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Inspired by the recent success of deep learning [1], several models emerged trying to explain
how the brain might realize plasticity rules reaching similar performances as deep learning [2-5].
However, all of these models consider only supervised and unsupervised learning, where an
external teacher is needed to produce an error signal that guides plasticity.

In this work, we introduce a model of reinforcement learning based on the principle of Neuronal
Least Action (R-NLA). We extend previous works on time-continuous error backpropagation in
cortical microcircuits [4, 6] to achieve a biologically plausible model implementing deep
reinforcement learning.

In R-NLA the neurosynaptic dynamics is derived from the energy function using the variational
principle. In the resulting dynamics the phase-advanced �ring of the neurons e�ectively undoes
the network delay introduced by �nite membrane time-constants. Errors are introduced to the
network by nudging, and they are propagated to deeper layers via cortical microcircuits. Instead
of having an explicit teacher, the output neurons, which represent the actions, form a soft
winner-take-all network (Fig A). This winner-take-all structure evokes a nudging on the soma of
the output neurons, which is subsequently backpropagated through the network. A reward
prediction error  modulates the plasticity multiplicatively as a formally deduced global
reward-speci�c neuromodulator [7]. By construction, the learning rule approximates the policy
gradient of the mean expected reward.

Using a simple pattern recognition problem as a toy example, we show that R-NLA can learn
classi�cation tasks in the reinforcement learning framework with similar performance as an
equivalent deep reinforcement learning model (Fig B). Further, we show that it is robust against
time-delayed rewards, even if the reward delay is not constant but randomly distributed (Fig C).

R-NLA constitutes a time-continuous implementation of biologically plausible deep
reinforcement learning, robust to delayed reward. The self-teaching soft winner-take-all
mechanism removes the necessity of an explicit teacher and the proposed learning rule solves
the problem of synaptic consolidation. The model can be extended to an actor-critic model,
where a second (deep) critic network learns the state-value function.

1 1 2 3

1, 3

δ = R − ⟨R⟩

https://abstracts.g-node.org/conference/BC19/abstracts


Acknowledgements
The work leading to these results has received funding from the European Union grant
agreements No 720270 and 785907 (Human Brain Project, HBP). We owe particular gratitude to
the sustained support of our research by the Manfred Stärk Foundation.

References
1. Yann LeCun, Yoshua Bengio, and Geo�rey Hinton. Deep learning. Nature, 521(7553):436,

2015. (https://www.nature.com/articles/nature14539), 10.1038/nature14539
(http://dx.doi.org/10.1038/nature14539)

2. Randall C O’Reilly. Biologically plausible error-driven learning using lo- cal activation
di�erences: The generalized recirculation algorithm. Neural Computation, 8(5):895–938,
1996. (https://dl.acm.org/citation.cfm?id=1362149), 10.1162/neco.1996.8.5.895
(http://dx.doi.org/10.1162/neco.1996.8.5.895)

3. James CR Whittington and Rafal Bogacz. An approximation of the error backpropagation
algorithm in a predictive coding network with local hebbian synaptic plasticity. Neural
Computation, 29(5):1229–1262, 2017.
(https://www.mitpressjournals.org/doi/10.1162/NECO_a_00949), 10.1162/NECO_a_00949
(http://dx.doi.org/10.1162/NECO_a_00949)

4. Joao Sacramento, Rui Ponte Costa, Yoshua Bengio, and Walter Senn. Den- dritic cortical
microcircuits approximate the backpropagation algorithm. In Advances in Neural
Information Processing Systems, pages 8721–8732, 2018.
(https://papers.nips.cc/paper/8089-dendritic-cortical-microcircuits-approximate-the-
backpropagation-algorithm.pdf)

5. James CR Whittington and Rafal Bogacz. Theories of error back- propagation in the brain.
Trends in Cognitive Sciences, 2019. (https://www.cell.com/trends/cognitive-
sciences/fulltext/S1364-6613(19)30012-9), 10.1016/j.tics.2018.12.005
(http://dx.doi.org/10.1016/j.tics.2018.12.005)

Figure 1: A-I) Network schematics. A-II) Soft winner-take-all
network in the output layer. A-III) Microcircuit for error
backpropagation. B) Comparison to classical reinforcement
learning methods. C) Robustness with respect to reward delay.
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