
*For correspondence:

jakob.jordan@unibe.ch

†These authors contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 20

Received: 05 January 2021

Accepted: 19 August 2021

Published: 28 October 2021

Reviewing editor: Mark CW van

Rossum, University of

Nottingham, United Kingdom

Copyright Jordan et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Evolving interpretable plasticity for
spiking networks
Jakob Jordan1†*, Maximilian Schmidt2,3†, Walter Senn1, Mihai A Petrovici1,4

1Department of Physiology, University of Bern, Bern, Switzerland; 2Ascent Robotics,
Tokyo, Japan; 3RIKEN Center for Brain Science, Tokyo, Japan; 4Kirchhoff-Institute
for Physics, Heidelberg University, Heidelberg, Germany

Abstract Continuous adaptation allows survival in an ever-changing world. Adjustments in the

synaptic coupling strength between neurons are essential for this capability, setting us apart from

simpler, hard-wired organisms. How these changes can be mathematically described at the

phenomenological level, as so-called ‘plasticity rules’, is essential both for understanding biological

information processing and for developing cognitively performant artificial systems. We suggest an

automated approach for discovering biophysically plausible plasticity rules based on the definition

of task families, associated performance measures and biophysical constraints. By evolving

compact symbolic expressions, we ensure the discovered plasticity rules are amenable to intuitive

understanding, fundamental for successful communication and human-guided generalization. We

successfully apply our approach to typical learning scenarios and discover previously unknown

mechanisms for learning efficiently from rewards, recover efficient gradient-descent methods for

learning from target signals, and uncover various functionally equivalent STDP-like rules with tuned

homeostatic mechanisms.

Introduction
How do we learn? Whether we are memorizing the way to the lecture hall at a conference or master-

ing a new sport, somehow our central nervous system is able to retain the relevant information over

extended periods of time, sometimes with ease, other times only after intense practice. This acquisi-

tion of new memories and skills manifests at various levels of the system, with changes of the interac-

tion strength between neurons being a key ingredient. Uncovering the mechanisms behind this

synaptic plasticity is a key challenge in understanding brain function. Most studies approach this

monumental task by searching for phenomenological models described by symbolic expressions

that map local biophysical quantities to changes of the connection strength between cells

(Figure 1A,B).

Approaches to deciphering synaptic plasticity can be broadly categorized into bottom-up and

top-down. Bottom-up approaches typically rely on experimental data (e.g., Artola et al., 1990;

Dudek and Bear, 1993; Bi and Poo, 1998; Ngezahayo et al., 2000) to derive dynamic equations

for synaptic parameters that lead to functional emergent macroscopic behavior if appropriately

embedded in networks (e.g., Gütig et al., 2003; Izhikevich, 2007; Clopath et al., 2010). Top-down

approaches proceed in the opposite direction: from a high-level description of network function,

for example, in terms of an objective function (e.g., Toyoizumi et al., 2005; Deneve, 2008;

Kappel et al., 2015; Kutschireiter et al., 2017; Sacramento et al., 2018; Göltz et al., 2019),

dynamic equations for synaptic changes are derived and biophysically plausible implementations

suggested. Evidently, this demarcation is not strict, as most approaches seek some balance between

experimental evidence, functional considerations and model complexity. However, the relative

weighting of each of these aspects is usually not made explicit in the communication of scientific

results, making it difficult to track by other researchers. Furthermore, the selection of specific tasks

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 1 of 33

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.66273
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access

to illustrate the effect of a suggested learning rule is usually made only after the rule was derived

based on other considerations. Hence, this typically does not consider competing alternative solu-

tions, as an exhaustive comparison would require significant additional investment of human resour-

ces. A related problem is that researchers, in a reasonable effort to use resources efficiently, tend to

focus on promising parts of the search space around known solutions, leaving large parts of the

search space unexplored (Radi and Poli, 2003). Automated procedures, in contrast, can perform a

significantly less biased search.

We suggest an automated approach to discover learning rules in spiking neuronal networks that

explicitly addresses these issues. Automated procedures interpret the search for biological plasticity

mechanisms as an optimization problem (Bengio et al., 1992), an idea typically referred to as meta-

learning or learning-to-learn. These approaches make the emphasis of particular aspects that guide

this search explicit and place the researcher at the very end of the process, supporting much larger

search spaces and the generation of a diverse set of hypotheses. Furthermore, they have the poten-

tial to discover domain-specific solutions that are more efficient than general-purpose algorithms.

Early experiments focusing on learning in artificial neural networks (ANNs) made use of gradient

descent or genetic algorithms to optimize parameterized learning rules (Bengio et al.,

1990; Bengio et al., 1992; Bengio et al., 1993) or genetic programming to evolve less constrained

learning rules (Bengio et al., 1994; Radi and Poli, 2003), rediscovering mechanisms resembling the

backpropagation of errors (Linnainmaa, 1970; Ivakhnenko, 1971; Rumelhart et al., 1985). Recent

experiments demonstrate how optimization methods can design optimization algorithms for recur-

rent ANNs (Andrychowicz et al., 2016), evolve machine learning algorithms from scratch

(Real et al., 2020), and optimize parametrized learning rules in neuronal networks to achieve a

desired function (Confavreux et al., 2020).

We extend these meta-learning ideas to discover free-form, yet interpretable plasticity rules for

spiking neuronal networks. The discrete nature of spike-based neuronal interactions endows these

eLife digest Our brains are incredibly adaptive. Every day we form memories, acquire new

knowledge or refine existing skills. This stands in contrast to our current computers, which typically

can only perform pre-programmed actions. Our own ability to adapt is the result of a process called

synaptic plasticity, in which the strength of the connections between neurons can change. To better

understand brain function and build adaptive machines, researchers in neuroscience and artificial

intelligence (AI) are modeling the underlying mechanisms.

So far, most work towards this goal was guided by human intuition – that is, by the strategies

scientists think are most likely to succeed. Despite the tremendous progress, this approach has two

drawbacks. First, human time is limited and expensive. And second, researchers have a natural – and

reasonable – tendency to incrementally improve upon existing models, rather than starting from

scratch.

Jordan, Schmidt et al. have now developed a new approach based on ‘evolutionary algorithms’.

These computer programs search for solutions to problems by mimicking the process of biological

evolution, such as the concept of survival of the fittest. The approach exploits the increasing

availability of cheap but powerful computers. Compared to its predecessors (or indeed human

brains), it also uses search strategies that are less biased by previous models.

The evolutionary algorithms were presented with three typical learning scenarios. In the first, the

computer had to spot a repeating pattern in a continuous stream of input without receiving

feedback on how well it was doing. In the second scenario, the computer received virtual rewards

whenever it behaved in the desired manner – an example of reinforcement learning. Finally, in the

third ‘supervised learning’ scenario, the computer was told exactly how much its behavior deviated

from the desired behavior. For each of these scenarios, the evolutionary algorithms were able to

discover mechanisms of synaptic plasticity to solve the new task successfully.

Using evolutionary algorithms to study how computers ‘learn’ will provide new insights into how

brains function in health and disease. It could also pave the way for developing intelligent machines

that can better adapt to the needs of their users.

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 2 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

networks with rich dynamical and functional properties (e.g., Dold et al., 2019; Jordan et al., 2019;

Keup et al., 2020). In addition, with the advent of non-von Neumann computing systems based on

spiking neuronal networks with online learning capabilities (Moradi et al., 2017; Davies et al.,

2018; Billaudelle et al., 2019), efficient learning algorithms for spiking systems become increasingly

relevant for non-conventional computing. Here, we employ genetic programming (Figure 1C,D;

Koza, 2010) as a search algorithm for two main reasons. First, genetic programming can operate on

analytically tractable mathematical expressions describing synaptic weight changes that are inter-

pretable. Second, an evolutionary search does not need to compute gradients in the search space,

thereby circumventing the need to estimate a gradient in non-differentiable systems.

We successfully apply our approach, which we refer to as ‘evolving-to-learn’ (E2L), to three differ-

ent learning paradigms for spiking neuronal networks: reward-driven, error-driven, and correlation-

driven learning. For the reward-driven task, our approach discovers new plasticity rules with efficient

reward baselines that perform competively and even outperform previously suggested methods.

The analytic form of the resulting expressions suggests experimental approaches that would allow

us to distinguish between them. In the error-driven learning scenario, the evolutionary search discov-

ers a variety of solutions which, with appropriate analysis of the corresponding expressions, can be

shown to effectively implement stochastic gradient descent. Finally, in the correlation-driven task,

our method generates a variety of STDP kernels and associated homeostatic mechanisms that lead

to similar network-level behavior. This sheds new light onto the observed variability of synaptic

A C

B

Time

P
S

P

B D O spring production via mutation

Experimental

setup

Evolution Hypotheses

Task fa
mily

Netw
ork archite

cture

Fitn
ess fu

nctio
n

O spring production

Selection

Figure 1. Artificial evolution of synaptic plasticity rules in spiking neuronal networks. (A) Sketch of cortical microcircuits consisting of pyramidal cells

(orange) and inhibitory interneurons (blue). Stimulation elicits action potentials in pre- and postsynaptic cells, which, in turn, influence synaptic plasticity.

(B) Synaptic plasticity leads to a weight change (Dw) between the two cells, here measured by the change in the amplitude of post-synaptic potentials.

The change in synaptic weight can be expressed by a function f that in addition to spike timings (tpre; tpost) can take into account additional local

quantities, such as the concentration of neuromodulators (r, green dots in A) or postsynaptic membrane potentials. (C) For a specific experimental

setup, an evolutionary algorithm searches for individuals representing functions f that maximize the corresponding fitness function F . An offspring is

generated by modifying the genome of a parent individual. Several runs of the evolutionary algorithm can discover phenomenologically different

solutions (f0; f1; f2) with comparable fitness. (D) An offspring is generated from a single parent via mutation. Mutations of the genome can, for example,

exchange mathematical operators, resulting in a different function f .

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 3 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

plasticity and thus suggests a reevaluation of the reported variety in experimentally measured STDP

curves with respect to their possible functional equivalence.

Our results demonstrate the significant potential of automated procedures in the search for plas-

ticity rules in spiking neuronal networks, analogous to the transition from hand-designed to learned

features that lies at the heart of modern machine learning.

Results

Setting up an evolutionary search for plasticity rules
We introduce the following recipe to search for biophysically plausible plasticity rules in spiking neu-

ronal networks. First, we determine a task family of interest and an associated experimental setup

which includes specification of the network architecture, for example, neuron types and connectivity,

as well as stimulation protocols or training data sets. Crucially, this step involves defining a fitness

function to guide the evolutionary search towards promising regions of the search space. It assigns

high fitness to those individuals, that is, learning rules, that solve the task well and low fitness to

others. The fitness function may additionally contain constraints implied by experimental data or aris-

ing from computational considerations. We determine each individual’s fitness on various examples

from the given task family, for example, different input spike train realizations, to discover plasticity

rules that generalize well (Chalmers, 1991; Soltoggio et al., 2018). Finally, we specify the neuronal

variables available to the plasticity rule, such as low-pass-filtered traces of pre- and postsynaptic

spiking activity or neuromodulator concentrations. This choice is guided by biophysical considera-

tions, for example, which quantities are locally available at a synapse, as well as by the task family,

for example, whether reward or error signals are provided by the environment. We write the plastic-

ity rule in the general form Dw ¼ h f ð. . .Þ, where h is a fixed learning rate, and employ an evolution-

ary search to discover functions f that lead to high fitness.

We propose to use genetic programming (GP) as an evolutionary algorithm to discover plasticity

rules in spiking neuronal networks. GP applies mutations and selection pressure to an initially ran-

dom population of computer programs to artificially evolve algorithms with desired behaviors (e.g.,

Koza, 1992). Here, we consider the evolution of mathematical expressions. We employ a specific

form of GP, Cartesian genetic programming (CGP; e.g., Miller and Thomson, 2000; Miller, 2011),

that uses an indexed graph representation of programs. The genotype of an individual is a two-

dimensional Cartesian graph (Figure 2A, top). Over the course of an evolutionary run, this graph has

a fixed number of input, output, and internal nodes. The operation of each internal node is fully

described by a single function gene and a fixed number of input genes. A function table maps func-

tion genes to mathematical operations (Figure 2A, bottom), while input genes determine from

where this node receives data. A given genotype is decoded into a corresponding computational

graph (the phenotype, Figure 2B) which defines a function f . During the evolutionary run, mutations

of the genotype alter connectivity and node operations, which can modify the encoded function

(Figure 2C). The indirect encoding of the computational graph via the genotype supports variable-

length phenotypes, since some internal nodes may not be used to compute the output (Figure 2B).

The size of the genotype, in contrast, is fixed, thereby restricting the maximal size of the computa-

tional graph and ensuring compact, interpretable mathematical expressions. Furthermore, the sepa-

ration into genotype and phenotype allows the buildup of ‘silent mutations’, that is, mutations in the

genotype that do not alter the phenotype. These silent mutations can lead to more efficient search

as they can accumulate and in combination lead to an increase in fitness once affecting the pheno-

type (Miller and Thomson, 2000). A �þ l evolution strategy (Beyer and Schwefel, 2002) drives

evolution by creating the next generation of individuals from the current one via tournament selec-

tion, mutation and selection of the fittest individuals (see section Evolutionary algorithm). Prior to

starting the search, we choose the mathematical operations that can appear in the plasticity rule and

other (hyper)parameters of the Cartesian graph and evolutionary algorithm. For simplicity, we con-

sider a restricted set of mathematical operations and additionally make use of nodes with constant

output. After the search has completed, for example, by reaching a target fitness value or a maximal

number of generations, we analyze the discovered set of solutions.

In the following, we describe the results of three experiments following the recipe outlined

above.

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 4 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

Evolving an efficient reward-driven plasticity rule
We consider a simple reinforcement learning task for spiking neurons. The experiment can be suc-

cinctly described as follows: N inputs project to a single readout modeled by a leaky integrator neu-

ron with exponential postsynaptic currents and stochastic spike generation (for details see section

Reward-driven learning task). We generate a finite number M of frozen-Poisson-noise patterns of

duration T and assign each of these randomly to one of two classes. The output neuron should learn

to classify each of these spatio-temporal input patterns into the corresponding class using a spike/

no-spike code (Figure 3A,B).

The fitness Fðf Þ of an individual encoding the function f is measured by the mean reward per trial

averaged over a certain number of experiments nexp, each consisting of n classification trials

Fðf Þ :¼
1

nexp

Xnexp

k¼1

Rkðf Þ ; (1)

where Rkðf Þ :¼
1

n

Pn
i¼1Rk;iðf Þ is the mean reward per trial obtained in experiment k. The reward Rk;i is

the reward obtained in the i th trial of experiment k. It is one if the classification is correct and -1 oth-

erwise. In the following, we drop the subscripts from Rk;i where its meaning is clear from context.

Figure 2. Representation and mutation of mathematical expressions in Cartesian genetic programming. (A) The genotype of an individual is a two-

dimensional Cartesian graph (top). In this example, the graph contains three input nodes (0� 2), six internal nodes (3� 8) and a single output node (9).

In each node, the genes of a specific genotype are shown, encoding the operator used to compute the node’s output and its inputs. Each operator

gene maps to a specific mathematical function (bottom). Special values (�1;�2) represent input and output nodes. For example, node four uses the

operator 1, the multiplication operation ’*’, and receives input from nodes 0 and 2. This node’s output is hence given by x0 � x2. The number of input

genes per node is determined by the operator with the maximal arity (here two). Fixed genes that cannot be mutated are highlighted in red. ; denotes

non-coding genes. (B) The computational graph (phenotype) generated by the genotype in A. Input nodes (x0; x1; x2) represent the arguments of the

function f . Each output node selects one of the other nodes as a return value of the computational graph, thus defining a function from input x to

output y ¼ f ðxÞ. Here, the output node selects node four as a return value. Some nodes defined in the genotype are not used by a particular realization

of the computational graph (in light gray, e.g., node 6). Mutations that affect such nodes have no effect on the phenotype and are therefore considered

‘silent’. (C) Mutations in the genome either lead to a change in graph connectivity (top, green arrow) or alter the operators used by an internal node

(bottom, green node). Here, both mutations affect the phenotype and are hence not silent.

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 5 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

Each experiment contains different realizations of frozen-noise input spike trains with associated

class labels.

Previous work on reward-driven learning (Williams, 1992) has demonstrated that in policy-gradi-

ent-based approaches (e.g., Sutton and Barto, 2018), subtracting a so called ‘reward baseline’ from

the received reward can improve the convergence properties by adjusting the magnitude of weight

updates. However, choosing a good reward baseline is notoriously difficult (Williams, 1988;

Dayan, 1991; Weaver and Tao, 2001). For example, in a model for reinforcement learning in spik-

ing neurons, Vasilaki et al., 2009 suggest the expected positive reward as a suitable baseline. Here,

we consider plasticity rules which, besides immediate rewards, have access to expected rewards.

These expectations are obtained as moving averages over a number of consecutive trials (here: 100

Reward

Input

Output

Target
Eligibility

trace

P
la

st
ic

it
y

 r
u

le

A B

C D

Figure 3. Cartesian genetic programming evolves various efficient reward-driven learning rules. (A) Network sketch. Multiple input neurons with Poisson

activity project to a single output unit. Pre- and postsynaptic activity generate an eligibility trace in each synapse. Comparison between the output

activity and the target activity generates a reward signal. �R, and �Rþ, �R� represent the expected reward, the expected positive and the expected

negative reward, respectively. Depending on the hyperparameter settings either the former or the latter two are provided to the plasticity rule. (B)

Raster plot of the activity of input neurons (small black dots) and output neuron (large golden dots). Gray (white) background indicate patterns for

which the output should be active (inactive). Top indicates correct classifications (+) and incorrect classifications (-). We show 10 trials at the beginning

(left) and the end of training (right) using the evolved plasticity rule: Dwj ¼ h ðR� 1ÞEr
j . (C) Fitness of best individual per generation as a function of the

generation index for multiple example runs of the evolutionary algorithm with different initial conditions but identical hyperparameters. Labels show the

expression f at the end of the respective run for three runs resulting in well-performing plasticity rules. Gray lines represent runs with functionally

identical solutions or low final fitness. (D) Fitness of a selected subset of evolved learning rules on the 10 experiments used during the evolutionary

search (blue) and additional 80 fitness evaluations, each on 10 new experiments consisting of sets of frozen noise patterns and associated class labels

not used during the evolutionary search (orange). Horizontal boxes represent mean, error bars indicate one standard deviation over fitness values. Gray

line indicates mean fitness of LR0 for visual reference. Black stars indicate significance (p<10�16) with respect to LR0 according to Welch’s T-tests

(Welch, 1947). See main text for the full expressions for all learning rules.

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 6 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

trials, i.e., 50 s) during one experiment and can either be estimated jointly (�R 2 ½�1; 1�) or separately

for positive (�Rþ 2 ½0; 1�) and negative (�R� 2 ½�1; 0�) rewards, with �R ¼ �Rþ þ �R� (for details, see section

Reward-driven learning task). In the former case, the plasticity rule takes the general form

Dwj ¼ h f R;Er
j ðTÞ; �R

� �

; (2)

while for seperately estimated positive and negative rewards it takes the form

Dwj ¼ h f R;Er
j ðTÞ; �R

þ; �R�
� �

: (3)

In both cases, h is a fixed learning rate and Er
j ðtÞ is an eligibility trace that contains contributions

from the spiking activity of pre- and post-synaptic neurons which is updated over the course of a sin-

gle trial (for details see section Reward-driven learning task). The eligibility trace arises as a natural

consequence of policy-gradient methods aiming to maximize the expected reward (Williams, 1992)

and is a common ingredient of reward-modulated plasticity rules for spiking neurons (Vasilaki et al.,

2009; Frémaux and Gerstner, 2015). It is a low-pass filter of the product of two terms: the first is

positive if the neuron was more active than expected by synaptic input; this can happen because the

neuronal output is stochastic, to promote exploration. The second is a low-pass filter of presynaptic

activity. A simple plasticity rule derived from maximizing the expected rewards would, for example,

change weights according to the product of the received reward and the eligibility trace: Dwj ¼ REr
j .

If by chance a neuron is more active than expected, and the agent receives a reward, all weights of

active afferents are increased, making it more likely for the neuron to fire in the future given identical

input. Reward and eligibility trace values at the end of each trial (t¼ T) are used to determine synap-

tic weight changes. In the following, we drop the time argument of Er
j for simplicity. Using CGP with

three (R, Er
j ; �R), or four inputs (R, E

r
j ; �R
þ; �R�), respectively, we search for plasticity rules that maximize

the fitness Fðf Þ (Equation 1).

None of the evolutionary runs with access to the expected reward (�R) make use of it as a reward

baseline (see Appendix section Full evolution data for different CGP hyperparameter choices for full

data). Some of them discover high-performing rules identical to that suggested by Urbanczik and

Senn, 2009: Dwj ¼ h ðR� 1ÞEr
j (LR0, F ¼ 216:2, Figure 3C,D). This rule uses a fixed base line, the

maximal reward (Rmax ¼ 1), rather than the expected reward. Some runs discover a more sophisti-

cated variant of this rule with a term that decreases the effective learning rate for negative rewards

as the agent improves, that is, when the expected reward increases: Dwj ¼ h ð1þ R�RÞðR� 1ÞEr
j (LR1,

F ¼ 234:2, Figure 3C,D; see also Appendix section Causal and homeostatic terms over trials). Using

this effective learning-rate, this rule achieve higher fitness than the vanilla formulation at the expense

of requiring the agent to keep track of the expected reward.

Using the expected reward as a baseline, for example, Dwj ¼ h ðR� �RÞEr
j , is unlikely to yield high-

performing solutions: an agent may get stuck in weight configurations in which it continuously

receives negative rewards, yet, as it is expecting negative rewards, does not significantly change its

weights. This intuition is supported by our observation that none of the high-performing plasticity

rules discovered by our evolutionary search make use of such a baseline, in contrast to previous

studies (e.g., Frémaux and Gerstner, 2015). Subtracting the maximal reward, in contrast, can be

interpreted as an optimistic baseline (cf. Sutton and Barto, 2018, Ch2.5), which biases learning to

move away from weight configurations that result in negative rewards, while maintaining weight con-

figurations that lead to positive rewards. However, a detrimental effect of such an optimistic baseline

is that learning is sparse, as it only occurs upon receiving negative rewards, an assumption at odds

with behavioral evidence.

In contrast, evolutionary runs with access to separate estimates of the negative and positive

rewards discover plasticity rules with efficient baselines, resulting in increased fitness (see Appendix

section Full evolution data for different CGP hyperparameter choices for the full data). In the follow-

ing, we discuss four such high-performing plasticity rules with at least 10% higher fitness than LR0

(Figure 3D). We first consider the rule (LR2, F ¼ 242:0, Figure 3D)

Dwj ¼ h ½R�ð�Rþ� �R�Þ�Er
j ¼ hðR� �RabsÞE

r
j ; (4)

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 7 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

where we introduced the expected absolute reward �Rabs :¼ �Rþ� �R� ¼ j�Rþjþ j�R�j, with �Rabs 2 ½0;1�.

Note the difference to the expected reward �R¼ �Rþþ �R�. Since the absolute magnitude of positive

and negative rewards is identical in the considered task, �Rabs increases in each trial, starting at zero

and slowly converging to one with a time constant of 50 s. Instead of keeping track of the expected

reward, the agent can thus simply optimistically increase its baseline with each trial. Behind this lies

the, equally optimistic, expectation that the agent improves its performance over trials. Starting out

as REr
j and converging to ðR� 1ÞEr

j this rule combines efficient learning from both positive and nega-

tive rewards initially, with improved convergence towards successful weight configuration during

late learning by a reward-dependent modulation of the effective learning rate (see also Appendix

section Causal and homeostatic terms over trials). Note that such a strategy may lead to issues with

un- or re-learning. This may be overcome by the agent resetting the expected absolute reward �Rabs

upon encountering a new task, similar to a ‘novelty’ signal.

Furthermore, our algorithm discovers a variation of this rule (LR3, F ¼ 256:0, Figure 3D), which

replaces h with h=ð1þ �RþÞ to decrease the magnitude of weight changes in regions of the weight

space associated with high performance. This can improve convergence properties.

We next consider the rule (LR4, F ¼ 247:2, Figure 3D):

Dwj ¼ h ðR� 1ÞEr
j þðR� 1ÞðRþ 2�RþÞ

h i

: (5)

This rule has the familiar form of LR0 and LR1, with an additional homeostatic term. Due to the

prefactors R� 1, this rule only changes weights on trials with negative reward. Initially, the expected

reward �Rþ is close to zero and the homeostatic term results in potentiation of all synapses, causing

more and more neurons to spike. In particular, if initial weights are chosen poorly, this can make

learning more robust. As the agent improves and the expected positive rewards increases, the

homeostatic term becomes negative (see also Appendix section Causal and homeostatic terms over

trials). In this regime, it can be interpreted as pruning all weights until only those are left that do not

lead to negative rewards. This term can hence be interpreted as an adapting action baseline

(Sutton and Barto, 2018).

Finally, we consider the rule (LR5, F ¼ 254:8, Figure 3D):

Dwj ¼ h 2½R�ð�Rþ�R�R�Þ�Er
j �½R�ð�R

þ�R�R�Þ�R�R�
n o

: (6)

To analyze this seemingly complex rule, we consider the expression for trials with positive and tri-

als with negative reward separately:

R¼ 1 : Dwþj ¼ h 2ð1� �RabsÞE
r
j �ð1� �RabsÞ�R

�
n o

;

R¼�1 : Dw�j ¼ h 2ð�1� �RÞEr
j �ð1þ �RÞ�R�

n o

:

Both expressions contain a ‘causal’ term depending on pre- and postsynaptic activity via the eligi-

bility trace, as well as, and a ‘homeostatic’ term. Aside from the constant scaling factor, the causal

term of Dwþj is identical to LR2 (Equation 4), that is, it only causes weight changes early during learn-

ing, and converges to zero for later times. Similarly, the causal term of Dw�j is initially identical to

that of LR2 (Equation 4), decreasing weights for connections contributing to wrong decisions. How-

ever it increases in magnitude as the agent improves and the expected reward increases. The

homeostatic term of Dwþj is potentiating, similarly to LR4 (Equation 5): it encourages spiking by

increasing all synaptic weights during early learning and decreases over time. The homeostatic term

for negative rewards is also potentiating, but does not vanish for long times unless the agent is per-

forming perfectly (�R�! 0). Over time, this plasticity rule hence reacts less and less to positive

rewards, while increasing weight changes for negative rewards. The reward-modulated potentiating

homeostatic mechanisms can prevent synaptic weights from vanishing and thus encourage explora-

tion for challenging scenarios in which the agent mainly receives negative rewards.

In conclusion, by making use of the separately estimated expected negative and positive rewards

in precise combinations with the eligibility trace and the instantaneous reward, our evolving-to-learn

approach discovered a variety of reward-based plasticity rules, many of them outperforming previ-

ously known solutions (e.g., Urbanczik and Senn, 2009). The evolution of closed-form expressions

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 8 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

allowed us to analyze the computational principles that allow these newly discovered rules to

achieve high fitness. This analysis suggests new mechanisms for efficient learning, for example from

‘novelty’ and via reward-modulated homeostatic mechanisms. Each of these new hypotheses for

reward-driven plasticity rules makes specific predictions about behavioral and neuronal signatures

that potentially allow us to distinguish between them. For example LR2, LR3, and LR5 suggest that

agents initially learn both from positive and negative rewards, while later they mainly learn from neg-

ative rewards. In particular the initial learning from positive rewards distinguishes these hypotheses

from LR0, LR1, and LR4, and previous work (Urbanczik and Senn, 2009). As LR2 does not make use

of the, separately estimated, expected rewards, it is potentially employed in settings in which such

estimates are difficult to obtain. Furthermore, LR4 and LR5 suggest that precisely regulated homeo-

static mechanisms play a crucial role besides weight changes due to pre- and post-synaptic activity

traces. During early learning, both rules implement potentiating homeostatic mechanisms triggered

by negative rewards, likely to explore many possible weight configurations which may support suc-

cessful behavior. During late learning, LR4 suggests that homeostatic changes become depressing,

thus pruning unnecessary or even harmful connections. In contrast, they remain positive for LR5,

potentially avoiding catastrophic dissociation between inputs and outputs for challenging tasks.

Besides experimental data from the behavioral and neuronal level, different artificial reward-learning

0 10 20

Time (s)

10−3

10−1

101

‖
v
(t
)
−
u
(t
)‖

0 10 20

Time (s)

0

20

S
yn
ap
ti
c
w
ei
g
h
t

0 200 400 600 800 1000

Generation index

−105

−103

−101

F
it
n
es
s

(v − u)s̄j(2u − 1)/v

u(−v + u)/(2(vs̄j + u2))

s̄j(v + u)(v(v − u)− s̄j)/v
2

v(v − u)s̄j(u− 1)/(v2 − us̄j(u− 1))

2(v − u)s̄j

(v − u)s̄j−30

−20

−10

A B C

D

P
la

s
ti

c
it

y
 r

u
le

Input

Teacher potential

Student potential

Filtered spike train

Figure 4. Cartesian genetic programming evolves efficient error-driven learning rules. (A) Network sketch. Multiple input neurons with Poisson activity

project to two neurons. One of the neurons (the teacher) generates a target for the other (the student). The membrane potentials of teacher and

student as well as the filtered pre-synaptic spike trains are provided to the plasticity rule that determines the weight update. (B) Root mean squared

error between the teacher and student membrane potential over the course of learning using the evolved plasticity rule: DwjðtÞ ¼ h vðtÞ � uðtÞ½ ��sjðtÞ. (C)

Synaptic weights over the course of learning corresponding to panel B. Horizontal dashed lines represent target weights, that is, the fixed synaptic

weights onto the teacher. (D) Fitness of the best individual per generation as a function of the generation index for multiple runs of the evolutionary

algorithm with different initial conditions. Labels represent the rule at the end of the respective run. Colored markers represent fitness of each plasticity

rule averaged over 15 validation tasks not used during the evolutionary search; error bars indicate one standard deviation.

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 9 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

scenarios could further further select for strengths or against weaknesses of the discovered rules.

Furthermore, additional considerations, for example achieving small variance in weight updates (Wil-

liams, 1986; Dayan, 1991), may lead to particular rules being favored over others. We thus believe

that our new insights into reinforcement learning are merely a forerunner of future experimental and

theoretical work enabled by our approach.

Evolving an efficient error-driven plasticity rule
We next consider a supervised learning task in which a neuron receives information about how far its

output is from the desired behavior, instead of just a scalar reward signal as in the previous task. The

widespread success of this approach in machine learning highlights the efficacy of learning from

errors compared to correlation- or reward-driven learning (Goodfellow et al., 2016). It has therefore

often been hypothesized that evolution has installed similar capabilities in biological nervous systems

(see, e.g. Marblestone et al., 2016; Whittington and Bogacz, 2019).

Urbanczik and Senn, 2014 introduced an efficient, flexible, and biophysically plausible imple-

mentation of error-driven learning via multi-compartment neurons. For simplicity, we consider an

equivalent formulation of this learning principle in terms of two point neurons modeled as leaky inte-

grator neurons with exponential postsynaptic currents and stochastic spike generation. One neuron

mimics the somatic compartment and provides a teaching signal to the other neuron acting as the

dendritic compartment. Here, the difference between the teacher and student membrane potentials

drives learning:

DwjðtÞ ¼ h vðtÞ� uðtÞ½ ��sjðtÞ ; (7)

where v is the teacher potential, u the student membrane potential, and h a fixed learning rate.

�sjðtÞ ¼ ðk � sjÞðtÞ represents the the presynaptic spike train sj filtered by the synaptic kernel k. Equa-

tion 7 can be interpreted as stochastic gradient descent on an appropriate cost function

(Urbanczik and Senn, 2014) and can be extended to support credit assignment in hierarchical neu-

ronal networks (Sacramento et al., 2018). For simplicity, we assume the student has direct access to

the teacher’s membrane potential, but in principle one could also employ proxies such as firing rates

as suggested in Pfister et al., 2010; Urbanczik and Senn, 2014.

We consider a one-dimensional regression task in which we feed random Poisson spike trains into

the two neurons (Figure 4A).

The teacher maintains fixed input weights while the student’s weights should be adapted over

the course of learning such that its membrane potential follows the teacher’s (Figure 4B,C). The fit-

ness Fðf Þ of an individual encoding the function f is measured by the root mean-squared error

between the teacher and student membrane potential over the simulation duration T, excluding the

initial 10%, averaged over nexp experiments:

Fðf Þ :¼
1

nexp

Xnexp

k¼1

ffi
Z T

0:1T

dt vkðtÞ� ukðtÞ½ �2

s

: (8)

Each experiment consists of different input spike trains and different teacher weights. The general

form of the plasticity rule for this error-driven learning task is given by:

Dwj ¼ h f ðv;u;�sjÞ : (9)

Using CGP with three inputs (v;u;�sj), we search for plasticity rules that maximize the fitness Fðf Þ.

Starting from low fitness, about half of the evolutionary runs evolve efficient plasticity rules

(Figure 4D) closely matching the performance of the stochastic gradient descent rule of

Urbanczik and Senn, 2014. While two runs evolve exactly Equation 7, other solutions with compa-

rable fitness are discovered, such as

Dwj ¼ hðv� uÞ�sj
2u� 1

v
;and (10)

Dwj ¼ h�sjðvþ uÞ
vðv� uÞ��sj

v2
: (11)

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 10 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

At first sight, these rules may appear more complex, but for the considered parameter regime

under the assumptions v»u;v;u� 1, we can write them as (see Appendix section Error-driven learn-

ing – simplification of the discovered rules):

Dwj ¼ hc1ðv� uÞ�sjþ c2 ; (12)

with a multiplicative constant c1 ¼Oð1Þ and a negligible additive constant c2. Elementary manipula-

tions of the expressions found by CGP thus demonstrate the similarity of these superficially different

rules to Equation 7. Consequently, they can be interpreted as approximations of gradient descent.

The constants generally fall into two categories: fine-tuning of the learning rate for the set of task

samples encountered during evolution (c1), which could be responsible for the slight increase in per-

formance, and factors that have negligible influence and would most likely be pruned over longer

evolutionary timescales (c2). This pruning could be accelerated, for example, by imposing a penalty

on the model complexity in the fitness function, thus preferentially selecting simpler solutions.

In conclusion, the evolutionary search rediscovers variations of a human-designed efficient gradi-

ent-descent-based learning rule for the considered error-driven learning task. Due to the compact,

interpretable representation of the plasticity rules we are able to analyze the set of high-performing

solutions and thereby identify phenomenologically identical rules despite their superficial

differences.

Evolving an efficient correlation-driven plasticity rule
We now consider a task in which neurons do not receive any feedback from the environment about

their performance but instead only have access to correlations between pre- and postsynaptic activ-

ity. Specifically, we consider a scenario in which an output neuron should discover a repeating fro-

zen-noise pattern interrupted by random background spikes using a combination of spike-timing-

dependent plasticity and homeostatic mechanisms. Our experimental setup is briefly described as

follows: N inputs project to a single output neuron (Figure 5A).

The activity of all inputs is determined by a Poisson process with a fixed rate. A frozen-noise activ-

ity pattern of duration Tpattern ms is generated once and replayed every Tinter ms (Figure 5B) while

inputs are randomly spiking in between.

We define the fitness Fðf Þ of an individual encoding the function f by the minimal average signal-

to-noise ratio (SNR) across nexp experiments:

Fðf Þ :¼min
k

SNRk ;k 2 ½1;nexp�
� 	

: (13)

The signal-to-noise ratio SNRk, following Masquelier, 2018, is defined as the difference between

the maximal free membrane potential during pattern presentation averaged over multiple presenta-

tions (huk;i;maxi) and the mean of the free membrane potential in between pattern presentations

(huk;interi) divided by its variance (Varðvk;interÞ):

SNRk :¼
huk;i;maxi� huk;interi

Stdðuk;interÞ
: (14)

The free membrane potential is obtained in a separate simulation with frozen weights by dis-

abling the spiking mechanism for the output neuron. This removes measurement noise in the signal-

to-noise ratio arising from spiking and subsequent membrane-potential reset. Each experiment con-

sists of different realizations of a frozen-noise pattern and background spiking.

We evolve learning rules of the following general form, which includes a dependence on the cur-

rent synaptic weight in line with previously suggested STDP rules (Gütig et al., 2003):

DwSTDP
j ¼ h

fdepðwj;E
c
j Þ Dtj<0

ffacðwj;E
c
j Þ Dtj � 0 :

(

(15)

Here, Ec
j :¼ e�jDtjj=t represents an eligibility trace that depends on the relative timing of post- and

presynaptic spiking (Dtj ¼ tpost� tpre;j) and is represented locally in each synapse (e.g.,

Morrison et al., 2008). h represents a fixed learning rate. The synaptic weight is bound such that

wj 2 ½0;1�. We additionally consider weight-dependent homeostatic mechanisms triggered by pre-

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 11 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

and postsynaptic spikes, respectively. These are implemented by additional functions of the general

form:

Dwhom
j ¼ h

f hompre ðwjÞ upon presynaptic spike

f hompost ðwjÞ upon postsynaptic spike

(

(16)

Weight changes are determined jointly by Equation 15 and Equation 16 as

Dwj ¼ DwSTDP
j þDwhom. Using CGP, we search for functions fdep, ffac, f

hom
pre , and f hompost that maximize the

fitness Fðfdep; ffacÞ (Equation 13).

As a baseline we consider a rule described by Masquelier, 2018 (Figure 5C). It is a simple addi-

tive spike-timing-dependent plasticity (STDP) rule that replaces the depression branch of traditional

0 1

0

10

20

u
(m

V
)

49 50

Time (s)

199 200 0 2000

Generation index

0

20

F
it
n
es
s

−100 0 100
tpost − tpre

0

η

∆
w

S
T
D
P

j

−100 0 100
tpost − tpre

−2η

0

η

∆
w

S
T
D
P

j

Pre triggered
−η

0

η

∆
w

h
o
m

j

Post triggered Pre triggered Post triggered

−100 0 100
tpost − tpre

0

η

∆
w

S
T
D
P

j

Pre triggered
−0.1η

0
0.1η

Post triggered

A B C

D E F

0.25
0.50
0.75

w

0.25
0.50
0.75

w

P
la

s
ti

c
it

y
 r

u
le

Input

Output

Eligibility

trace

Figure 5. Cartesian genetic programming evolves diverse correlation-driven learning rules. (A) Network sketch. Multiple inputs project to a single

output neuron. The current synaptic weight wj and the eligibility trace Ec
j are provided to the plasticity rule that determines the weight update. (B)

Membrane potential u of the output neuron over the course of learning using Equation 17. Gray boxes indicate presentation of the frozen-noise

pattern. (C) Fitness (Equation 13) of the best individual per generation as a function of the generation index for multiple runs of the evolutionary

algorithm with different initial conditions. Blue and red curves correspond to the two representative plasticity rules selected for detailed analysis. Blue

and red markers represent fitness of the two representative rules and the orange marker the fitness of the homeostatic STDP rule (Equation 17;

Masquelier, 2018), respectively, on 20 validation tasks not used during the evolutionary search. Error bars indicate one standard deviation over tasks.

(D, E): Learning rules evolved by two runs of CGP (D: LR1, Equation 19; E: LR2, Equation 20). (F): Homeostatic STDP rule Equation 17 suggested by

Masquelier, 2018. Top panels: STDP kernels Dwj as a function of spike timing differences Dtj for three different weights wj. Bottom panels: homeostatic

mechanisms for those weights. The colors are specific to the respective learning rules (blue for LR1, red for LR2), with different shades representing the

different weights wj. The learning rate is h ¼ 0:01.

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 12 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

STDP variants with a postsynaptically triggered constant homeostatic term whom<0 (Kempter et al.,

1999). The synaptic weight of the projection from input j changes according to (Figure 5G):

DwSTDP
j ¼ h

0 Dtj<0 ðanticausal interactionÞ

Ec
j Dtj � 0 ðcausal interactionÞ ;

(

(17)

with homeostatic mechanisms:

Dwhom
j ¼ h

0 upon presynaptic spike

whom upon postsynaptic spike .

�

(18)

To illustrate the result of synaptic plasticity following Equation 17 and Equation 18, we consider

the evolution of the membrane potential of an output neuron over the course of learning

(Figure 5C). While the target neuron spikes randomly at the beginning of learning, its membrane

potential finally stays subthreshold in between pattern presentations and crosses the threshold reli-

ably upon pattern presentation.

After 2000 generations, half of the runs of the evolutionary algorithm discover high-fitness solu-

tions (Figure 5D). These plasticity rules lead to synaptic weight configurations which cause the neu-

ron to reliably detect the frozen-noise pattern. From these well-performing learning rules, we pick

two representative examples (Figure 5D,E) to analyze in detail. Learning rule 1 (LR1, Figure 5D) is

defined by the following equations:

DwSTDP
j ¼ h

�ðwj� 1ÞEc
j Dtj<0

Ec
j Dtj � 0

(

; Dwhom
j ¼ h

wj upon presyn: spike

�wj upon postsyn: spike :

�

(19)

Learning rule 2 (LR2, Figure 5E) is defined by the following equations:

DwSTDP
j ¼ h

�Ec
j =wj Dtj<0

ðwjE
c
j Þ

wj Dtj � 0

(

; Dwhom
j ¼ h

wj upon presyn: spike

�1 upon postsyn: spike :

�

(20)

The form of these discovered learning rules and associated homeostatic mechanisms suggests

that they use distinct strategies to detect the repeated spatio-temporal pattern. LR1 causes potenti-

ation for small time differences, regardless of whether they are causal or anticausal (note that

�ðwj� 1Þ � 0 since wj 2 ½0;1�). In the Hebbian spirit, this learning rule favors correlation between pre-

synaptic and postsynaptic firing. Additionally, it potentiates synaptic weights upon presynaptic

spikes, and depresses them for each postsynaptic spike. In contrast, LR2 implements a similar strat-

egy as the learning rule of Masquelier, 2018: it potentiates synapses only for small, positive (causal)

time differences. Additionally, however, it pronouncedly punishes anticausal interactions. Similarly to

LR1, its homeostatic component potentiates synaptic weights upon presynaptic spikes, and

depresses them for each postsynaptic spike.

Note how both rules reproduce important components of experimentally established STDP traces

(e.g., Caporale and Dan, 2008). Despite their differences both in the form of the STDP kernel as

well as the associated homeostatic mechanisms, both rules lead to high fitness, that is, comparable

system-level behavior.

Unlike the classical perception of homeostatic mechanisms as merely maintaining an ideal

working point of neurons (Davis and Bezprozvanny, 2001), in both discovered plasticity rules

these components support the computational goal of detecting the repeated pattern. By poten-

tiating large weights more strongly than small weights, the pre-synaptically triggered homeo-

static mechanisms support the divergence of synaptic weights into strong weights, related to

the repeated pattern, and weak ones, providing background input. This observation suggests

that homeostatic mechanisms and STDP work hand in hand to achieve desired functional out-

comes, similar to homeostatic terms in stabilized Hebbian rules (Oja, 1982; Miller and MacKay,

1994). Experimental approaches hence need to take both factors into account and variations in

observed STDP curves should be reconsidered from a point of functional equivalence when

paired with data on homeostatic changes.

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 13 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

In conclusion, for the correlation-driven task, the evolutionary search discovered a wide variety of

plasticity rules with associated homeostatic mechanisms supporting successful task learning, thus

enabling new perspectives for learning in biological substrates.

Discussion
Uncovering the mechanisms of learning via synaptic plasticity is a critical step toward understanding

brain (dys)function and building truly intelligent, adaptive machines. We introduce a novel approach

to discover biophysically plausible plasticity rules in spiking neuronal networks. Our meta-learning

framework uses genetic programming to search for plasticity rules by optimizing a fitness function

specific to the respective task family. Our evolving-to-learn approach discovers high-performing sol-

utions for various learning paradigms, reward-driven, error-driven, and correlation-driven learning,

yielding new insights into biological learning principles. Moreover, our results from the reward-

driven and correlation-driven task families demonstrate that homeostatic terms and their precise

interation with plasticity play an important role in shaping network function, highlighting the impor-

tance of considering both mechanisms jointly.

The experiments considered here were mainly chosen due to their simplicity and prior knowledge

about corresponding plasticity rules that provided us with a high-performance reference for compar-

ison. Additionally, in each experiment, we restricted ourselves to a constrained set of possible inputs

to the plasticity rule. Here, we chose quantities which have been previously shown to be linked to

synaptic plasticity in various learning paradigms, such as reward, low-pass filtered spike trains, and

correlations between pre- and postsynaptic activities. This prior knowledge avoids requiring the evo-

lutionary algorithm to rediscover these quantities but limits the search space, thus potentially exclud-

ing other efficient solutions.

A key point of E2L is the compact representation of the plasticity rules. We restrict the complexity

of the expressions by three considerations. First, we assume that effective descriptions of weight

changes can be found that are not unique to each individual synapse. This is a common assumption

in computational neuroscience and based on the observation that nature must have found a parsi-

monious encoding of brain structure, as not every connection in the brain can be specified in the

DNA of the organism (Zador, 2019); rather, genes encode general principles by which the neuronal

networks and subnetworks are organized and reorganized (Risi and Stanley, 2010). Our approach

aims at discovering such general principles for synaptic plasticity. Second, physical considerations

restrict the information available to the plasticity rule to local quantities, such as pre- and post-syn-

aptic activity traces or specific signals delivered via neuromodulators (e.g., Cox and Witten, 2019;

Miconi et al., 2020). Third, we limit the maximal size of the expressions to keep the resulting learn-

ing rules interpretable and avoid overfitting.

We explicitly want to avoid constructing an opaque system that has high task performance but

does not allow us to understand how the network structure is shaped over the course of learning.

Since we obtain analytically tractable expressions for the plasticity rule, we can analyze them with

conventional methods, in contrast to approaches representing plasticity rules with ANNs (e.g.,

Risi and Stanley, 2010; Orchard and Wang, 2016; Bohnstingl et al., 2019), for which it is challeng-

ing to fully understand their macroscopic computation. This analysis generates intuitive understand-

ing, facilitating communication and human-guided generalization from a set of solutions to different

network architectures or task domains. In the search for plasticity rules suitable for physical imple-

mentations in biological systems, these insights are crucial as the identified plasticity mechanisms

can serve as building blocks for learning rules that generalize to the actual challenges faced by bio-

logical agents. Rather than merely applying the discovered rules to different learning problems,

researchers may use the analytic expressions and prior knowledge to distill general learning princi-

ples – such as the computational role of homeostasis emerging from the present work – and com-

bine them in new ways to extrapolate beyond the task families considered in the evolutionary

search. Therefore, our evolving-to-learn approach is a new addition to the toolset of the computa-

tional neuroscientist in which human intuition is paired with efficient search algorithms. Moreover,

simple expressions highlight the key interactions between the local variables giving rise to plasticity,

thus providing hints about the underlying biophysical processes and potentially suggesting new

experimental approaches.

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 14 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

From a different perspective, while the learning rules found in the experiments described above

were all evolved from random expressions, one can also view the presented framework as a hypoth-

esis-testing machine. Starting from a known plasticity rule, our framework would allow researchers

to address questions like: assuming the learning rule would additionally have access to variable x,

could this be incorporated into the weight updates such that learning would improve? The auto-

mated procedure makes answering such questions much more efficient than a human-guided manual

search. Additionally, the framework is suitable to find robust biophysically plausible approximations

for complex learning rules containing quantities that might be non-local, difficult to compute, and/or

hard to implement in physical substrates. In particular, multi-objective optimization is suitable to

evolve a known, complex rule into simpler versions while maintaining high task performance. Simi-

larly, one could search for modifications of general rules that are purposefully tuned to quickly learn

within a specific task family, outperforming more general solutions. In each of these cases, prior

knowledge about effective learning algorithms provides a starting point from which the evolutionary

search can discover powerful extensions.

The automated search can discover plasticity rules for a given problem that exploit implicit

assumptions in the task. It therefore highlights underconstrained searches, be this due to scarcity of

biological data, the simplicity of chosen tasks or the omission of critical features in the task design.

For instance, without asserting equal average spike rates of background and pattern neurons in the

correlation-driven task, one could discover plasticity rules that exploit the rate difference rather than

the spatio-temporal structure of the input.

Evolved Plastic Artificial Neural Networks (EPANNs; e.g., Soltoggio et al., 2018) and in particular

adaptive HyperNEAT (Risi and Stanley, 2010), represent an alternative approach to designing plas-

tic neural networks. In contrast to our method, however, these approaches include the network

architecture itself into the evolutionary search, alongside synaptic plasticity rules. While this can lead

to high-performance solutions due to a synergy between network architecture and plasticity, this

interplay has an important drawback, as in general it is difficult to tease apart the contribution of

plasticity from that of network structure to high task performance (cf. Gaier and Ha, 2019). In addi-

tion, the distributed, implicit representation of plasticity rules in HyperNEAT can be difficult to inter-

pret, which hinders a deeper understanding of the learning mechanisms. In machine-learning-

oriented applications, this lack of credit assignment is less of an issue. For research into plasticity

rules employed by biological systems, however, it presents a significant obstacle.

Future work needs to address a general issue of any optimization method: how can we systemati-

cally counter overfitting to reveal general solutions? A simple approach would increase the number

of sample tasks during a single fitness evaluation. However, computational costs increase linearly in

the number of samples. Another technique penalizes the complexity of the resulting expressions,

for example, proportional to the size of the computational graph. Besides avoiding overfitting, such

a penalty would automatically remove ‘null terms’ in the plasticity rules, that is, trivial subexpressions

which have no influence on the expressions’ output. Since it is a priori unclear how this complexity

penalty should be weighted against the original fitness measures, one should consider multi-objec-

tive optimization algorithms (e.g., Deb, 2001).

Another issue to be addressed in future work is the choice of the learning rate. Currently, this

value is not part of the optimization process and all tasks assume a fixed learning rate. The analysis

of the reward- and error-driven learning rules revealed that the evolutionary algorithm tried to opti-

mize the learning rate using the variables it had access to, partly generating complex terms that that

amount to a variable scaling of the learning rate. The algorithm may benefit from the inclusion of

additional constants which it could, for example, use for an unmitigated, permanent scaling of the

learning rate. However, the dimensionality of the search space scales exponentially in the number of

operators and constants, and the feasibility of such an approach needs to be carefully evaluated.

One possibility to mitigate this combinatorial explosion is to combine the evolutionary search with

gradient-based optimization methods that can fine-tune constants in the expressions (Topchy and

Punch, 2001; Izzo et al., 2017).

Additionally, future work may involve less preprocessed data as inputs while considering more

diverse mathematical operators. In the correlation-driven task, one could for example provide the

raw times of pre- and postsynaptic spiking to the graph instead of the exponential of their differ-

ence, leaving more freedom for the evolutionary search to discover creative solutions. We expect

particularly interesting applications of our framework to involve more complex tasks that are

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 15 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

challenging for contemporary algorithms, such as life-long learning, which needs to tackle the issue

of catastrophic forgetting (French, 1999) or learning in recurrent spiking neuronal networks. In order

to yield insights into information processing in the nervous system, the design of the network archi-

tecture should be guided by known anatomical features, while the considered task families should

fall within the realm of ecologically relevant problems.

The evolutionary search for plasticity rules requires a large number of simulations, as each candi-

date solution needs to be evaluated on a sufficiently large number of samples from the task family

to encourage generalization (e.g., Chalmers, 1991; Bengio et al., 1992). Due to silent mutations in

CGP, that is, modifications of the genotype that do not alter the phenotype, we use caching meth-

ods to significantly reduce computational cost as only new solutions need to be evaluated. However,

even employing such methods, the number of required simulations remains large, in the order of

10
3 � 10

4 per evolutionary run. For the experiments considered here, the computational costs are

rather low, requiring 24� 48 node hours for a few parallel runs of the evolutionary algorithms, easily

within reach of a modern workstation. The total time increases linearly with the duration of a single

simulation. When considering more complex tasks which would require larger networks and hence

longer simulations, one possibility to limit computational costs would be to evolve scalable plasticity

rules in simplified versions of the tasks and architectures. Such rules, quickly evolved, may then be

applied to individual instances of the original complex tasks, mimicking the idea of ‘evolutionary hur-

dles’ that avoid wasting computational power on low-quality solutions (So et al., 2019; Real et al.,

2020). A proof of concept for such an approach is the delta rule: originally in used in small-scale

tasks, it has demonstrated incredible scaling potential in the context of error backpropagation. Simi-

lar observations indeed hold for evolved optimizers (Metz et al., 2020).

Neuromorphic systems – dedicated hardware specifically designed to emulate neuronal networks

– provide an attractive way to speed up the evolutionary search. To serve as suitable substrates for

the approach presented here, these systems should be able to emulate spiking neuronal networks in

an accelerated fashion with respect to real time and provide on-chip plasticity with a flexible specifi-

cation of plasticity mechanisms (e.g., Davies et al., 2018; Billaudelle et al., 2019; Mayr et al.,

2019).

We view the presented methods as a machinery for generating, testing, and extending hypothe-

ses on learning in spiking neuronal networks driven by problem instances and prior knowledge and

constrained by experimental evidence. We believe this approach holds significant promise to accel-

erate progress toward deep insights into information processing in physical systems, both biological

and biologically inspired, with immanent potential for the development of powerful artificial learning

machines.

Materials and methods

Evolutionary algorithm
We use a �þ l evolution strategy (Beyer and Schwefel, 2002) to evolve a population of individuals

towards high fitness. In each generation, l new offsprings are created from m parents via tournament

selection (e.g., Miller and Goldberg, 1995) and subsequent mutation. From these �þ l, individuals

the best m individuals are selected as parents for the next generation (Alg. 4.1). In this work, we use

a tournament size of one and a fixed mutation probability pmutate for each gene in an offspring indi-

vidual. Since in CGP crossover of individuals can lead to significant disruption of the search process

due to major changes in the computational graphs (Miller, 1999), we avoid it here. In other words,

new offspring are only modified by mutations. We use neutral search (Miller and Thomson, 2000),

in which an offspring is preferred over a parent with equal fitness, to allow the accumulation of silent

mutations that can jointly lead to an increase in fitness. As it is computationally infeasible to exhaus-

tively evaluate an individual on all possible tasks from a task family, we evaluate individuals only on a

limited number of sample tasks and aggregate the results into a scalar fitness, either by choosing

the minimal result or averaging. We manually select the number of sample tasks to balance compu-

tational costs and sampling noise for each task. In each generation, we use the same initial condi-

tions to allow a meaningful comparison of results across generations. If an expression is encountered

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 16 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

that cannot be meaningfully evaluated, such as division by zero, the corresponding individual is

assigned a fitness of �¥.

Algorithm 1: Variant of �þ l evolution strategies used in this study. Note the absence of a crossover step.

Data: Initial random parent Population P0 ¼ fpig of size m
t 0

while t<ngenerations do
Create new offspring population Qt ¼ CreateOffspringPopulationðPtÞ
Combine parent + offspring populations Rt ¼ Pt [Qt

Evaluate fitness of each individual in Rt

Pick Ptþ1 � Rt best individuals as new parents
t t þ 1

end
Function CreateOffspringPopulation (P)
begin

Offspring population Q ¼ fg
while jQj<l do

Choose random subset of P of size Ntournament

Choose best individual in the subset and append to Q

end
for qi 2 Q do

Mutate each gene of qi with mutation probability pmutation

end
Return Q

end

HAL-CGP
HAL-CGP (Schmidt and Jordan, 2020, https://github.com/Happy-Algorithms-League/hal-

cgp, Jordan, 2021b) is an extensible pure Python library implementing Cartesian genetic program-

ming to represent, mutate and evaluate populations of individuals encoding symbolic expressions

targeting applications with computationally expensive fitness evaluations. It supports the translation

from a CGP genotype, a two-dimensional Cartesian graph, into the corresponding phenotype, a

computational graph implementing a particular mathematical expression. These computational

graphs can be exported as pure Python functions, NumPy-compatible functions (van der Walt et al.,

2011), SymPy expressions (Meurer et al., 2017) or PyTorch modules (Paszke et al., 2019). Users

define the structure of the two-dimensional graph from which the computational graph is generated.

This includes the number of inputs, columns, rows, and outputs, as well as the computational primi-

tives, that is, mathematical operators and constants, that compose the mathematical expressions.

Due to the modular design of the library, users can easily implement new operators to be used as

primitives. It supports advanced algorithmic features, such as shuffling the genotype of an individual

without modifying its phenotype to introduce additional drift over plateus in the search space and

hence lead to better exploration (Goldman and Punch, 2014). The library implements a �þ l evolu-

tion strategy to evolve individuals (see section Evolutionary algorithm). Users need to specify hyper-

parameters for the evolutionary algorithm, such as the size of parent and offspring populations and

the maximal number of generations. To avoid reevaluating phenotypes that have been previously

evaluated, the library provides a mechanism for caching results on disk. Exploiting the wide availabil-

ity of multi-core architectures, the library can parallelize the evaluation of all individuals in a single

generation via separate processes.

NEST simulator
Spiking neuronal network simulations are based on the 2.16.0 release of the NEST simulator

(Gewaltig and Diesmann, 2007, https://github.com/nest/nest-simulator; Eppler, 2021 commit

3c6f0f3). NEST is an open-source simulator for spiking neuronal networks with a focus on large net-

works with simple neuron models. The computationally intensive propagation of network dynamics

is implemented in C++ while the network model can be specified using a Python API (PyNEST;

Eppler et al., 2008; Zaytsev and Morrison, 2014). NEST profits from modern multi-core and multi-

node systems by combining local parallelization with OpenMP threads and inter-node communica-

tion via the Message Passing Interface (MPI) (Jordan et al., 2018). The standard distribution offers a

variety of established neuron and plastic synapse models, including variants of spike-timing-

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 17 of 33

Research article Computational and Systems Biology Neuroscience

https://github.com/Happy-Algorithms-League/hal-cgp
https://github.com/Happy-Algorithms-League/hal-cgp
https://github.com/nest/nest-simulator
https://doi.org/10.7554/eLife.66273

dependent plasticity, reward-modulated plasticity and structural plasticity. New models can be

implemented via a domain-specific language (Plotnikov et al., 2016) or custom C++ code. For the

purpose of this study, we implemented a reward-driven (Urbanczik and Senn, 2009) and an error-

driven learning rule (Equation 7; Urbanczik and Senn, 2014), as well as a homeostatic STDP rule

(Equation 17; Masquelier, 2018) via custom C++ code. Due to the specific implementation of spike

delivery in NEST, we introduce a constant in the STDP rule that is added at each potentiation call

instead of using a separate depression term. To support arbitrary mathematical expressions in the

error-driven (Equation 9) and correlation-driven synapse models (Equation 15), we additionally

implemented variants in which the weight update can be specified via SymPy compatible strings

(Meurer et al., 2017) that are parsed by SymEngine (https://github.com/symengine/

symengine; SymEngine Contributors, 2021) a C++ library for symbolic computation. All custom

synapse models and necessary kernel patches are available as NEST modules in the repository

accompanying this study (https://github.com/Happy-Algorithms-League/e2l-cgp-snn (copy archived

at swh:1:rev:2f370ba6ec46a46cf959afcc6c1c1051394cd02a), Jordan, 2021a).

Computing systems
Experiments were performed on JUWELS (Jülich Wizard for European Leadership Science), an HPC

system at the Jülich Research Centre, Jülich, Germany, with 12 Petaflop peak performance. The sys-

tem contains 2271 general-purpose compute nodes, each equipped with two Intel Xeon Platinum

8168 processors (2�24 cores) and 12�8 GB main memory. Compute nodes are connected via an

EDR-Infiniband fat-tree network and run CentOS 7. Additional experiments were performed on the

multicore partition of Piz Daint, an HPC system at the Swiss National Supercomputing Centre,

Lugano, Switzerland with 1.731 Petaflops peak performance. The system contains 1813 general-pur-

pose compute nodes, each equipped with two Intel Xeon E5-2695 v4 processors (2�18 cores) and

64 GB main memory. Compute nodes are connected via Cray Aries routing and communications

ASIC with Dragonfly network topology and run Cray Linux Environment (CLE). Each experiment

employed a single compute node.

Reward-driven learning task
We consider a reinforcement learning task for spiking neurons inspired by Urbanczik and Senn,

2009. Spiking activity of the output neuron is generated by an inhomogeneous Poisson process with

instantaneous rate f determined by its membrane potential u (Pfister et al., 2006; Urbanczik and

Senn, 2009):

fðuÞ :¼ �e
u�uth
Du : (21)

Here, r is the firing rate at threshold, uth the threshold potential, and Du a parameter governing

the noise amplitude. In contrast to Urbanczik and Senn, 2009, we consider an instantaneous reset

of the membrane potential after a spike instead of an hyperpolarization kernel. The output neuron

receives spike trains from sources randomly drawn from an input population of size N with randomly

initialized weights (winitial ~Nð0;swÞ). Before each pattern presentation, the output neurons mem-

brane potential and synaptic currents are reset.

The eligibility trace in every synapse is updated in continuous time according to the following dif-

ferential equation (Urbanczik and Senn, 2009; Frémaux and Gerstner, 2015):

t M
_Er
j ¼�E

r
j þ

1

Du

X

s2y

dðt� sÞ�fðuðtÞÞ

" #

�sjðtÞ ; (22)

where t M governs the time scale of the eligibility trace and has a similar role as the decay parameter

g in policy-gradient methods (Sutton and Barto, 2018), Du is a parameter of the postsynaptic cell

governing its noise amplitude, y represents the postsynaptic spike train, and �sjðtÞ ¼ ðk � sjÞðtÞ the pre-

synaptic spike train sj filtered by the synaptic kernel k. The learning rate h was manually tuned to

obtain high performance with the one suggested by Urbanczik and Senn, 2009. Expected positive

and negative rewards in trial i are separately calculated as moving averages over previous trials

(Vasilaki et al., 2009):

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 18 of 33

Research article Computational and Systems Biology Neuroscience

https://github.com/symengine/symengine
https://github.com/symengine/symengine
https://github.com/Happy-Algorithms-League/e2l-cgp-snn
https://archive.softwareheritage.org/swh:1:dir:390ee2664ea9a00fac9f6be0950a9f6312403292;origin=https://github.com/Happy-Algorithms-League/e2l-cgp-snn;visit=swh:1:snp:10c1f7017ac4ad4d702a505cf1d845502f61b954;anchor=swh:1:rev:2f370ba6ec46a46cf959afcc6c1c1051394cd02a
https://doi.org/10.7554/eLife.66273

�R
þ=�
i ¼ ð1�

1

mr

Þ�Rþ=�i�1 þ
1

mr

½Ri�1�þ=� ; (23)

where mr determines the number of relevant previous trials and ½x�þ :¼maxð0;xÞ; ½x�� :¼minð0;xÞ.

Note that �Rþ 2 ½0;1� and �R� 2 ½�1;0�, since R2 f�1;1g. We obtain the average reward as a sum of

these separate estimates �R¼ �Rþþ �R�; �R2 ½�1;1�, while the expected absolute reward is determined

by their difference �Rabs ¼ �Rþ� �R�; �Rabs 2 ½0;1�.

Error-driven learning task
We consider an error-driven learning task for spiking neurons inspired by Urbanczik and Senn,

2014. N Poisson inputs with constant rates (ri ~U½rmin; rmax�; i 2 ½1;N�) project to a teacher neuron

and, with the same connectivity pattern, to a student neuron. As in section Reward-driven learning

task, spiking activity of the output neuron is generated by an inhomogeneous Poisson process. In

contrast to section Reward-driven learning task, the membrane potential is not reset after spike

emission. Fixed synaptic weights from the inputs to the teacher are uniformly sampled from the

interval ½wmin;wmax�, while weights to the student are all initialized to a fixed value w0. In each trial we

randomly shift all teacher weights by a global value wshift to avoid a bias in the error signal that may

arise if the teacher membrane potential is initially always larger or always smaller than the student

membrane potential. Target potentials are read out from the teacher every dt and provided instan-

taneously to the student. The learning rate h was chosen via grid search on a single example task for

high performance with Equation 7. Similar to Urbanczik and Senn, 2014, we low-pass filter weight

updates with an exponential kernel with time constant t I before applying them.

Correlation-driven learning task
We consider a correlation-driven learning task for spiking neurons similar to Masquelier, 2018: a

spiking neuron, modeled as a leaky integrate-and-fire neuron with delta-shaped post-synaptic cur-

rents, receives stochastic spike trains from N inputs via plastic synapses.

To construct the input spike trains, we first create a frozen-noise pattern by drawing random

spikes Spatterni 2 ½0; Tpattern�; i 2 ½0;N � 1� from a Poisson process with rate n. Neurons that fire at least

once in this pattern are in the following called ‘pattern neurons’, the remaining are called ‘back-

ground neurons’. We alternate this frozen-noise pattern with random spike trains of length Tinter gen-

erated by a Poisson process with rate n (Figure 5B). To balance the average rates of pattern

neurons and background neurons, we reduce the spike rate of pattern neurons in between patterns

by a factor a. Background neurons have an average rate of ninter ¼ n Tinter
TinterþTpattern

. We assume that pat-

tern neurons spike only once during the pattern. Thus, they have an average rate of rate of

n ¼ aninter þ 1

TinterþTpattern
¼ aninter þ npattern. Plugging in the previous expression for ninter and solving for

a yields a ¼ 1� npattern
ninter

. We choose the same learning rate as Masquelier, 2018. Due to the particular

implementation of STDP-like rules in NEST (Morrison et al., 2007), we do not need to evolve multi-

ple functions describing correlation-induced and homeostatic changes separately, but can evolve

only one function for each branch of the STDP window. Terms in these functions which do not vanish

for Ec
j ! 0 are effectively implementing pre-synaptically triggered (in the acausal branch) and post-

synaptically triggered (in the causal branch) homeostatic mechanisms.

Acknowledgements
We gratefully acknowledge funding from the European Union, under grant agreements 604102,

720270, 785907, 945539 (HBP) and the Manfred Stärk Foundation. We further express our gratitude

towards the Gauss Centre for Supercomputing e.V. (https://www.gauss-centre.eu) for co-funding

this project by providing computing time through the John von Neumann Institute for Computing

(NIC) on the GCS Supercomputer JUWELS at Jülich Supercomputing Centre (JSC). We acknowledge

the use of Fenix Infrastructure resources, which are partially funded from the European Union’s Hori-

zon 2020 research and innovation programme through the ICEI project under the grant agreement

No. 800858. We thank all participants from the HBP SP9 Fürberg meetings for stimulating interac-

tions and Tomoki Fukai for initial discussions and support. We also thank Henrik Mettler and Akos

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 19 of 33

Research article Computational and Systems Biology Neuroscience

https://www.gauss-centre.eu
https://doi.org/10.7554/eLife.66273

Kungl for helpful comments on the manuscript. All network simulations carried out with NEST

(https://www.nest-simulator.org).

Additional information

Funding

Funder Grant reference number Author

European Commission 604102 Jakob Jordan
Walter Senn
Mihai A Petrovici

European Commission 720270 Jakob Jordan
Walter Senn
Mihai A Petrovici

European Commission 785907 Jakob Jordan
Walter Senn
Mihai A Petrovici

Universität Heidelberg Manfred Stärk Foundation Mihai A Petrovici

National Centre for Super-
computing Applications

Jakob Jordan
Maximilian Schmidt

European Commission 800858 Jakob Jordan

European Commission 945539 Jakob Jordan
Walter Senn
Mihai A Petrovici

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Jakob Jordan, Maximilian Schmidt, Conceptualization, Resources, Data curation, Software, Formal

analysis, Validation, Investigation, Visualization, Methodology, Writing - original draft, Writing -

review and editing; Walter Senn, Conceptualization, Resources, Funding acquisition, Project adminis-

tration, Writing - review and editing; Mihai A Petrovici, Conceptualization, Resources, Formal analy-

sis, Funding acquisition, Investigation, Writing - original draft, Project administration, Writing -

review and editing

Author ORCIDs

Jakob Jordan https://orcid.org/0000-0003-3438-5001

Maximilian Schmidt http://orcid.org/0000-0003-1040-2567

Walter Senn http://orcid.org/0000-0003-3622-0497

Mihai A Petrovici https://orcid.org/0000-0003-2632-0427

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.66273.sa1

Author response https://doi.org/10.7554/eLife.66273.sa2

Additional files
Supplementary files
. Transparent reporting form

Data availability

All data and scripts required to reproduce the manuscript figures, as well as source code, simulation

and analysis scripts are publicly available at https://github.com/Happy-Algorithms-League/e2l-cgp-

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 20 of 33

Research article Computational and Systems Biology Neuroscience

https://www.nest-simulator.org
https://orcid.org/0000-0003-3438-5001
http://orcid.org/0000-0003-1040-2567
http://orcid.org/0000-0003-3622-0497
https://orcid.org/0000-0003-2632-0427
https://doi.org/10.7554/eLife.66273.sa1
https://doi.org/10.7554/eLife.66273.sa2
https://github.com/Happy-Algorithms-League/e2l-cgp-snn
https://doi.org/10.7554/eLife.66273

snn (copy archived at https://archive.softwareheritage.org/swh:1:rev:

2f370ba6ec46a46cf959afcc6c1c1051394cd02a).

References
Andrychowicz M, Denil M, Gomez S, Hoffman MW, Pfau D, Schaul T. 2016. Learning to learn by gradient
descent by gradient descent. 30th Conference on Neural Information Processing Systems 3981–3989. https://
papers.nips.cc/paper/2016/file/fb87582825f9d28a8d42c5e5e5e8b23d-Paper.pdf.

Artola A, Bröcher S, Singer W. 1990. Different voltage-dependent thresholds for inducing long-term depression
and long-term potentiation in slices of rat visual cortex. Nature 347:69–72. DOI: https://doi.org/10.1038/
347069a0, PMID: 1975639

Bengio Y, Bengio S, Cloutier J. 1990. Learning a synaptic learning rule. IJCNN-91-Seattle International Joint
Conference on Neural Networks. DOI: https://doi.org/10.1109/IJCNN.1991.155621

Bengio S, Bengio Y, Cloutier J, Gecsei J. 1992. On the optimization of a synaptic learning rule. Preprints Conf.
Optimality in Artificial and Biological Neural Networks.

Bengio S, Bengio Y, Cloutier J, Gecsei J. 1993. Generalization of a Parametric Learning Rule. In: Gielen S,
Kappen B (Eds). ICANN ’93. Springer. p. 502 DOI: https://doi.org/10.1007/978-1-4471-2063-6_131

Bengio S, Bengio Y, Cloutier J. 1994. Use of genetic programming for the search of a new learning rule for
neural networks. IEEE World Congress on Computational Intelligence 324–327. DOI: https://doi.org/10.1109/
ICEC.1994.349932

Beyer H-G, Schwefel H-P. 2002. Evolution strategies–a comprehensive introduction. Natural Computing 1:3–52.
DOI: https://doi.org/10.1023/A:1015059928466

Bi GQ, Poo MM. 1998. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing,
synaptic strength, and postsynaptic cell type. Journal of Neuroscience 18:10464–10472. PMID: 9852584

Billaudelle S, Stradmann Y, Schreiber K, Cramer B, Baumbach A, Dold D, Göltz J, Kungl AF, Wunderlich TC,
Hartel A. 2019. Versatile emulation of spiking neural networks on an accelerated neuromorphic substrate. arXiv.
https://arxiv.org/abs/1912.12980.

Bohnstingl T, Scherr F, Pehle C, Meier K, Maass W. 2019. Neuromorphic hardware learns to learn. Frontiers in
Neuroscience 13:483. DOI: https://doi.org/10.3389/fnins.2019.00483, PMID: 31178681

Caporale N, Dan Y. 2008. Spike timing-dependent plasticity: a hebbian learning rule. Annual Review of
Neuroscience 31:25–46. DOI: https://doi.org/10.1146/annurev.neuro.31.060407.125639, PMID: 18275283

Chalmers DJ. 1991. The evolution of learning: An experiment in genetic connectionism. In: Chalmers DJ (Ed).
Connectionist Models. Amsterdam, Netherlands: Elsevier. p. 81–90. DOI: https://doi.org/10.1016/B978-1-4832-
1448-1.50014-7

Clopath C, Büsing L, Vasilaki E, Gerstner W. 2010. Connectivity reflects coding: a model of voltage-based STDP
with homeostasis. Nature Neuroscience 13:344–352. DOI: https://doi.org/10.1038/nn.2479, PMID: 20098420

Confavreux B, Zenke F, Agnes E, Lillicrap T, Vogels T. 2020. A meta-learning approach to (re) discover plasticity
rules that carve a desired function into a neural network. 34th Conference on Neural Information Processing
Systems. https://proceedings.neurips.cc/paper/2020/file/bdbd5ebfde4934142c8a88e7a3796cd5-Paper.pdf.

Cox J, Witten IB. 2019. Striatal circuits for reward learning and decision-making. Nature Reviews Neuroscience
20:482–494. DOI: https://doi.org/10.1038/s41583-019-0189-2, PMID: 31171839

Davies M, Srinivasa N, Lin T-H, Chinya G, Cao Y, Choday SH, Dimou G, Joshi P, Imam N, Jain S, Liao Y, Lin C-K,
Lines A, Liu R, Mathaikutty D, McCoy S, Paul A, Tse J, Venkataramanan G, Weng Y-H, et al. 2018. Loihi: a
neuromorphic manycore processor with On-Chip learning. IEEE Micro 38:82–99. DOI: https://doi.org/10.1109/
MM.2018.112130359

Davis GW, Bezprozvanny I. 2001. Maintaining the stability of neural function: a homeostatic hypothesis. Annual
Review of Physiology 63:847–869. DOI: https://doi.org/10.1146/annurev.physiol.63.1.847, PMID: 11181978

Dayan P. 1991. Connectionist Models. In: Touretzky D, Elman J, Sejnowski T, Hinton G (Eds). Oxford Companion
to Consciousness. New York: Oxford University Press. p. 45–51.

Deb K. 2001. Multi-Objective Optimization Using Evolutionary Algorithms. New Jersey, United States: John
Wiley & Sons.

Deneve S. 2008. Bayesian spiking neurons I: inference. Neural Computation 20:91–117. DOI: https://doi.org/10.
1162/neco.2008.20.1.91, PMID: 18045002

Dold D, Bytschok I, Kungl AF, Baumbach A, Breitwieser O, Senn W, Schemmel J, Meier K, Petrovici MA. 2019.
Stochasticity from function - Why the bayesian brain may need no noise. Neural Networks 119:200–213.
DOI: https://doi.org/10.1016/j.neunet.2019.08.002, PMID: 31450073

Dudek SM, Bear MF. 1993. Bidirectional long-term modification of synaptic effectiveness in the adult and
immature Hippocampus. The Journal of Neuroscience 13:2910–2918. DOI: https://doi.org/10.1523/
JNEUROSCI.13-07-02910.1993, PMID: 8331379

Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO. 2008. PyNEST: a convenient interface to the NEST
simulator. Frontiers in Neuroinformatics 2:12. DOI: https://doi.org/10.3389/neuro.11.012.2008, PMID: 191
98667

Eppler JM. 2021. The Neural Simulation Tool - NEST. Zenodo. 3c6f0f3. https://doi.org/10.5281/zenodo.1400175

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 21 of 33

Research article Computational and Systems Biology Neuroscience

https://github.com/Happy-Algorithms-League/e2l-cgp-snn
https://archive.softwareheritage.org/swh:1:rev:2f370ba6ec46a46cf959afcc6c1c1051394cd02a
https://archive.softwareheritage.org/swh:1:rev:2f370ba6ec46a46cf959afcc6c1c1051394cd02a
https://papers.nips.cc/paper/2016/file/fb87582825f9d28a8d42c5e5e5e8b23d-Paper.pdf
https://papers.nips.cc/paper/2016/file/fb87582825f9d28a8d42c5e5e5e8b23d-Paper.pdf
https://doi.org/10.1038/347069a0
https://doi.org/10.1038/347069a0
http://www.ncbi.nlm.nih.gov/pubmed/1975639
https://doi.org/10.1109/IJCNN.1991.155621
https://doi.org/10.1007/978-1-4471-2063-6_131
https://doi.org/10.1109/ICEC.1994.349932
https://doi.org/10.1109/ICEC.1994.349932
https://doi.org/10.1023/A:1015059928466
http://www.ncbi.nlm.nih.gov/pubmed/9852584
https://arxiv.org/abs/1912.12980
https://doi.org/10.3389/fnins.2019.00483
http://www.ncbi.nlm.nih.gov/pubmed/31178681
https://doi.org/10.1146/annurev.neuro.31.060407.125639
http://www.ncbi.nlm.nih.gov/pubmed/18275283
https://doi.org/10.1016/B978-1-4832-1448-1.50014-7
https://doi.org/10.1016/B978-1-4832-1448-1.50014-7
https://doi.org/10.1038/nn.2479
http://www.ncbi.nlm.nih.gov/pubmed/20098420
https://proceedings.neurips.cc/paper/2020/file/bdbd5ebfde4934142c8a88e7a3796cd5-Paper.pdf
https://doi.org/10.1038/s41583-019-0189-2
http://www.ncbi.nlm.nih.gov/pubmed/31171839
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1146/annurev.physiol.63.1.847
http://www.ncbi.nlm.nih.gov/pubmed/11181978
https://doi.org/10.1162/neco.2008.20.1.91
https://doi.org/10.1162/neco.2008.20.1.91
http://www.ncbi.nlm.nih.gov/pubmed/18045002
https://doi.org/10.1016/j.neunet.2019.08.002
http://www.ncbi.nlm.nih.gov/pubmed/31450073
https://doi.org/10.1523/JNEUROSCI.13-07-02910.1993
https://doi.org/10.1523/JNEUROSCI.13-07-02910.1993
http://www.ncbi.nlm.nih.gov/pubmed/8331379
https://doi.org/10.3389/neuro.11.012.2008
http://www.ncbi.nlm.nih.gov/pubmed/19198667
http://www.ncbi.nlm.nih.gov/pubmed/19198667
https://doi.org/10.5281/zenodo.1400175
https://doi.org/10.7554/eLife.66273

Frémaux N, Gerstner W. 2015. Neuromodulated Spike-Timing-Dependent plasticity, and theory of Three-Factor
learning rules. Frontiers in Neural Circuits 9:85. DOI: https://doi.org/10.3389/fncir.2015.00085, PMID: 2683456
8

French RM. 1999. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences 3:128–135.
DOI: https://doi.org/10.1016/S1364-6613(99)01294-2, PMID: 10322466

Gaier A, Ha D. 2019. Weight agnostic neural networks. arXiv. https://arxiv.org/abs/1906.04358.
Gewaltig M-O, Diesmann M. 2007. NEST (NEural simulation tool). Scholarpedia 2:1430. DOI: https://doi.org/10.
4249/scholarpedia.1430

Goldman BW, Punch WF. 2014. Analysis of cartesian genetic programming’s Evolutionary Mechanisms. IEEE
Transactions on Evolutionary Computation 19:359–373. DOI: https://doi.org/10.1109/TEVC.2014.2324539

Göltz J, Baumbach A, Billaudelle S, Breitwieser O, Dold D, Kriener L, Kungl AF, Senn W, Schemmel J, Meier K.
2019. Fast and deep neuromorphic learning with time-to-first-spike coding. arXiv. https://arxiv.org/abs/1912.
11443.

Goodfellow I, Bengio Y, Courville A. 2016. Deep Learning. Massachusetts, United States: MIT press.
Gütig R, Aharonov R, Rotter S, Sompolinsky H. 2003. Learning input correlations through nonlinear temporally
asymmetric hebbian plasticity. The Journal of Neuroscience 23:3697–3714. DOI: https://doi.org/10.1523/
JNEUROSCI.23-09-03697.2003, PMID: 12736341

Ivakhnenko AG. 1971. Polynomial theory of complex systems. IEEE Transactions on Systems, Man, and
Cybernetics 364–378. DOI: https://doi.org/10.1109/TSMC.1971.4308320

Izhikevich EM. 2007. Solving the distal reward problem through linkage of STDP and dopamine signaling.
Cerebral Cortex 17:2443–2452. DOI: https://doi.org/10.1093/cercor/bhl152, PMID: 17220510

Izzo D, Biscani F, Mereta A. 2017. Differentiable genetic programming. European Conference on Genetic
Programming 35–51.

Jordan J, Ippen T, Helias M, Kitayama I, Sato M, Igarashi J, Diesmann M, Kunkel S. 2018. Extremely scalable
spiking neuronal network simulation code: from laptops to exascale computers. Frontiers in Neuroinformatics
2:2. DOI: https://doi.org/10.3389/fninf.2018.00002

Jordan J, Petrovici MA, Breitwieser O, Schemmel J, Meier K, Diesmann M, Tetzlaff T. 2019. Deterministic
networks for probabilistic computing. Scientific Reports 9:1–17. DOI: https://doi.org/10.1038/s41598-019-
54137-7

Jordan J. 2021a. e2l-cgp-snn. Software Heritage. swh:1:rev:2f370ba6ec46a46cf959afcc6c1c1051394cd02a. https://
archive.softwareheritage.org/swh:1:dir:390ee2664ea9a00fac9f6be0950a9f6312403292;origin=https://github.com/
Happy-Algorithms-League/e2l-cgp-snn;visit=swh:1:snp:10c1f7017ac4ad4d702a505cf1d845502f61b954;anchor=
swh:1:rev:2f370ba6ec46a46cf959afcc6c1c1051394cd02a

Jordan J. 2021b. HAL-CGP. GitHub. 3.0. https://github.com/Happy-Algorithms-League/hal-cgp
Kappel D, Habenschuss S, Legenstein R, Maass W. 2015. Network plasticity as bayesian inference. PLOS
Computational Biology 11:e1004485. DOI: https://doi.org/10.1371/journal.pcbi.1004485, PMID: 26545099

Kempter R, Gerstner W, van Hemmen JL. 1999. Hebbian learning and spiking neurons. Physical Review E 59:
4498–4514. DOI: https://doi.org/10.1103/PhysRevE.59.4498

Keup C, Kühn T, Dahmen D, Helias M. 2020. Transient chaotic dimensionality expansion by recurrent networks.
arXiv. https://arxiv.org/abs/2002.11006.

Koza JR. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection.
Cambridge, United States: MIT press.

Koza JR. 2010. Human-competitive results produced by genetic programming. Genetic Programming and
Evolvable Machines 11:251–284. DOI: https://doi.org/10.1007/s10710-010-9112-3

Kutschireiter A, Surace SC, Sprekeler H, Pfister JP. 2017. Nonlinear bayesian filtering and learning: a neuronal
dynamics for perception. Scientific Reports 7:8722. DOI: https://doi.org/10.1038/s41598-017-06519-y, PMID: 2
8821729

Linnainmaa S. 1970. The Representation of the Cumulative Rounding Error of an Algorithm as a Taylor Expansion
of the Local Rounding Errors. Helsinki, Finland: University of Helsinki.

Marblestone AH, Wayne G, Kording KP. 2016. Toward an integration of deep learning and neuroscience.
Frontiers in Computational Neuroscience 10:94. DOI: https://doi.org/10.3389/fncom.2016.00094

Masquelier T. 2018. STDP allows Close-to-Optimal spatiotemporal spike pattern detection by single coincidence
detector neurons. Neuroscience 389:133–140. DOI: https://doi.org/10.1016/j.neuroscience.2017.06.032,
PMID: 28668487

Mayr C, Hoeppner S, Furber S. 2019. Spinnaker 2: a 10 million core processor system for brain simulation and
machine learning. arXiv. https://arxiv.org/abs/1911.02385.

Metz L, Maheswaranathan N, Freeman CD, Poole B, Sohl-Dickstein J. 2020. Tasks, stability, architecture, and
compute: training more effective learned optimizers, and using them to train themselves. arXiv. https://arxiv.
org/abs/2009.11243.

Meurer A, Smith CP, Paprocki M, Čertı́k O, Kirpichev SB, Rocklin M, Kumar AMiT, Ivanov S, Moore JK, Singh S,
Rathnayake T, Vig S, Granger BE, Muller RP, Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F, Curry MJ,
et al. 2017. SymPy: symbolic computing in Python. PeerJ Computer Science 3:e103. DOI: https://doi.org/10.
7717/peerj-cs.103

Miconi T, Rawal A, Clune J, Stanley KO. 2020. Backpropamine: training self-modifying neural networks with
differentiable neuromodulated plasticity. arXiv. https://arxiv.org/abs/2002.10585.

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 22 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.3389/fncir.2015.00085
http://www.ncbi.nlm.nih.gov/pubmed/26834568
http://www.ncbi.nlm.nih.gov/pubmed/26834568
https://doi.org/10.1016/S1364-6613(99)01294-2
http://www.ncbi.nlm.nih.gov/pubmed/10322466
https://arxiv.org/abs/1906.04358
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1109/TEVC.2014.2324539
https://arxiv.org/abs/1912.11443
https://arxiv.org/abs/1912.11443
https://doi.org/10.1523/JNEUROSCI.23-09-03697.2003
https://doi.org/10.1523/JNEUROSCI.23-09-03697.2003
http://www.ncbi.nlm.nih.gov/pubmed/12736341
https://doi.org/10.1109/TSMC.1971.4308320
https://doi.org/10.1093/cercor/bhl152
http://www.ncbi.nlm.nih.gov/pubmed/17220510
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.1038/s41598-019-54137-7
https://doi.org/10.1038/s41598-019-54137-7
https://archive.softwareheritage.org/swh:1:dir:390ee2664ea9a00fac9f6be0950a9f6312403292;origin=https://github.com/Happy-Algorithms-League/e2l-cgp-snn;visit=swh:1:snp:10c1f7017ac4ad4d702a505cf1d845502f61b954;anchor=swh:1:rev:2f370ba6ec46a46cf959afcc6c1c1051394cd02a
https://archive.softwareheritage.org/swh:1:dir:390ee2664ea9a00fac9f6be0950a9f6312403292;origin=https://github.com/Happy-Algorithms-League/e2l-cgp-snn;visit=swh:1:snp:10c1f7017ac4ad4d702a505cf1d845502f61b954;anchor=swh:1:rev:2f370ba6ec46a46cf959afcc6c1c1051394cd02a
https://archive.softwareheritage.org/swh:1:dir:390ee2664ea9a00fac9f6be0950a9f6312403292;origin=https://github.com/Happy-Algorithms-League/e2l-cgp-snn;visit=swh:1:snp:10c1f7017ac4ad4d702a505cf1d845502f61b954;anchor=swh:1:rev:2f370ba6ec46a46cf959afcc6c1c1051394cd02a
https://archive.softwareheritage.org/swh:1:dir:390ee2664ea9a00fac9f6be0950a9f6312403292;origin=https://github.com/Happy-Algorithms-League/e2l-cgp-snn;visit=swh:1:snp:10c1f7017ac4ad4d702a505cf1d845502f61b954;anchor=swh:1:rev:2f370ba6ec46a46cf959afcc6c1c1051394cd02a
https://github.com/Happy-Algorithms-League/hal-cgp
https://doi.org/10.1371/journal.pcbi.1004485
http://www.ncbi.nlm.nih.gov/pubmed/26545099
https://doi.org/10.1103/PhysRevE.59.4498
https://arxiv.org/abs/2002.11006
https://doi.org/10.1007/s10710-010-9112-3
https://doi.org/10.1038/s41598-017-06519-y
http://www.ncbi.nlm.nih.gov/pubmed/28821729
http://www.ncbi.nlm.nih.gov/pubmed/28821729
https://doi.org/10.3389/fncom.2016.00094
https://doi.org/10.1016/j.neuroscience.2017.06.032
http://www.ncbi.nlm.nih.gov/pubmed/28668487
https://arxiv.org/abs/1911.02385
https://arxiv.org/abs/2009.11243
https://arxiv.org/abs/2009.11243
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://arxiv.org/abs/2002.10585
https://doi.org/10.7554/eLife.66273

Miller JF. 1999. An empirical study of the efficiency of learning boolean functions using a cartesian genetic
programming approach. Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation-
1135–1142. DOI: https://doi.org/10.5555/2934046.2934074

Miller JF. 2011. Cartesian Genetic Programming. Berlin, Heidelberg: Springer. DOI: https://doi.org/10.1007/978-
3-642-17310-3_2

Miller BL, Goldberg DE. 1995. Genetic algorithms, tournament selection, and the effects of noise. Complex
Systems 9:193–212.

Miller KD, MacKay DJC. 1994. The role of constraints in hebbian learning. Neural Computation 6:100–126.
DOI: https://doi.org/10.1162/neco.1994.6.1.100

Miller J, Thomson P. 2000. Cartesian genetic programming. European Conference on Genetic Programming
121–132.

Moradi S, Qiao N, Stefanini F, Indiveri G. 2017. A scalable multicore architecture with heterogeneous memory
structures for dynamic neuromorphic asynchronous processors (DYNAPs). IEEE Transactions on Biomedical
Circuits and Systems 12:106–122. DOI: https://doi.org/10.1109/TBCAS.2017.2759700

Morrison A, Aertsen A, Diesmann M. 2007. Spike-timing-dependent plasticity in balanced random networks.
Neural Computation 19:1437–1467. DOI: https://doi.org/10.1162/neco.2007.19.6.1437, PMID: 17444756

Morrison A, Diesmann M, Gerstner W. 2008. Phenomenological models of synaptic plasticity based on spike
timing. Biological Cybernetics 98:459–478. DOI: https://doi.org/10.1007/s00422-008-0233-1, PMID: 18491160

Ngezahayo A, Schachner M, Artola A. 2000. Synaptic activity modulates the induction of bidirectional synaptic
changes in adult mouse Hippocampus. The Journal of Neuroscience 20:2451–2458. DOI: https://doi.org/10.
1523/JNEUROSCI.20-07-02451.2000, PMID: 10729325

Nordlie E, Gewaltig MO, Plesser HE. 2009. Towards reproducible descriptions of neuronal network models.
PLOS Computational Biology 5:e1000456. DOI: https://doi.org/10.1371/journal.pcbi.1000456, PMID: 19662159

Oja E. 1982. A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology 15:
267–273. DOI: https://doi.org/10.1007/BF00275687, PMID: 7153672

Orchard J, Wang L. 2016. The evolution of a generalized neural learning rule. Neural Networks (IJCNN), 2016
International Joint Conference 4688–4694.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison
A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, et al. 2019. PyTorch:
an imperative style, high-performance deep learning library. 33rd Conference on Neural Information Processing
Systems. . 8024–8035. https://papers.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.
pdf.

Pfister JP, Toyoizumi T, Barber D, Gerstner W. 2006. Optimal spike-timing-dependent plasticity for precise
action potential firing in supervised learning. Neural Computation 18:1318–1348. DOI: https://doi.org/10.1162/
neco.2006.18.6.1318, PMID: 16764506

Pfister JP, Dayan P, Lengyel M. 2010. Synapses with short-term plasticity are optimal estimators of presynaptic
membrane potentials. Nature Neuroscience 13:1271–1275. DOI: https://doi.org/10.1038/nn.2640, PMID: 20
852625

Plotnikov D, Rumpe B, Blundell I, Ippen T, Eppler JM, Morrison A. 2016. NESTML: a modeling language for
spiking neurons. arXiv. https://arxiv.org/abs/1606.02882.

Radi A, Poli R. 2003. Discovering efficient learning rules for feedforward neural networks using genetic
programming. In: Abraham A, Jain LC, Kacprzyk J (Eds). Recent Advances in Intelligent Paradigms and
Applications. Springer. p. 133–159. DOI: https://doi.org/10.1007/978-3-7908-1770-6_7

Real E, Liang C, So D, Le Q. 2020. AutoML-Zero: evolving machine learning algorithms from scratch.
International Conference on Machine Learning 8007–8019.

Risi S, Stanley KO. 2010. Indirectly encoding neural plasticity as a pattern of local rules. In: Doncieux S, Girard B,
Guillot A, Hallam J, Meyer JA, Mouret JB (Eds). From Animals to Animats 11. New York, United States:
Springer. p. 533–543. DOI: https://doi.org/10.1007/978-3-642-15193-4_50

Rumelhart DE, Hinton GE, Williams RJ. 1985. Learning Internal Representations by Error Propagation. MIT Press.
DOI: https://doi.org/10.5555/104279.104293

Sacramento J, Costa RP, Bengio Y, Senn W. 2018. Dendritic cortical microcircuits approximate the
backpropagation algorithm. NIPS’18: Proceedings of the 32nd International Conference on Neural Information
Processing Systems 8721–8732. DOI: https://doi.org/10.5555/3327546.3327550

Schmidt M, Jordan J. 2020. HAL-CGP. Cartesian Genetic Programming in Pure Python. fbb5435. https://github.
com/Happy-Algorithms-League/hal-cgp

So DR, Liang C, Le Q. 2019. The evolved transformer. arXiv. https://arxiv.org/abs/1901.11117.
Soltoggio A, Stanley KO, Risi S. 2018. Born to learn: the inspiration, progress, and future of evolved plastic
artificial neural networks. Neural Networks 108:48–67. DOI: https://doi.org/10.1016/j.neunet.2018.07.013,
PMID: 30142505

Sutton RS, Barto AG. 2018. Reinforcement Learning: An Introduction. Cambridge, United Kingdom: MIT Press.
SymEngine Contributors. 2021. SymEngine.GitHub. 0.7.0. https://github.com/symengine/symengine/releases/
tag/v0.7.0

Topchy A, Punch WF. 2001. Faster genetic programming based on local gradient search of numeric leaf values.
Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation 155–162. DOI: https://
doi.org/10.5555/2955239.2955258

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 23 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.5555/2934046.2934074
https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.1162/neco.1994.6.1.100
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1162/neco.2007.19.6.1437
http://www.ncbi.nlm.nih.gov/pubmed/17444756
https://doi.org/10.1007/s00422-008-0233-1
http://www.ncbi.nlm.nih.gov/pubmed/18491160
https://doi.org/10.1523/JNEUROSCI.20-07-02451.2000
https://doi.org/10.1523/JNEUROSCI.20-07-02451.2000
http://www.ncbi.nlm.nih.gov/pubmed/10729325
https://doi.org/10.1371/journal.pcbi.1000456
http://www.ncbi.nlm.nih.gov/pubmed/19662159
https://doi.org/10.1007/BF00275687
http://www.ncbi.nlm.nih.gov/pubmed/7153672
https://papers.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://papers.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1162/neco.2006.18.6.1318
https://doi.org/10.1162/neco.2006.18.6.1318
http://www.ncbi.nlm.nih.gov/pubmed/16764506
https://doi.org/10.1038/nn.2640
http://www.ncbi.nlm.nih.gov/pubmed/20852625
http://www.ncbi.nlm.nih.gov/pubmed/20852625
https://arxiv.org/abs/1606.02882
https://doi.org/10.1007/978-3-7908-1770-6_7
https://doi.org/10.1007/978-3-642-15193-4_50
https://doi.org/10.5555/104279.104293
https://doi.org/10.5555/3327546.3327550
https://github.com/Happy-Algorithms-League/hal-cgp
https://github.com/Happy-Algorithms-League/hal-cgp
https://arxiv.org/abs/1901.11117
https://doi.org/10.1016/j.neunet.2018.07.013
http://www.ncbi.nlm.nih.gov/pubmed/30142505
https://github.com/symengine/symengine/releases/tag/v0.7.0
https://github.com/symengine/symengine/releases/tag/v0.7.0
https://doi.org/10.5555/2955239.2955258
https://doi.org/10.5555/2955239.2955258
https://doi.org/10.7554/eLife.66273

Toyoizumi T, Pfister JP, Aihara K, Gerstner W. 2005. Generalized Bienenstock-Cooper-Munro rule for spiking
neurons that maximizes information transmission. PNAS 102:5239–5244. DOI: https://doi.org/10.1073/pnas.
0500495102, PMID: 15795376

Urbanczik R, Senn W. 2009. Reinforcement learning in populations of spiking neurons. Nature Neuroscience 12:
250–252. DOI: https://doi.org/10.1038/nn.2264, PMID: 19219040

Urbanczik R, Senn W. 2014. Learning by the dendritic prediction of somatic spiking. Neuron 81:521–528.
DOI: https://doi.org/10.1016/j.neuron.2013.11.030, PMID: 24507189

van der Walt S, Colbert SC, Varoquaux G. 2011. The NumPy array: a structure for efficient numerical
computation. Computing in Science & Engineering 13:22–30. DOI: https://doi.org/10.1109/MCSE.2011.37

Vasilaki E, Frémaux N, Urbanczik R, Senn W, Gerstner W. 2009. Spike-based reinforcement learning in
continuous state and action space: when policy gradient methods fail. PLOS Computational Biology 5:
e1000586. DOI: https://doi.org/10.1371/journal.pcbi.1000586, PMID: 19997492

Weaver L, Tao N. 2001. The optimal reward baseline for gradient-based reinforcement learning. Proceedings of
the Seventeenth Conference on Uncertainty in Artificial Intelligence 535–538. DOI: https://doi.org/10.5555/
2074022.2074088

Welch BL. 1947. The generalization ofstudent’s’ problem when several different population variances are
involved. Biometrika 34:28–35. DOI: https://doi.org/10.1093/biomet/34.1-2.28, PMID: 20287819

Whittington JCR, Bogacz R. 2019. Theories of error Back-Propagation in the brain. Trends in Cognitive Sciences
23:235–250. DOI: https://doi.org/10.1016/j.tics.2018.12.005, PMID: 30704969

Williams R. 1986. Reinforcement Learning in Connectionist Networks: A Mathematical Analysis. San Diego:
University of California.

Williams R. 1988. Toward a Theory of Reinforcement-Learning Connectionist Systems. Boston: Northeastern
University.

Williams RJ. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning 8:229–256. DOI: https://doi.org/10.1007/BF00992696

Zador AM. 2019. A critique of pure learning and what artificial neural networks can learn from animal brains.
Nature Communications 10:1–7. DOI: https://doi.org/10.1038/s41467-019-11786-6, PMID: 31434893

Zaytsev YV, Morrison A. 2014. CyNEST: a maintainable Cython-based interface for the NEST simulator. Frontiers
in Neuroinformatics 8:23. DOI: https://doi.org/10.3389/fninf.2014.00023, PMID: 24672470

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 24 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.1073/pnas.0500495102
https://doi.org/10.1073/pnas.0500495102
http://www.ncbi.nlm.nih.gov/pubmed/15795376
https://doi.org/10.1038/nn.2264
http://www.ncbi.nlm.nih.gov/pubmed/19219040
https://doi.org/10.1016/j.neuron.2013.11.030
http://www.ncbi.nlm.nih.gov/pubmed/24507189
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1371/journal.pcbi.1000586
http://www.ncbi.nlm.nih.gov/pubmed/19997492
https://doi.org/10.5555/2074022.2074088
https://doi.org/10.5555/2074022.2074088
https://doi.org/10.1093/biomet/34.1-2.28
http://www.ncbi.nlm.nih.gov/pubmed/20287819
https://doi.org/10.1016/j.tics.2018.12.005
http://www.ncbi.nlm.nih.gov/pubmed/30704969
https://doi.org/10.1007/BF00992696
https://doi.org/10.1038/s41467-019-11786-6
http://www.ncbi.nlm.nih.gov/pubmed/31434893
https://doi.org/10.3389/fninf.2014.00023
http://www.ncbi.nlm.nih.gov/pubmed/24672470
https://doi.org/10.7554/eLife.66273

Appendix 1

A reward-driven learning
Full evolution data for different CGP hyperparameter choices

The following tables summarize all evolved plasticity rules for the four different hyperparameter sets

used for the reward-driven learning experiments.

CGP hyperparameter set 0

Population � ¼ 1; pmutation ¼ 0:035

Genome ninputs ¼ 3; noutputs ¼ 1; nrows ¼ 1; ncolumns ¼ 24; lmax ¼ 24

Primitives Add, Sub, Mul, Div, Const(1.0), Const(0.5)

EA l ¼ 4; nbreeding ¼ 4; ntournament ¼ 1; reorder ¼ true

Other max generations ¼ 1000;minimal fitness ¼ 500:0

Discovered plasticity rules for hyperparameter set 0

Label Fitness F Expression f

LR0 216.2 �Er
j þ Er

j =R

LR1 73.0 ðRþ Er
j
2Þ=�R

LR2 216.2 Er
j ðR� 1:0Þ

LR3 221.6 Er
j =ð2Rþ ðRþ 1:0ÞðRþ �RÞ þ 1:0Þ

LR4 234.2 �Er
j ðR� 1ÞðRþ �RÞ

LR5 216.2 Er
j ðR� 1Þ

LR6 69.2 4:0Er
j
2=�Rþ 2:0Er

j

LR7 234.2 Er
j ðR� 1ÞðRþ �RÞ=R

0 250 500 750 1000

Generation

0

100

200

300

F
it
n
e
ss

LR0

LR1

LR2

LR3

LR4

LR5

LR6

LR7

Appendix 1—figure 1. Fitness of best individual per generation as a function of the generation

index for multiple runs of the evolutionary algorithm with different initial conditions for hyperpara-

meter set 0.

CGP hyperparameter set 1

Population � ¼ 1; pmutation ¼ 0:035

Continued on next page

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 25 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

continued

CGP hyperparameter set 1

Population � ¼ 1; pmutation ¼ 0:035

Genome ninputs ¼ 4
�; noutputs ¼ 1; nrows ¼ 1; ncolumns ¼ 12; lmax ¼ 12

Primitives Add, Sub, Mul, Div, Const(1.0), Const(0.5)

EA l ¼ 4; nbreeding ¼ 4; ntournament ¼ 1; reorder ¼ true

Other max generations ¼ 1000;minimal fitness ¼ 500:0

� Bold highlights values changed with respect to hyperparameter set 0.

Discovered plasticity rules for hyperparameter set 1

Label Fitness F Expression f

LR0 238.6 ð�Er
j ðRþ �R�ðRþ �R�ÞÞ þ Er

j þ �R�Þ=ðRþ �R�ðRþ �R�ÞÞ

LR1 233.4 Er
j ðR� 1Þ=ðRðR� �RþÞÞ

LR2 217.2 �Er
j ð�Rþ �R� þ 1:0Þ

LR3 227.6 R�R� � Er
j þ Er

j =R

LR4 247.2 ðR� 1:0ÞðRþ Er
j þ 2�RþÞ

LR5 198.2 ðEr
j � �Rþ � �R�Þ=ðRþ �RþÞ

LR6 216.2 Er
j ðR� 1Þ

LR7 225.8 �Er
j � �R� þ ðR� �R�ÞðEr

j þ �R�Þ

0 250 500 750 1000

Generation

0

100

200

300

F
it
n
e
ss

LR0

LR1

LR2

LR3

LR4

LR5

LR6

LR7

Appendix 1—figure 2. Fitness of best individual per generation as a function of the generation

index for multiple runs of the evolutionary algorithm with different initial conditions for hyperpara-

meter set 1.

CGP hyperparameter set 2

Population � ¼ 1; pmutation ¼ 0:035

Genome ninputs ¼ 4; noutputs ¼ 1; nrows ¼ 1; ncolumns ¼ 24
�; lmax ¼ 24

Primitives Add, Sub, Mul, Div, Const(1.0), Const(0.5)

EA l ¼ 4; nbreeding ¼ 4; ntournament ¼ 1; reorder ¼ false

Other max generations ¼ 1000;minimal fitness ¼ 500:0

� Bold highlights values changed with respect to hyperparameter set 1.

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 26 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

Discovered plasticity rules for hyperparameter set 2

Label Fitness F Expression f

LR0 127.2 Er
j =ðRþ �Rþ � �R�Þ

LR1 192.0 Er
j =ðRþ �RþÞ

LR2 216.2 Er
j ðR� 1Þ

LR3 170.6 ð2Er
j
�R�ðR� �R�Þ þ Er

j � 1Þ=ðR� �R�Þ

LR4 237.6 ð�REr
j ð�R
� þ 1Þ þ Er

j þ �R�Þ=ðRð�R� þ 1ÞÞ

LR5 233.4 Er
j ð1� RÞ=ðR� �RþÞ

LR6 120.8 ðRþ �R�ÞðEr
j � �RþÞ

LR7 254.8 ð�R�R� þ 2Er
j ÞðR�R

� þ R� �RþÞ

0 250 500 750 1000

Generation

0

100

200

300

F
it
n
e
ss

LR0

LR1

LR2

LR3

LR4

LR5

LR6

LR7

Appendix 1—figure 3. Fitness of best individual per generation as a function of the generation

index for multiple runs of the evolutionary algorithm with different initial conditions for hyperpara-

meter set 2.

CGP hyperparameter set 3

Population � ¼ 1; pmutation ¼ 0:035

Genome ninputs ¼ 4; noutputs ¼ 1; nrows ¼ 1; ncolumns ¼ 24; lmax ¼ 24

Primitives Add, Sub, Mul, Div, Const(1.0), Const(0.5)

EA l ¼ 4; nbreeding ¼ 4; ntournament ¼ 1; reorder ¼ true�

Other maxgenerations ¼ 1000;minimal fitness ¼ 500:0

� Bold highlights values changed with respect to hyperparameter set 2.

Discovered plasticity rules for hyperparameter set 3

Label Fitness F Expression f

LR0 236.0 Er
j ð�R

3ð�R� þ 1Þ þ 1Þ=R

LR1 242.0 Er
j ðR� �Rþ þ �R�Þ

LR2 242.0 Er
j ðR� �Rþ þ �R�Þ

Continued on next page

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 27 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

continued

Discovered plasticity rules for hyperparameter set 3

Label Fitness F Expression f

LR3 227.6 RðEr
j þ �R�Þ � Er

j

LR4 256.0 Er
j ðR� �Rþ þ �R�Þ=ð�Rþ þ 1:0Þ

LR5 71.0 ð�Rþð�Rþ Er
j þ �R�ðRþ �R�Þ þ �R�Þ � �R�Þ=�Rþ

LR6 216.2 Er
j ðR� 1:0Þ

LR7 227.8 ðEr
j � �R� 2ÞðRþ �R� 2 � 1:0Þ

0 250 500 750 1000

Generation

0

100

200

300

F
it
n
e
ss

LR0

LR1

LR2

LR3

LR4

LR5

LR6

LR7

Appendix 1—figure 4. Fitness of best individual per generation as a function of the generation

index for multiple runs of the evolutionary algorithm with different initial conditions for hyperpara-

meter set 3.

Causal and homeostatic terms over trials

Appendix 1—figure 5 illustrates the behavior of the causal and homeostatic terms of the six plastic-

ity rules discovered in the reward-driven learning experiments.

Appendix 1—figure 5 continued on next page

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 28 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

Appendix 1—figure 5 continued

Appendix 1—figure 5. Causal and homeostatic terms of LR-LR6 over trials. cþ; c� represent causal

terms (prefactors of eligibility trace), hþ; h� represent homeostatic terms, for positive and negative

rewards, respectively.

Cumulative reward over trials

Appendix 1—figure 6 illustrates the cumulative reward over trials for the six platicity rules discov-

ered in the reward-driven learning experiments.

0

200

c
u
m
.
re
w
a
rd

0

200

c
u
m
.
re
w
a
rd

0 200

Time (s)

0

200

c
u
m
.
re
w
a
rd

0 200

Time (s)

Appendix 1—figure 6. Cumulative reward of LR-LR5 over trials. Solid line represent mean, shaded

regions indicate plus/minus one standard deviation over 80 experiments. Cumulative reward of LR0

shown in all panels for comparison. Gray line indicates maximal performance (maximal reward

received in each trial).

Error-driven learning – simplification of the discovered rules
As in the main manuscript v is the teacher potential, u the student membrane potential, and h a fixed

learning rate. �sjðtÞ ¼ ðk � sjÞðtÞ represents the the presynaptic spike train sj filtered by the synaptic

kernel k.

We first consider Equation 10:

Dwj ¼ hðv� uÞ�sj
2u�1
v

¼ hðv� uÞ�sj
2ðv�dÞ�1

v

¼ hðv� uÞ�sj 2� 2
d

v
|{z}

�1

�
1

v
|{z}

»0

0

B
B
@

1

C
C
A

»2ðv� uÞ�sj ;

where we introduced d :¼ v� u. From the third to the fourth line, we assumed that the mismatch

between student and teacher potential is much smaller than their absolute magnitude and that their

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 29 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

absolute magnitude is much larger than one. For our parameter choices and initial conditions, this is

a reasonable assumption.

We next consider Equation 11:

Dwj ¼ h�sjðvþ uÞ vðv�uÞ�
�sj

v2

¼ h�sjð2v� dÞ v�u
v
�

�sj
v2

� �

¼ h�sjð2�
d
v
Þ ðv� uÞ�

�sj
v

� �

¼ h�sj 2�
d

v
|{z}

�1

0

B
B
@

1

C
C
A
ðv� uÞ� 2

�sj

v
|{z}

�1

þ
d

v
|{z}

�1

�sj

v
|{z}

�1

0

B
B
@

1

C
C
A

»2ðv� uÞ�sj

As previously, from the third to fourth line, we assumed that the mismatch between student and

teacher potential is much smaller than their absolute magnitude and that their absolute magnitude

is much larger than one. This implies
�sj
v
� 1 as �sj »Oð1Þ for small input rates.

The additional terms in both Equation 10 and Equation 11 hence reduce to a simple scaling of

the learning rate and thus perform similarly to the purple rule in Figure 4.

Correlation-driven learning – detailed experimental results
Appendix 1—figure 7 illustrates membrane potential dynamics for the output neuron using the two

plasticity rules discovered in the correlation-driven learning experiments.

0

10

20

M
e
m
b
ra
n
e
p
o
te
n
ti
al

0 1

0

10

20

M
e
m
b
ra
n
e
p
ot
e
n
ti
al

49 50

Time (s)

199 200

Appendix 1—figure 7. Evolution of membrane potential for two evolved learning rules. Membrane

potential u of the output neuron over the course of learning using the two evolved learning rules

LR1 (top row, Equation 19) and LR2 (bottom row, Equation 20) (compare Figure 5B). Gray boxes

indicate presentation of the frozen-noise pattern.

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 30 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

Simulation details
Appendix 1—table 1, Appendix 1—table 2, and Appendix 1—table 3 summarize the network

models used in the experiments (according to Nordlie et al., 2009).

Appendix 1—table 1. Description of the network model used in the reward-driven learning task

(4.5).

A model summary

Populations 2

Topology —

Connectivity Feedforward with fixed connection probability

Neuron model Leaky integrate-and-fire (LIF) with exponential post-synaptic currents

Plasticity Reward-driven

Measurements Spikes

B populations

Name Elements Size

Input Spike generators with pre-defined
spike trains (see 4.5)

N

Output LIF neuron 1

C connectivity

Source Target Pattern

Input Output Fixed pairwise connection probability p; synaptic delay d; random initial
weights from Nð0;s2

wÞ

D neuron model

Type LIF neuron with exponential post-synaptic currents

Subthreshold dynamics duðtÞ
dt
¼ � uðtÞ�EL

t m
þ IsðtÞ

Cm
if not refractory

uðtÞ ¼ ur else IsðtÞ ¼
P

i;k wk e
�ðt�tk

i
Þ=t sQðt � tki Þ, k: neuron index, i:

spike index

Spiking Stochastic spike generation via inhomogeneous Poisson process with

intensity fðuÞ ¼ � eðu�uthÞ=Du; reset of u to ur after spike emission and
refractory period of t r

E synapse model

Plasticity Reward-driven with episodic update (Equation 2, Equation 3)

Other Each synapse stores an eligibility trace (Equation 22)

F simulation parameters

Populations N ¼ 50

Connectivity p ¼ 0:8;sw ¼ 10
3 pA

Neuron model � ¼ 0:01Hz;Du ¼ 0:2mV;EL ¼ �70mV; ur ¼ �70mV; uth ¼ �55
mV; t m ¼ 10ms;Cm ¼ 250pF; t r ¼ 2ms; t s ¼ 2ms

Synapse model h ¼ 10; t M ¼ 500ms; d ¼ 1ms

Input M ¼ 30; r ¼ 6Hz; T ¼ 500ms; ntraining ¼ 500; nexp ¼ 10

Other h ¼ 0:01ms;R 2 f�1; 1g;mr ¼ 100

G CGP parameters

Population � ¼ 1; pmutation ¼ 0:035

Genome ninputs ¼ f3; 4g; noutputs ¼ 1; nrows ¼ 1; ncolumns ¼ f12; 24g; lmax ¼ f12; 24g

Primitives Add, Sub, Mul, Div, Const(1.0), Const(0.5)

EA l ¼ 4; nbreeding ¼ 4; ntournament ¼ 1; reorder ¼ ftrue; falseg

Other max generations ¼ 1000;minimal fitness ¼ 500

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 31 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

Appendix 1—table 2. Description of the network model used in the error-driven learning task (4.6).

A model summary

Populations 3

Topology —

Connectivity Feedforward with all-to-all connections

Neuron model Leaky integrate-and-fire (LIF) with exponential post-synaptic currents

Plasticity Error-driven

Measurements Spikes, membrane potentials

B populations

Name Elements Size

Input Spike
generators with
pre-defined
spike trains
(see 4.6)

N

Teacher LIF neuron 1

Student LIF neuron 1

C connectivity

Source Target Pattern

Input Teacher All-to-all; synaptic delay d; random weights w ~U½wmin;wmax�; weights randomly shifted by
wshift on each trial

Input Student All-to-all; synaptic delay d; fixed initial weights w0

D neuron model

Type LIF neuron with exponential post-synaptic currents

Subthreshold dynamics duðtÞ
dt
¼ � uðtÞ�EL

t m
þ IsðtÞ

Cm
IsðtÞ ¼

P

i;k Jk e
�ðt�tk

i
Þ=t sQðt � tki Þk: neuron index, i: spike index

Spiking Stochastic spike generation via inhomogeneous Poisson process with intensity

fðuÞ ¼ � eðu�uthÞ=Du; no reset after spike emission

E synapse model

Plasticity Error-driven with continuous update (Equation 7, Equation 9)

F simulation parameters

Populations N ¼ 5

Connectivity wmin ¼ �20;wmax ¼ 20;wshift ~ f�15; 15g;w0 ¼ 5

Neuron model � ¼ 0:2Hz;Du ¼ 1:0mV;EL ¼ �70mV; uth ¼ �55mV; t m ¼ 10ms;Cm ¼ 250pF; t s ¼ 2ms

Synapse model h ¼ 1:7; d ¼ 1ms; t I ¼ 100:0ms

Input rmin ¼ 150Hz; rmax ¼ 850Hz;T ¼ 10; 000ms; nexp ¼ 15

Other h ¼ 0:01ms; dt ¼ 5ms

G CGP parameters

Population � ¼ 4; pmutation ¼ 0:045

Genome ninputs ¼ 3; noutputs ¼ 1; nrows ¼ 1; ncolumns ¼ 12; lmax ¼ 12

Primitives Add, Sub, Mul, Div, Const(1.0)

EA l ¼ 4; nbreeding ¼ 4; ntournament ¼ 1

Other max generations ¼ 1000;minimal fitness ¼ 0:0

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 32 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

Appendix 1—table 3. : Description of the network model used in the correlation-driven learning

task (4.7).

A model summary

Populations 2

Topology —

Connectivity Feedforward with fixed connection probability

Neuron model Leaky integrate-and-fire (LIF) with exponential post-synaptic currents

Plasticity Reward-driven

Measurements Spikes

B populations

Name Elements Size

Input Spike generators with pre-defined
spike trains (see 4.5)

N

Output LIF neuron 1

C connectivity

Source Target Pattern

Input Output Fixed pairwise connection probability p; synaptic
delay d; random initial weights from Nð0;s2

wÞ

D neuron model

Type LIF neuron with exponential post-synaptic currents

Subthreshold dynamics duðtÞ
dt
¼ � uðtÞ�EL

t m
þ IsðtÞ

Cm
if not refractory

uðtÞ ¼ ur else

IsðtÞ ¼
P

i;k wk e
�ðt�tk

i
Þ=t sQðt � tki Þ, k: neuron

index, i: spike index

Spiking Stochastic spike generation via

inhomogeneous Poisson process with intensity fðuÞ ¼ � eðu�uthÞ=Du;
reset of u to ur
after spike emission and refractory period of t r

E synapse model

Plasticity Reward-driven with episodic update (Equation 2, Equation 3)

Other Each synapse stores an eligibility trace (Equation 22)

F simulation parameters

Populations N ¼ 50

Connectivity p ¼ 0:8;sw ¼ 10
3 pA

Neuron model � ¼ 0:01Hz;Du ¼ 0:2mV;EL ¼ �70mV; ur ¼ �70mV; uth ¼ �55mV;
t m ¼ 10ms;Cm ¼ 250pF; t r ¼ 2ms; t s ¼ 2ms

Synapse model h ¼ 10; t M ¼ 500ms; d ¼ 1ms

Input M ¼ 30; r ¼ 6Hz; T ¼ 500ms; ntraining ¼ 500; nexp ¼ 10

Other h ¼ 0:01ms;R 2 f�1; 1g;mr ¼ 100

G CGP parameters

Population � ¼ 8; pmutation ¼ 0:05

Genome ninputs ¼ 2; noutputs ¼ 1; nrows ¼ 1; ncolumns ¼ 5; lmax ¼ 5

Primitives Add, Sub, Mul, Div, Pow, Const(1.0)

EA l ¼ 8; nbreeding ¼ 8; ntournament ¼ 1

Other max generations ¼ 2000;minimal fitness ¼ 10:0

Jordan, Schmidt, et al. eLife 2021;10:e66273. DOI: https://doi.org/10.7554/eLife.66273 33 of 33

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66273

