for the
first 0.4 s, plasticity is continuously active. (b) MNIST dataset with FC network of size 784-300-100-10,
presentation times Tpres = 1ms = 0.05 τm per sample. Since variability for runs with different τm is statistically
indistinguishable, we only show one set of corresponding min/max values. For comparison, we also show the
performance with feedback alignment (FA) [31]. (c) HIGGS dataset with FC network of size 28-300-300-300-1.
(d) MNIST with convolutional network (ConvNet) LeNet-5 [32]. (e) CIFAR-10 dataset (ConvNet: LeNet-5).
For all examples, standard ANNs with the same topology trained with classical BP are shown for comparison.

changes synaptic weights even in perfectly trained networks (Fig. 1c). This disruption of existing
memories is related, but not identical to catastrophic forgetting.

To illustrate time-continuous learning on continuous data streams, we first consider a simple Fourier-
synthesis task in which a network driven by oscillating inputs learns to approximate a periodic (here:
sawtooth) target signal. Despite the wavelengths of both input and target being much smaller than
the time constant of the neuron, continuous plasticity in our model allows the output neuron to
approximate the target well (Fig. 2a). The remaining differences merely reflect the fundamental
limitation of a finite set of input frequencies and hidden units.

We next turn the more traditional paradigm of classification tasks to demonstrate the scalability of
our model. We train feedforward networks using LE on several standard benchmark datasets (see
SI for details) using sample presentation times much shorter than the membrane time constant. We
first learn MNIST [29] and HIGGS [30] with a fully connected architecture. After 100 epochs, our
model reaches classification test errors (mean ± std) of (1.98 ± 0.11) % (MNIST) and (27.6 ± 0.4) %
(HIGGS), on par with a standard ANN trained using stochastic gradient descent (SGD) and reaching
(1.93 ± 0.14) % (MNIST) and (27.8 ± 0.4) % (HIGGS) with the same architecture, i.e., with the
same number of learnable parameters (Fig. 2b,c). With feedback alignment (FA, [31]), we achieve
test errors of (2.6 ± 0.1) % for MNIST. To illustrate the indifference of LE with respect to neuronal
time constants, we repeated the MNIST experiments with significantly slower neuronal dynamics,
obtaining the same results. In contrast, a network following the classical paradigm without prospective
rates performs poorly: for membrane time constants of τm = 10ms and presentation times of
T = 100ms per sample, the network does not exceed 90% accuracy on MNIST. For even shorter
presentation times, the performance of such models quickly degrades further.

Since our model does not assume any specific connectivity pattern, we can easily integrate different
network topologies. Here we demonstrate this by introducing convolutional architectures on both
MNIST and the more challenging CIFAR10 [33] datasets. On these datasets, our LE networks achieve
test errors of (1.1 ± 0.1) % (MNIST) and (38.0 ± 1.3) % (CIFAR10), again on par with ANNs with
identical structure at (1.08 ± 0.07) % (MNIST) and (39.4 ± 5.6) % (CIFAR10) (Fig. 2d,e). These
results show that LE enables time-continuous learning using arbitrarily short presentation times in
networks of leaky integrator neurons to achieve results competitive with standard BP in ANNs.
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5 Fast computation and learning in cortical microcircuits

Due to the simplicity of their implementation, the principles of LE can be applied to models of
approximate BP in the brain in order to alleviate the issues discussed above. Here we demonstrate how
a network of hierarchically organized dendritic microcircuits [8, 34] can make use of our theoretical
advances to significantly increase both inference and training speed, thus removing several critical
shortcomings towards its viability as a scalable model of cortical processing. The resulting dynamical
system represents a detailed and biologically plausible version of BP, with real-time dynamics, and
phase-free, continual local learning able to operate on effectively arbitrary sensory timescales.

The fundamental building block of this architecture is a cortical microcircuit model consisting of
pyramidal cells and interneurons (Fig. 3a,b). Pyramidal cells have three compartments: a basal
dendrite receiving bottom-up input from lower areas, an apical dendrite receiving top-down input
from higher areas and lateral input from interneurons, and a somatic compartment that integrates
dendritic information and generates the neuronal output. Interneurons consist of two compartments:
a basal dendrite receiving input from pyramidal cells in the same layer, and a somatic compartment
that receives input from pyramidal cells in higher layers. Pyramidal somatic compartments are leaky
integrators of input from neighboring compartments (see SI for the full set of equations):

Cmu̇
som
i = gl (El − usom

i ) + gbas (vbas
i − usom

i

)
+ gapi

(
vapi
i − usom

i

)
, (6)

where i is the neuron index, El the leak potential, vbas
i and vapi

i the basal and apical membrane
potentials, respectively, and gbas and gapi the dendro-somatic couplings. Due to the conductance-
based interaction between compartments, the effective time constant of the soma is τ eff := Cm/(gl +
gbas + gapi). For somatic membrane potentials, assuming that apical dendrites encode errors (see
below) and basal dendrites represent the input, this corresponds directly to Eqn. 3. Following [35],
plasticity in basal synapses is driven by the local error signal given by the discrepancy between
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Figure 3: LE in cortical microcircuits. (a,b) Model architecture following [8]. Red: pyramidal cells, blue:
interneurons; somatic compartments have darker colors. Each soma sends out a single axon that transmits either
ϕ(u) (Sacramento et al.) or ϕ(ŭm) (LE). Except for top-down synapses, all synapses are plastic. (c) Synthetic
dataset with 8 images grouped in 3 classes used to train a 3-layer network with 9-30-3 pyramidal cells. (d)
Model performance during (top) and after (bottom) learning with (blue) and without (orange) LE. Top: Note the
similarity in performance gains at the beginning of training, before the disruptive effects of relaxation begin to
dominate. For better visualization, fluctuations are smoothed with a sliding window over 10 epochs. Bottom:
Model performance (min, max and mean over 10 seeds) after 1000 epochs for different input presentation times.
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somatic and dendric membrane potentials usom
i and vbas

i :

ẇij = ηW
[
ϕ(usom

i )− ϕ(αvbas
i )

]
ϕ(usom

j ) , (7)

which is analogous to Eqn. 5 up to a monotonic transformation on the voltages (see SI).

In this architecture, plasticity serves two purposes. For pyramidal-to-pyramidal feedforward synapses,
it implements error-correcting learning as a time-continuous approximation of BP. For pyramidal-to-
interneuron synapses, it drives interneurons to mimic their pyramidal partners in the layers above (see
also SI). Thus, in a well-trained network, apical compartments of pyramidal cells are at rest, reflecting
zero error, as top-down and lateral inputs cancel out. When an output error propagates through the
network, these two inputs can no longer cancel out and their difference represents the local error ei.
This architecture does not rely on the transpose of the forward weight matrix, improving viability for
implementation in distributed asynchronous systems. Here, we keep feedback weights fixed, realizing
a variant of feedback alignment. In principle, these weights could also be learned in order to further
improve the local representation of errors Section 7.

Incorporating the principles of LE is straightforward and requires only that neurons fire prospectively:
ϕ(u) → ϕ(ŭeff). While we have already addressed the evidence for prospective neuronal activity, we
note that our plasticity also uses these prospective signals, which constitutes an interesting prediction
for future in-vivo experiments. We can now compare the behavior and performance of our LE-
augmented model to its original archetype. Since large networks using the original model require
prohibitively long training times when simulated with full dynamics rather than just their steady
state [8], we use small networks and a small synthetic dataset as a benchmark (Fig. 3c).

Our microcircuit model can learn perfect classification even for very short presentation times. In
contrast, the original model without the prospective mechanism stagnates at high error rates even for
this simple task. As discussed earlier, this can be traced back to the learning process being disrupted
during relaxation. Without prospective dynamics, the model requires presentation times on the order
of 100 τ eff to achieve perfect accuracy (Fig. 3d). In contrast, LE only degrades for presentation times
below 0.1 τ eff, which is due to the limited resolution of our numerical integration method. Thus,
incorporating LE into cortical microcircuits can bring the required presentation times into biologically
plausible regimes, allowing networks to deal with rich sensory data.

6 Robustness to substrate imperfections

Computer simulations often assume perfectly homogeneous parameters across the network. Models
can hence inadvertently rely on this homogeneity, resulting in unpredictable behavior and possi-
bly fatal dysfunction when faced with the physics of analog substrates which are characterized by
both heterogeneity in their components as well as temporal perturbation of their dynamics. There-
fore, we consider robustness to spatio-temporal noise to represent a necessary prerequisite for any
mathematical model aspiring to physical implementation, be it biological or artificial.

Spatial noise reflects the individuality of cortical neurons or the heterogeneity arising from device
mismatch in hardware. Here, we focus on the heterogeneity of time constants; in contrast to, for
example, variability in synaptic parameters or activation functions, these variations can not be “trained
away” by adapting synaptic weights [36–38]. The two time constants that govern neuron dynamics
in our model, namely integration (Eqn. 3) and prospective coding (Eqn. 1), previously assumed
to be identical, are affected independently by such variability. To differentiate between the two,
we assign the prospective dynamics their own time constant: ŭr := u + τ ru̇. We can now model
heterogeneity as independent, multiplicative Gaussian noise on all time constants: τm/r → (1+ξ)τm/r,
with ξ ∼ N (0, σ2

τ ); we use multiplicative noise to emphasize that our model is agnostic to absolute
time scales, so only relative relationships between specific time constants matter.

Due to the resulting mismatches between the timing of neuronal input and output, neuronal out-
puts suffer from exponential transients, leading to relaxation issues similar to the ones we already
addressed in detail. However, depending on the transmission of top-down signals, the effects on
learning performance can be very different. According to the formal theory, backward errors use
the correct prospective voltages: e ∝ [ŭm −Wϕ(ŭr)] (Eqns. 4 and 5); this allows robust learning
even for relatively large perturbations in the forward signals (Fig. 4a). In contrast, in biophysical
implementations such as the microcircuits discussed above, neurons can only transmit a single output
signal ϕ(ŭr

i), which consequently also affects the errors: e ∝ [ŭr −Wϕ(ŭr)]. Since deviations due
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Figure 4: Robustness of LE. We show test errors on MNIST (min, max and mean over several seeds) after
100 training epochs for different input presentation times. (a) Effects of heterogeneity of time constants with
(red) and without (orange) adaptation. Baseline with homogeneous time constants in blue for comparison. (b)
Integration and prospective time constant pairs (τm, τ r) for individual neurons within a network before (top) and
after (bottom) development. Colors encode the layer to which the neurons belong. (c) Effects of temporal noise
of width σr = 0.2 rmax with (solid) and without (dashed) synaptic filtering for different synaptic time constants.

to a mismatch between integration and prospective time constants persist on the time scale of τm (see
SI), even small amounts of mismatch can lead to a significant loss in performance (Fig. 4a).

Here we address this issue by introducing a neuron-local adaptation mechanism that corrects the
difference between prospective voltages ŭm and ŭr induced by mismatching time constants:

τ̇m = ητ (ŭ
r −Wr − b) u̇ . (8)

In biological substrates, this could, for example, correspond to an adaptation of the transmembrane ion
channel densities, whereas on many neuromorphic substrates, neuronal time constants can be adapted
individually [39]. Before training the network we allow it to go through a “developmental phase” in
which individual neurons are not affected by top-down errors and learn to match their prospective
firing to their membrane dynamics (Fig. 4b), thus recovering the performance of networks with
perfectly matched time constants (Fig. 4a). This developmental phase merely consists of presenting
input samples to the network, for a duration that depends on the required matching precision. Here,
we achieved mismatches below 1 ‰ within the equivalent of 20 training epochs. Note that neuronal
time constants remain diverse after this phase, but are matched in a way that enables fast reaction of
downstream areas to sensory stimuli – an ability that is certainly helpful for survival. This aligns well
with in-vivo observations of parameters that are highly diverse between neurons and individuals, but
are fine-tuned within each neuron in order to reliably produce a desired input-output relationship [40].

We next model additive temporal noise on neuronal outputs as might be induced, for example, by
noisy transmission channels: r → r+ξ, with ξ ∼ N (0, σ2

r ). Formally, this turns membrane dynamics
into a Langevin process. These perturbations add up over consecutive layers and can also accumulate
over time due to recurrent interactions in the network. This introduces noise to the weight updates
that can impair learning performance. Due to their slow integration of inputs, traditional neuron
models filter out this noise, but our prospective mechanism effectively removes this filter. We thus
need an additional denoising mechanism, for which we again turn to biology: by introducing synaptic
filtering with a short time constant τ s, synaptic input is denoised before reaching the membrane;
formally, r = ϕ(ŭm) is replaced by a low-pass-filtered rs in the energy function (Eqn. 2, see also
SI). This narrow filter also mitigates possible numerical instabilities, as discussed in Section 3.

Networks equipped with synaptic filters learn reliably even in the presence of significant noise levels
(Fig. 4c). However, introducing this filter affects the quasi-instantaneity of computation in our
networks, which then require longer input presentation times. Even so, these presentation times need
only be “long” with respect to the characteristic time constant of relaxation mismatches – in this
case, τ s. Thus, for the typical scenario of white noise described above, minuscule τ s on and even
below biological time scales (see, e.g., [41–43]) can achieve effective denoising, without significantly
affecting the advantages conferred by prospective coding. In conclusion, the demonstrated robustness
of our model to spatial and temporal substrate imperfections introduced by simple, biologically
inspired mechanisms, make it a promising candidate for implementation in analog physical systems.
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7 Implications and limitations

In this section, we briefly address several interesting questions that arise from physical embeddings
of LE, both in vivo and in silico.

Within the context of LE, the microcircuit model used to implement error backpropagation carries
several implications for cortical phenomenology beyond specific connectivity patterns. In particular,
we expect that during active, attentive sensory processing, both during and after learning, cortical
pyramidal cells and inhibitory interneurons will react simultaneously to changes in the sensory
stimulus. Furthermore, we would also expect such synchronization at the level of cross-cortical
networks, for example across the ventral visual stream. This should be observable in large-scale
activity recordings with sufficient temporal resolution, for example in iEEG data.

A further implication of our framework is that plasticity is, in principle, equanimous about the speed
of sensory input changes. In particular, learning should be possible without neurons ever reaching a
steady state. We would argue that the ability of mammals to learn from a continuously, and often
quickly changing input stream already provides evidence for such quick processing and learning. In
fact, stimulus presentation times for humans in a subliminal face-word association paradigm can be
as short as 17 ms and still induce association learning [44]. Furthermore, we expect in-vivo plasticity
in cortical subnetworks responsible for such forms of pattern recognition to explicitly depend on
prospective neuronal states; this would contrast with other paradigms that only propose a dependence
on instantaneous (e.g., [35]) or even low-pass-filtered (e.g., [45]) state variables.

By explicitly approximating error backpropagation, our framework inherits its challenges with respect
to biological plausibility, in particular the weight transport problem. In part, this is addressed by
feedback alignment, as used in our cortical microcircuits. However, these weights can themselves
be plastic in order to further boost learning performance [46–49]. The representation of errors by
nudging neuronal activity also has the effect of diluting error signals (in addition to the vanishing
gradient problem); this could be mitigated by adapting learning rates as a function of layer identity.

One major aspect of biology that our framework does not explicitly address is the spike-based
communication between neurons. In silico, this represents less of an obstacle, because pulsed
communication packets can easily carry more information than just the pulse arrival times by
including additional payload. In vivo, a similar role could be played by inter-spike-intervals within
spike doublets or bursts, or by the precise spike timing used in, for example, spike latency codes [50].

With respect to neuromorphic implementation, we should stress that our robustness analysis only rep-
resents a starting point and not a quantitatively faithful study of the expected effects in analog/mixed-
signal hardware. While the investigated forms of spatiotemporal noise certainly are among the most
salient, there are many other substrate-induced distortive effects to be considered, such as neuronal
delays, limited bandwidth or limited synaptic real-estate [51, 52]. Ultimately, an actual demonstration
in silico will have to be the definitive arbiter of the neuromorphic feasibility of LE.

8 Conclusion

We have introduced a new framework for inference and learning in physical systems composed
of computational elements with finite response times. Our model rests on four simple axioms:
prospective coding (Eqn. 1), neuronal mismatch energy (Eqn. 2), energy conservation under neuronal
dynamics (Eqn. 3) and gradient descent on the energy under synaptic plasticity (Eqn. 5). In particular,
incorporating the simple, biologically inspired mechanism of prospective coding allows us to avoid
critical issues and scalability bottlenecks inherent to many current models of approximate BP in
cortex. Furthermore, we have demonstrated robustness of the resulting implementations to substrate
imperfections, a prerequisite for deployment in analog neuronal systems, both biological and artificial.

Our framework carries implications both for neuroscience and for the design of neuromorphic
hardware. The prospective mechanism described here would allow biological circuits to respond
much faster than previously assumed. Furthermore, our framework suggests that both inference and
learning take place on prospective, rather than instantaneous neuronal quantities. From a hardware
perspective, this lifts the previously perceived limitations of slow analog components (as compared
to digital ones) without relinquishing their power efficiency.
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