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ABSTRACT
The Yin-Yang dataset was developed for research on biologically
plausible error backpropagation and deep learning in spiking neu-
ral networks. It serves as an alternative to classic deep learning
datasets, especially in early-stage prototyping scenarios for both
network models and hardware platforms, for which it provides
several advantages. First, it is smaller and therefore faster to learn,
thereby being better suited for small-scale exploratory studies in
both software simulations and hardware prototypes. Second, it ex-
hibits a very clear gap between the accuracies achievable using
shallow as compared to deep neural networks. Third, it is easily
transferable between spatial and temporal input domains, making
it interesting for different types of classification scenarios.

CCS CONCEPTS
• Networks → Network performance evaluation; • Comput-
ing methodologies → Bio-inspired approaches; • Hardware →

Functional verification.
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1 INTRODUCTION
We introduce the Yin-Yang dataset for learning in hierarchical net-
works [11]. It is tailored to the requirements of research on bio-
logically plausible error backpropagation algorithms, learning in
spiking neural networks and hierarchical networks on neuromor-
phic hardware. These fields typically require small but at the same
time not trivially solvable datasets to prototype and test network
architectures and learning algorithms. Setups commonly used for
this purpose involve either elementary logic tasks such as XOR or
small-scale datasets such as MNIST or fashion-MNIST [12, 22] and
reduced versions thereof. However, these setups often do not ade-
quately fulfill their purpose. Binary XOR only has a tiny number of
input patterns and therefore a very limited, discrete set of reachable
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Figure 1: Training, validation and test dataset. Each dot in
the yin-yang symbol represents one sample of the dataset.
The color of the dot denotes its class (“Yin”, “Yang” or “Dot”).
This figure was generated using the default settings for ran-
dom seeds and dataset sizes (5000 samples for the training
set and 1000 samples each for the validation and test set).

accuracies, making the evaluation and comparison of learning algo-
rithms difficult. In turn, MNIST-type datasets have other drawbacks.
For one, they require comparatively large networks, which might
not be feasible during prototyping. But even more importantly, and
despite this ostensible difficulty, they can nevertheless be classified
with high accuracy even by shallow networks or networks without
learning in the lower layers. This is problematic because training a
deep network with an imperfect learning algorithm can result in
performance indistinguishable from that of a shallow network or
a network with plasticity only in the last layer. Conversely, a test
on the MNIST dataset can fail to reveal the inability of the training
algorithm to propagate error signals through the network, as the
achieved high accuracies obscure the underlying problem.

The Yin-Yang dataset can provide an alternative for these testing
and prototyping scenarios as it is solvable by smaller networks,
contains fewer samples and most importantly exhibits a large gap
between the accuracies reached by shallow or partly fixed networks
on the one hand and correctly trained deep networks on the other.
Note that here, we use “deep” in opposition to “shallow”, i.e., any
network that has latent variables through which errors need to
propagate. We consider a shallow network to be the equivalent of a
single-layer perceptron, with only an input layer connected directly
to a label layer.

107

https://doi.org/10.1145/3517343.3517380
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3517343.3517380


NICE 2022, March 28-April 1, 2022, Virtual Event, USA Kriener et al.

0 100 200 300
epoch

1

10

100

er
ro

r [
%

]

train errors
validation errors
test error

0.0 0.5 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

y1

0 100 200 300
epoch

1

10

100

er
ro

r [
%

]

train error
validation error
test error

0.0 0.5 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

y1

0 100 200 300
epoch

1

10

100

er
ro

r [
%

]

train error
validation error
test error

0.0 0.5 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

y1

A

B

C

Figure 2: Comparison of exemplary training results for dif-
ferent network setups. Network parameters are given in Ta-
ble 2. Left column: Evolution of the validation and training
error during training. Right column: training result illus-
trated on the test set. (A) Networkwith one hidden layer and
fully functional synaptic plasticity via classical error back-
propagation. (B) Shallownetwork. (C)Networkwith one hid-
den layer and frozen lower weights.

2 DATASET
Each sample in the dataset represents a point in a two-dimensional
representation of the yin-yang symbol. Depending on their location
in the symbol the samples are classified into the “Yin”, “Yang” or
“Dot” class (Fig. 1). Even though the areas in the yin-yang symbol
covered by the different classes have different sizes, the dataset is
designed to be balanced, which means that all classes are repre-
sented by approximately the same amount of samples. Note that
therefore the density of samples is higher in the “Dot”-class regions,
as the combined area of these regions is smaller than that of the
others.

The samples are randomly generated using rejection sampling.
The exact version of a generated set of samples is therefore deter-
mined by the random seed and dataset size. This makes it possible
to produce multiple dataset versions by providing different random
seeds and dataset sizes. In the default configuration the training
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Figure 3: Impact of hidden layer size on network perfor-
mance. (A) Validation errors during training for three differ-
ent network architectures with different hidden layer sizes.
For each architecture, ten training runs with different ran-
dom weight initialization are overlaid. (B) Mean and stan-
dard deviation of the final test error depending on hidden
layer size of the network. The colored data points corre-
spond to the runs shown in A.

set has 5000 samples while the validation and test sets have 1000
samples respectively, each generated with a different random seed.

As can be seen in Fig. 1, values of all samples in the dataset are
strictly positive. This is the case to accommodate network models
which require positive input values only (common in the field of
biologically-plausible networks, as firing rates as well as spike
times are typically denoted by positive numbers). Because of that
the yin-yang symbol is not centered around zero. This however
complicates training in neuron models without intrinsic (learnable)
bias. To facilitate training for these models, each sample in the
dataset consists not only of the coordinates (x ,y) determining the
position in the yin-yang symbol but additionally also the values
(1 − x , 1 − y). This effectively symmetrizes the input and removes
the need for a bias even though the yin-yang symbol is not centered
around the origin of the coordinate system.

3 TRAINING RESULTS
As a baseline for further applications of this dataset we also pro-
vide some training results achieved with classical artificial neural
networks. In particular, we compare network performance in three
scenarios:

(1) a network with one hidden layer and fully functional error
backpropagation;

(2) a shallow network with only an input and an output layer;
(3) a network with one hidden layer, but with frozen weights

between the input and the hidden layer to emulate training
with a faulty error backpropagation algorithm.

For all scenarios, we use very small network sizes to emulate a
model or hardware prototyping environment. Incidentally, this is
also helpful in highlighting another problem that is frequently over-
looked when increasing the network size: because a large enough
hidden layer can mask faulty error backpropagation, larger-scale
networks are often inadequate for a quantitative verification of
credit assignment (precise error propagation) within the studied
network model. This is discussed below in more detail.
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Table 1:Mean and standard deviation of the test accuracy for 20 training runswith different random initializations for different
network configurations. Training parameters can be found in Table 2.

network hidden layer with 20 neurons hidden layer with 30 neurons

deep network (97.0 ± 1.6) % (97.6 ± 1.5) %
deep network (frozen lower weights) (78.3 ± 7.8) % (85.5 ± 5.8) %

shallow network (63.8 ± 1.0) %

The comparison between the three scenarios (Table 1 and Fig. 2)
illustrates a manifest advantage of the Yin-Yang dataset compared
to other commonly used datasets of comparable size: both the
shallow network and the one with the frozen lower weights are
clearly unable to learn the required features to successfully classify
the dataset. This leads to a gap of more than 30% between the
accuracies achieved by a shallow and a deep network.

The failure of the partially frozen network highlights another
important issue for various proposals of bio-plausible solutions to
the credit assignment problem. In large enough networks, the large
hidden layers project the input into a very high-dimensional space,
which makes classification tasks more easily solvable by the linear
classifier embodied by the top layer. This is commonly referred to as
the “kernel trick” (see e.g. [19]). This can easily mask the inability of
a network to correctly propagate errors and perform true gradient
descent learning. While this issue would become observable when
dealing with more complicated classification problems, it would
require using large, deep networks that are not only difficult to
debug but, more importantly, would lie beyond the capabilities of
typical prototype devices or software simulations.

The Yin-Yang dataset addresses both problems simultaneously,
by clearly highlighting faulty error backpropagation already within
resource-efficient implementations with hidden layer sizes of
around 20 to 30 neurons (see Table 1). Under these circumstances,
the difference between the accuracy reached by a properly trained
network and the network where only the top weights are trained
lies around 20% and 12% respectively. This is a much higher gap
than in a comparable example with the MNIST dataset, where net-
works need several hundred hidden neurons to show significant
performance improvements beyond linear classifiers [12]. However,

Table 2: Training parameters used to produce the results in
Fig. 2. Fig. 3 uses the same parameters except for the size of
the hidden layer.

parameter name value

activation function ReLU
size input 4
size hidden layer (for deep net) 30
size output layer 3
training epochs 300
batch size 20
optimizer Adam, [10]
Adam parameter β (0.9, 0.999)
Adam parameter ϵ 10−8
learning rate 0.01

such sizes automatically introduce the kernel trick: a network with
500 hidden units reaches on average 98.3 % on MNIST, while the
same network with only training in the top layer reaches 94.8 %. Un-
masking these issues can become crucial in research on biologically
plausible forms of credit assignment and (local) synaptic plasticity,
where exact error backpropagation is notoriously difficult to real-
ize, both for rate-based models and, even more pronouncedly, for
spiking networks.

Another advantage of the Yin-Yang dataset over many other
commonly used datasets is the dimensionality of its samples and
the network sizes required to learn the task. Each sample consists
of only four input values (compared to, e.g., the 784 input chan-
nels required by MNIST), which significantly reduces the required
fan-in for hidden neurons. This can be especially beneficial on neu-
romorphic platforms, where the number of synaptic connections to
a neuron is very often limited by the chip architecture, even more
so for early-stage prototypes (e.g. [2, Section 3.3], [1, 5, 13, 14, 17]).

Also, this dataset can be learned with a single hidden layer of
reasonably small size (Fig. 3). For consistently high final accura-
cies, a hidden layer of 20 to 30 neurons is required, but for a small
proof-of-concept demonstration of a learning algorithm or hard-
ware prototype, even 10 hidden units are enough to achieve results
(around 88 % accuracy) that would be impossible with shallow net-
works, or with algorithms that cannot profit from a network’s
representational hierarchy. The full set of training parameters can
be found in Table 2.

In addition to the results shown here, the dataset has already
been used to showcase algorithms for error backpropagation in
spiking neural networks in [7] and [21].

4 INPUT ENCODING
The Yin-Yang dataset can be adapted to suit the needs of very differ-
ent network models. Depending on the used network architecture,
neuron model and mode of communication between the neurons,
different types of information encoding become necessary. In the
following, we discuss several encoding methods that are well-suited
for a variety of different network and neuron types.

4.1 Spatio-temporal input encoding
Using this dataset for spiking neural networks requires an explicit
spatio-temporal input encoding. In [7] and [21], the four input
features of the dataset were directly interpreted as the spike times
of 4 input neurons (Fig. 4 A). This was done by choosing parameters
tearly and tlate as the earliest and latest possible time the input
neurons are allowed to spike. Then the dataset values ®x = (x ,y, 1 −
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Figure 4: Spatio-temporal input encoding scheme and classification results on the neuromorphic chip BrainScaleS-2. Panels (B-
D) adapted from [6]. (A) Encoding of the x ,y-coordinates of the Yin-Yang pattern as input spike times t1 and t2 illustrated on one
sample each for the three classes. (B) Image of the BrainScaleS-2 ASIC. (C) Confusion matrix after training the BrainScaleS-
2 chip to classify the Yin-Yang dataset. (D) Classification result of the chip on the test set. For each input sample the color
indicates the class determined by the trained network.Wrong classifications aremarkedwith a black X. Thewrongly classified
samples all lie very close to the border between two classes.

x , 1 − y) were translated into the four spike times ®t = (t1, t2, t3, t4)
as follows:

®t = tearly + ®x ·

(
tlate − tearly

)
(1)

The choice of tearly/late is dependent on the network architecture
and employed learning algorithms. For [7] it has proven beneficial
to choose tearly slightly after the start of the experiment and tlate
as the sum of the two neuron time constants tlate ≈ τm + τsyn.
The classification results achieved with the BrainScaleS-2 chip are
shown in Fig. 4.

Alternatively, a different spike-based spatio-temporal encoding
can be achieved implicitly by manipulating input currents, as pro-
posed for example in [3]. Here, each input variable is interpreted as
the strength of a constant input current into a leaky-integrate and
fire neuron. The timing of the output spike of the input neurons
depends on the strength of the input current I with

tspike = τm log
I

I − θI
(2)

where τm denotes the membrane time constant and θI the minimal
current necessary to evoke an output spike.

4.2 Rate-based input encoding
Many models for biologically plausible error backpropagation are
built around rate-based neuron models (e.g. [9, 15, 16], for a review
see also [20]). These approaches use continuous rates as an ideal-
ized version of rate coding in spiking neurons. Others build on the
same approximations but explicitly use spike-based communica-
tion in their neural network implementations (e.g. [4, 8, 18]). For

such rate-based models, a suitable encoding scheme can be easily
realized by designating 4 input neurons and setting their output
rates proportional to the values of the respective input feature.

In case of spiking neurons, these four input neurons can produce
Poisson spike trains with the same rates as their rate-based coun-
terparts, as, for example, in [18]. Alternatively, regular spike trains
could also be used to represent firing rates; while more precise
than the intrinsicly stochastic Poisson solution, this scheme has
its own potential drawback of making the neuronal input-output
function dependent on not just the rate, but also the phase of a
neuron’s afferents. Under certain circumstances, encoding an input
as a single neuron may not be viable, for example when synaptic
bandwidth or neuron firing rate are limited. In this case, one input
can be represented by a population of neurons with a mean firing
rate equal to the value of the input.

Code and data availability
Code for the Yin-Yang data set is available at https://github.com/
lkriener/yin_yang_data_set. The example notebook in the repos-
itory includes the plotting of the data samples (Fig. 1) and the
training of deep and shallow networks (Fig. 2). Additional data
available on request from the authors.
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