
The Neural Particle Filter

Anna Kutschireiter*1 Simone Carlo Surace1 Henning Sprekeler2 Jean-Pascal Pfister1

1 Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich,
Switzerland
2 Institute of Software Engineering and Theoretical Computer Science, Technische
Universität Berlin, Berlin, Germany

* annak@ini.uzh.ch

Abstract

The robust estimation of dynamically changing features, such as the position of prey, is
one of the hallmarks of perception. On an abstract, algorithmic level, nonlinear
Bayesian filtering, i.e. the estimation of temporally changing signals based on the
history of observations, provides a mathematical framework for dynamic perception in
real time. Since the general, nonlinear filtering problem is analytically intractable,
particle filters are considered among the most powerful approaches to approximating
the solution numerically. Yet, these algorithms prevalently rely on importance weights,
and thus it remains an unresolved question how the brain could implement such an
inference strategy with a neuronal population. Here, we propose the Neural Particle
Filter (NPF), a weight-less particle filter that can be interpreted as the neuronal
dynamics of a recurrently connected neural network that receives feed-forward input
from sensory neurons and represents the posterior probability distribution in terms of
samples. Specifically, this algorithm bridges the gap between the computational task of
online state estimation and an implementation that allows networks of neurons in the
brain to perform nonlinear Bayesian filtering. The model captures not only the
properties of temporal and multisensory integration according to Bayesian statistics, but
also allows online learning with a maximum likelihood approach. With an example from
multisensory integration, we demonstrate that the numerical performance of the model
is adequate to account for both filtering and identification problems. Due to the
weightless approach, our algorithm alleviates the ’curse of dimensionality’ and thus
outperforms conventional, weighted particle filters in higher dimensions for a limited
number of particles.

Author Summary

Every day, our brain is facing the challenge of making sense of the rich and dynamical
stream of sensory inputs. Those inputs are often ambiguous, noisy and sometimes even
conflicting. That we are nevertheless able to make sense of our surrounding naturally
points to the important question how estimates of real-world variables that led to
perceptive input, e.g. the position or the velocity of an object, are formed. Further, it is
unknown how the computational task of real-time state estimation can be implemented
in a realistic neuronal architecture. Here, we propose an algorithm, the Neural Particle
Filter, that performs state estimation, in a way that captures essential properties of
perception: it takes into account prior knowledge of the environment, weights different
sensory modalities according to their reliability and is able to dynamically adapt to

1/23

ar
X

iv
:1

50
8.

06
81

8v
2

 [
q-

bi
o.

N
C

]
 3

0
N

ov
 2

01
6

changes. Implemented as a neuronal dynamics, the Neural Particle Filter predicts
activation properties of the neurons involved in perception.

Introduction

During the last decade, an increasing number of studies have stated that the brain
performs probabilistic inference during perceptual tasks [1, 2]. As an act of
(approximate) Bayesian inference, perception relies on noisy and incomplete data that
needs to be integrated across multiple sensory modalities and weighted according to
sensory reliability. In addition, perception makes use of the strong statistical regularities
of objects in our environment by forming prior beliefs about the world. Since our
environment is fundamentally dynamic, the ability to adapt to changes in real time is
essential for perception. The Bayesian brain hypothesis is supported by ample
experimental evidence, ranging from psychophysical findings [3–5] to neuronal
recordings [6–8] that are in line with Bayesian computation. However, most of the
studies concerned with the theory of perception consider fairly simple tasks, where the
observations are created either from static hidden variables [9] or from hidden variables
with a discrete state-space [10], or the underlying dynamics are considered linear [11,12].

In a dynamical setting, where temporally changing signals have to be estimated
online from the history of observations, Bayesian inference is commonly referred to as
‘filtering’. In general, nonlinear Bayesian filtering is a challenging task even without the
imperative of a plausible implementation on a neuronal architecture. If the prior
distribution is a Gaussian and the noisy observations depend linearly on the hidden
states, the inference problem is solved by the Kalman filter [13,14], which has received
substantial attention in the signal processing community and turns out to be of
increasing importance in neuroscientific phenomenological modeling, e.g. in a
sensorimotor integration task [3] or in estimating motor disturbances from an adaptive
gain [15]. Solutions for the more general nonlinear, i.e. non-Gaussian, filtering
problem [16,17] are analytically intractable and thus have to be approximated.

Sampling-based approaches have proven to be a powerful tool to solve the nonlinear
filtering problem numerically. In principle, they enable any posterior distribution to be
represented with an accuracy that depends on the number of samples. On the one hand,
so called particle methods (see for instance [18, 19]) are well suited for dynamical priors,
but suffer in high dimensions due to the degeneracy of the importance weights and it is
still unclear how to implement such an inference scheme in a neuronal network. On the
other hand, Langevin sampling [20, 21] and related techniques, such as the ‘fast sampler’
in [22], provide a promising ground for a biologically plausible implementation of neural
or synaptic sampling [23,24], but are restricted to static generative models.

Following a sampling-based approach, we propose a framework for how the brain
could perform filtering from noisy sensory stimuli, considering Marr’s three levels [25]:
the computational level, the algorithmic and representational level and the
implementation level. On the first level, the computational task of dynamical state
estimation is set in the context of continuous-time continuous-state nonlinear filtering
theory. Motivated by this rigorous mathematical theory, we propose a weight-less
particle filter, the Neural Particle Filter (NPF), that approximates the posterior at each
time step by sampling from it. This algorithm can further be tuned by maximum
likelihood learning and thus allows for rigorous corrections in the algorithmic ansatz, as
well as learning the model parameters. The NPF exhibits properties that are considered
crucial for perception. On the implementation level, we interpret the NPF as a
biologically plausible neuronal dynamics and identify the particle states with activities
of task-specific neurons.

2/23

Results

The results we are presenting are subdivided in two parts: first, we will introduce the
Neural Particle Filter as a conceptual result. This first part will cover the first two of
Marr’s three levels, namely i.) the computational level with a generative model layout
and a task description, and ii.) the algorithmic level, which outlines our choice of
representation and the approximate solution to the nonlinear filtering problem that is
based on this representation. In the second part, we demonstrate key properties of the
NPF, and we we illustrate how they might serve as a model for a neuronal dynamics
involved in perception.

Model

Nonlinear filtering as a generic computational task We formulate the
computational task in terms of the classical filtering problem (according to standard
literature on nonlinear filtering, e.g. [26, 27]). The hidden state1 xt ∈ Rn, i.e. the
real-world variable that the brain cannot access directly, follows the Itô stochastic
differential equation (SDE):

dxt = f(xt) dt+ Σ1/2
x dωt, (1)

with a nonlinear, deterministic drift function f(x) : Rn → Rn. Stochastic diffusion is
governed by the uncorrelated Brownian motion process2 ωt ∈ Rn with noise covariance
Σx ∈ Rn × Rn.

At each moment in time, the hidden state xt gives rise to noisy observations
ys ∈ Rm that represent sensory input. The observation dynamics is again modeled in
terms of an Itô diffusion, with a drift term following the hidden states via a generative
function g(x) : Rn → Rm and a Brownian motion diffusion, modulated by the sensory
noise covariance Σy ∈ Rm × Rm:

dyt = g(xt) dt+ Σ1/2
y dνt. (2)

Together, Eqs. (1) and (2) define a generative model.
Solving the filtering problem is the task of finding the posterior probability p(xt|Yt)

of the hidden state, conditioned on the whole sequence of observations
Yt = {ys, s ∈ [0, t]} up to time t. For a linear hidden dynamics f(x) and a linear
observation dynamics g(x), this task is solved by the Kalman-Bucy filter [14], which is a
continuous-time version of the well-known Kalman filter. However, the solution to the
nonlinear filtering problem is in general analytically intractable, because it suffers from
the so-called closure problem (see S1 Appendix). Therefore, introducing a suitable
approximation is an inevitable step when approaching the nonlinear filtering problem.

Sampling-based representation We approximate probability distributions in
terms of a finite number of variables. For example, this can be achieved by taking N
weighted samples:

p(x, t) ≈
N∑
k=1

wk δ(x− x
(k)
t), with

N∑
k=1

wk = 1. (3)

Thus, the probability of the random variable to have a certain value range is
proportional to the relative number of samples within this range, weighted by their
respective weight wi.

1For consistency, vectors will be printed in bold face, i.e. v = (v1, v2, . . .)T .
2For Brownian motion processes: 〈dωtdωT

s 〉 = In×n dt if t = s, otherwise 〈dωtdωT
s 〉 = 0.

3/23

Filtering algorithms representing the posterior in this sampling-based manner are
commonly referred to as particle filters. In standard particle filters (such as outlined

in [28]), update rules for the trajectories x
(k)
t , as well as the weights wk are given.

Despite asymptotic convergence to the true posterior for an infinite number of particles,
this approach has two disadvantages: First, one finds numerically that after a finite
number of time-steps most particle weights decay to zero, which depletes the number of
effective samples. Weight decay, or degeneration, is an undesirable trait of weighted
particle methods in general. As stated in the convergence theorem [29, Theorem 23.5],
the upper bound of the divergence between true posterior and the posterior estimated
by the weighted particle system is a function of time, and hence might be growing due
to the weight decay. Second, the problem is exacerbated if the number of dimensions of
the hidden state xt is large. In this case, the number of particles needed for good
numerical performance grows exponentially with the number of dimension, a variant of
the ‘curse of dimensionality’ [30].

In the theoretical neuroscience literature, sampling-based approaches for filtering
with a representation of the posterior as in Eq. (3) have not received much attention so
far (one of the few examples can be found in [31]), although they have some
experimental support [7, 32] and are considered relevant according to the neural
sampling hypothesis [33]. Therefore, we would like to explore this approach further. To
overcome the difficulties encountered with weighted approaches, we consider a particle
filter with equally weighted samples, i.e. wk = 1/N ∀k.

Filtering with the Neural Particle Filter As an inference algorithm, we propose
an SDE that governs the dynamics of particles zt. Let us consider N i.i.d. stochastic

processes z
(k)
t , k = 1, . . . , N , conditioned on the observations Yt, following the Itô

diffusion

dz
(k)
t = f(z

(k)
t) dt+Wt

(
dyt − g(z

(k)
t) dt

)
+ Σ1/2

x dwt, (4)

where wt ∈ Rn is an uncorrelated vector Brownian motion process and Wt is a
time-dependent gain matrix or decoding weight matrix.

Equation (4), which we will further refer to as the Neural Particle Filter (NPF)3, is
an ansatz that serves as a sampling-based approximation to the nonlinear filtering

problem: we consider each of the N stochastic processes z
(k)
t as an independent sample,

or particle, of the true posterior p(xt|Yt) at every time t. Thus, expectations from the

posterior are computed according to E[φ(xt)|Yt] ≈ 〈φ(xt)〉 = 1/N
∑
k φ(z

(k)
t).

This ansatz is motivated by the formal solution to the filtering problem, more
precisely by the dynamics of the first posterior moment4 and shares some important
properties with classical filtering methods: First, it is governed by both the dynamics of
the hidden process xt and by a correction proportional to the so-called innovation term
dnt = dyt − g(zt) dt. The innovation term compares the sensory input dyt with the
current prediction g(zt) dt according to the single particle position, and thus can be
seen as a predictive error signal [9]. Second, the gain matrix Wt determines the
emphasis that is laid on new information via observations dyt. This is conceptually
similar to a Kalman gain [13,14] for a linear model, and adjusts according to the
reliability of a single or multiple observations.

3In the consecutive section, we will identify the particles with neuronal activities, which is why we
call it Neural Particle Filter. Though the name is similar, our NPF is not to be confused with the
‘neural filtering’ approach in [34], which is an unsupervised learning algorithm in an artificial neural
network.

4See S1 Appendix for an outline of the formal solution and the dynamics of the first posterior
moment.

4/23

The gain introduces a weighting between the prior probability distribution p(xt)
induced by Eq. (1), and the likelihood function p(yt|xt) induced by Eq. (2) and thus
serves as a measure for the peakedness of the likelihood. If the decoding weight is large,
the dynamics in Eq. (4) will entirely be determined by the innovation term, and the
inter-particle variability governed by the diffusion term will be negligible. Therefore, the
resulting probability distribution is given by p(xt|Yt) ≈ p(zt|Yt) ∼ δ(zt − g−1(dyt

dt)). In
this limit, the deterministic observation limit, a single sample from Eq. (4) suffices to
represent the posterior. On the other hand, if the decoding weight is zero, new
information is disregarded, and each sample evolves just like an i.i.d. process from
Eq. (1).4 In this case, the resulting probability distribution simply equals the stationary
prior distribution p(xt).

For the gain Wt, we use the ansatz Wt = cov(xt,g(xt)
T)Σ−1

y , an empirical choice
motivated by the mean dynamics of the formal solution5. This gain adjusts according to
the observation noise Σy as well as to the spatial ambiguity as measured by the
empirical, i.e. instantaneously estimated from the particle positions, covariance between
the state xt and the observation function g(xt) (Eq. 13 in Methods). Although this
choice is rather heuristic, it achieves a numerical performance comparable to that of a
standard particle filter (PF), as demonstrated below, and is moreover straightforward to
implement by empirically estimate the covariance from the particle positions.

Parameter learning In a more general setting, model parameters of Eqs. (1) and (2)
may not or only partially be known, and thus need to be learned online from the stream
of observations Yt. In this case, the NPF algorithm can be extended to include a
parameter update that performs an online gradient ascent on the log likelihood

Lonline
t (θ) = 〈g(xt)〉TΣ−1

y dyt −
1

2
〈g(xt)〉TΣ−1

y 〈g(xt)〉 dt, (5)

which in turn is computed directly from the approximated filtering distribution itself6.
It can be shown that maximizing this log likelihood is equivalent to minimizing the
prediction error in continuous time (see S1 Appendix).

Further, not only the model parameters in Eqs. (1) and (2), but also the decoding
parameters, i.e. components of the decoding weight or gain matrix Wt, can be learned
with a maximum likelihood approach, instead of setting it according to the empirical
estimate from the particle positions. This alternative corrects for the heuristic ansatz of
the NPF equation (4) by determining the decoding weights rigorously. In fact, it can be
shown that parameter learning with a maximum likelihood approach is able to make up
even for a very poor filtering ansatz by setting parameters accordingly [35].

The Neural Particle Filter as a neuronal dynamics for
perception

In this section, we set the computational task in the context of perception and base the
implementation of the algorithm on a neuronal architecture. With a simple example, we
now illustrate that our algorithm captures the following key properties of perception [2]:
1) it relies on noisy and incomplete sensory data, 2) it uses prior knowledge of the
dynamic structure of the environment 3) it efficiently combines information from several
sensory modalities, and 4) it can dynamically adapt to changes in the environment.

5See footnote 4.
6via 〈g(xt)〉 ≈ N−1

∑
k g(z

(k)
t), Eq. (20) in Methods

5/23

Multisensory perception as filtering

Consider a frog who sits below two branches and observes an insect flying between the
two branches (Fig. 1a). The frog wants to track the position of the insect xt, which is
governed by

dxt = 3xt
(
1− x2t

)
dt+ dωt, (6)

where the Brownian motion process ωt accounts for noise due to the erratic behavior of
the insect. This dynamics gives rise to a bimodal stationary distribution for the position
of the insect (cf. Fig. 1a).

The frog cannot directly observe the state xt of the insect, but instead has to rely on
two sensory channels, a visual (vt) and an auditory (at) channel. Observation dynamics
in these channels are given by

dvt = xt dt+ σvdβt, (7)

dat = tanh(2xt) dt+ σadγt, (8)

where βt, γt are independent Brownian motions that model noise in the sensory
channels, making vt and at conditionally independent. The nonlinearity in the auditory
channel (Eq. 8) is motivated by the fact that sound localization depends on interaural
difference, which resembles a sigmoid in this example. In order to localize the fly, the
frog has to perform the task of nonlinear filtering and to compute
x̂t = E[xt|vs, as, 0 ≤ s ≤ t], i.e. the position of the insect, from the visual and auditory
sensory streams. Note that due to the nonlinear dynamics of the hidden and observation
processes, this example is analytically intractable and thus requires an approximation.

We propose that this task is solved by a set of N filtering neurons zit, i = 1, ..., N .
Their neuronal dynamics are given by the NPF (4) and for this particular example read:

dz
(i)
t = 3z

(i)
t

(
1− (z

(i)
t)2

)
dt+ dω

(i)
t

+W
(v)
t

(
dvt − z(i)t dt

)
+W

(a)
t

(
dat − tanh(2z

(i)
t) dt

)
, (9)

which is governed by the dynamics of the prior as well as corrections evoked by novelty

of the observations in the sensory channels, that are modulated by gains W
(v)
t and

W
(a)
t . Thus, our model readily captures the first two key properties of perception.

The empirical distribution of neuronal activities z
(i)
t approximately samples the

posterior distribution, thereby acting as a weight-less particle filter that successfully
tracks the position of the insect (Fig. 1b). The state estimate x̂t (posterior mean) can
be read out from this population by averaging the activities of the filtering neurons,

i.e. x̂t ≈ 〈zt〉 = N−1
∑
i z

(i)
t .

The potential of having a description of the full posterior stretches far beyond
simple state estimation, where one is only interested in the first moment. Particularly
the sampling-based approximation of this posterior allows a convenient estimation of
other relevant quantities. For example, the frog might want to know on which branch
the insect is sitting in order to catch it more easily. The frog could directly deduce a
certainty level for the left and right branch, respectively (Fig. 1b), by counting the
number of neurons within a certain activity range.

In a similar manner, higher-order moments of the posterior distribution can be
approximated with the samples that correspond to neuronal activities. Even though
these approximated moments are not exact (Fig. 2c), the overall posterior shape is
captured to a considerable extent. For some nonlinearities, our proposed model is
therefore superior to models relying on an approximation of just the first two moments
of the distribution. For instance, the Extended Kalman Filter (EKF) does by definition

6/23

p(X =x)

x

t

v

a

t

t

(a)

-2

0

2

x

0 100 200 300 400 500

Number of particles

0

0.5

1

R
el

 #
 o

f
p
ar

ti
cl

es

Certainty levels

left (-1)
right (+1)

0 5 10 15 20 25

Time

0

1

2

3

Gain Wt
W

(v)
t

W
(a)
t

(b)

10
-2

10
0

10
2

σ
2
v/σ

2
a

0

0.2

0.4

0.6

0.8

M
S
E

σ
2
a = 0.1

σ
2
a = 1

σ
2
a = 10

(c)

10
-2

10
0

10
2

σ
2
v/σ

2
a

10
-2

10
0

10
2

⟨W
t⟩

(d)

Figure 1: The NPF as a model for perception for multisensory perception.
(a) The frog has to do filtering in order to dynamically track the position xt of the insect,
which is switching between two branches. We model this behavior by the stochastic
dynamics in Eq. (6), which gives rise to a bimodal prior distribution p(xt = x). In order
to track the insect, the frog has to make use of this prior, and optimally combine it with
the noisy input from the sensory modalities vt and at. (b) Tracking simulation with
N = 1000 filtering neurons and sensory noise �2

v = �2
a = 0.1. The upper panel shows

the true trajectory of the insect (solid black line) and particle densities. The regions
between the dotted black lines denote the two branches, and certainty levels certainty
levels in the middle panel correspond to the relative number of particles whose states are
within one of the two branches. At each time, the sensory gains in the lower panel are
computed according to Eqs. (10) and (11). (c) Performance in terms of time-averaged
mean-squared error MSE = h(xt � x̂t)

2it (dotted lines: standard particle filter) and (d)

time-averaged gains hW (v)
t it (solid line) and hW (a)

t it (dashed line) as function of sensory
noise.

not capture higher order moments of the posterior and thus fails to reproduce its 210

features.7 This explains why the predictive performance of the EKF in terms of MSE is 211

fairly poor compared to that of the NPF (Fig. 2a,b). 212

7For larger observation noise, matters become even worse because the state estimate of the EKF
evolves to one of the fixed points of f(x) and remains there, irrespective of the real hidden state.

PLOS 7/21

Figure 1: The NPF as a model for perception for multisensory perception.
(a) The frog has to do filtering in order to dynamically track the position xt of the insect,
which is switching between two branches. We model this behavior by the stochastic
dynamics in Eq. (6), which gives rise to a bimodal prior distribution p(xt = x). In order
to track the insect, the frog has to make use of this prior, and optimally combine it with
the noisy input from the sensory modalities vt and at. (b) Tracking simulation with
N = 1000 filtering neurons and sensory noise σ2

v = σ2
a = 0.1. The upper panel shows

the true trajectory of the insect (solid black line) and particle densities. The regions
between the dotted black lines denote the two branches, and certainty levels certainty
levels in the middle panel correspond to the relative number of particles whose states are
within one of the two branches. At each time, the sensory gains in the lower panel are
computed according to Eqs. (10) and (11). (c) Performance in terms of time-averaged
mean-squared error MSE = 〈(xt − x̂t)2〉t (dotted lines: standard particle filter) and (d)

time-averaged gains 〈W (v)
t 〉t (solid line) and 〈W (a)

t 〉t (dashed line) as function of sensory
noise.

not capture higher order moments of the posterior and thus fails to reproduce its
features.7 This explains why the predictive performance of the EKF in terms of MSE is

7For larger observation noise, matters become even worse because the state estimate of the EKF
evolves to one of the fixed points of f(x) and remains there, irrespective of the real hidden state.

7/23

10
-3

10
-2

10
-1

10
0

10
1

10
2

σ
2
v

10
-2

10
-1

10
0

M
S
E
/V

a
r
(x

t
)

MSE, visual

NPF
NPF with ML
PF
EKF

(a)

10
-3

10
-2

10
-1

10
0

10
1

10
2

σ
2
a

10
-2

10
-1

10
0

M
S
E
/V

a
r
(x

t
)

MSE, auditory

(b)

10
-3

10
-2

10
-1

10
0

10
1

10
2

σ
2
v , σ

2
a

-0.3

-0.2

-0.1

0
B
ia
s(
Σ̂
)/
⟨Σ

P
F
⟩ t

Bias of estimated variance Σ̂

(c)

Fig 2: MSE and estimation of posterior variance from single-cue observation.
Simulations correspond to the example model with only (a) visual or (b) auditory cue,
i.e. a generative model with Eqs. (6) and (7) or (8), respectively. The gain in the NPF
is tuned according to Wt = cov(xt,g(xt)

T)⌃�1
y and according to a gradient ascent on

the log likelihood (‘ML’). For benchmarking, we use a standard PF. The performance
of the NPF is nearly indistinguishable to that of the PF. In addition, we compare
the performance of an EKF. (c) The posterior variance ⌃̂ on average exhibits a bias
Bias(⌃̂) = ⌃̂� ⌃PF when compared to that of the PF. Here, solid (dashed) lines refer
to the visual (auditory) channel.

PLOS 9/23

Figure 2: MSE and estimation of posterior variance from single-cue observa-
tion. Simulations correspond to the example model with only (a) visual or (b) auditory
cue, i.e. a generative model with Eqs. (6) and (7) or (8), respectively. The gain in the
NPF is tuned according to Wt = cov(xt,g(xt)

T)Σ−1
y and according to a gradient ascent

on the log likelihood (‘ML’), respectively For benchmarking, we use a standard PF. The
performance of the NPF is nearly indistinguishable to that of the PF. In addition, we
compare the performance of an EKF. (c) The posterior variance Σ̂ on average exhibits
a bias Bias(Σ̂) = Σ̂− ΣPF when compared to that of the PF. Here, solid (dashed) lines
refer to the visual (auditory) channel.

fairly poor compared to that of the NPF (Fig. 2a,b).

Cue integration The decoding weights, or gain factors, W
(v)
t and W

(a)
t , are

exemplary for essential multisensory integration. They balance the relative effects of the
two sensory modalities and the prior on the dynamics of the filtering neurons and thus
quantify the reliability of the sensory channels. Here, we consider
Wt = cov(xt,g(xt))Σ

−1
y in the NPF. Thus, in this example, the weights evaluate to

W
(v)
t = Var(xt)σ

−2
v (10)

W
(a)
t = Cov(xt, tanh(2xt))σ

−2
a , (11)

where posterior variances and covariances are estimated empirically from the neuronal
activity distribution. The gains adjust according to both the sensory noise levels
(Fig. 1d) and the spatial ambiguity evoked by the sigmoid observation function for the
auditory channel at (Fig. 1b). In particular, the gains become large if a channel is
particularly reliable, and in extreme cases dominate the dynamics of the filtering
neurons, corresponding to the deterministic observation limit discussed earlier. The

8/23

appropriate weighting of sensory information allows the neurons to solve the filtering
task near-optimally and comparable to a standard PF, which is reflected by our
simulation results in Fig. 1c and 2a,b.

Adapting to changes In our example, the frog could successfully track the position
of the insect, but it could only do so because it had access to the generative model
parameters, i.e. it knew the prior dynamics of the insect and it it was aware of how the
sensory percepts were generated from the true state of the insect. Also, knowledge of

these model parameters were crucial for determining the sensory weights W
(v)
t and

W
(a)
t and thus significantly influenced the dynamics of the filtering neurons. However,

the external world, i.e. the model parameters, does change over time, and successful
perception should adapt accordingly, i.e. the model parameters should be adjusted by
online learning from the stream of observations Yt.

We illustrate the learning of generative model parameters using our example (see
Methods and S1 Appendix for details). This time, the frog only relies on his visual
channel vt, but in addition to tracking the insect, he also has to learn the generative
factor J in the function g(x) = Jx, which relates the position of the insect to the visual

input. Simultaneously, it also learns the gain W
(v)
t and with that implicitly an estimate

of the reliability of its visual input. Figure 3 shows that this identification problem can
be solved efficiently by the NPF, with an MSE that gradually approaches that of the
benchmark (a standard PF with the ground-truth parameters) as the estimate of the
parameters get more accurate (Fig. 3a). We find this to be true over a wide range of
observation noise σ2

v . Values of the estimator Ĵ , i.e. the learned value of the generative
factor, tend to exhibit a slight negative bias, but for an observation noise of up to
Σy = 0.1 still stay in a 2%-region below the true generative weight.

It is noteworthy that the learning rule for the generative factor J can be simplified
substantially for small observation noise:

η−1
J ∆J ≈ 〈(dvt − Jz(i)t dt) · z(i)t 〉. (12)

Our findings suggest that this learning rule, which we will refer to as ‘Hebbian’ for
reasons we illustrate below, leads to an estimator Ĵ for the generative weight J which is
slightly negatively biased across initial conditions (Fig. 3c). The absolute value of this
bias decreases for smaller observation noise Σy and the learning rule in Eq. (12)
becomes exact for Σy → 0. Moreover, this bias does not seem to affect the filtering
performance as measured by the MSE (Fig. 3b).

Neuronal Implementation

Recurrent neuronal dynamics In our example, we have interpreted the NPF as

the neuronal dynamics of a population of N × n filter neurons z
(i)
t , whose neuronal

activities represent samples of the posterior, which is in line with the neural sampling
hypothesis [33]. Thus, analog neuronal activities are identified with the continuous
particle state, for instance in terms of their instantaneous firing rate. The internal
dynamics, or self interaction, of the filtering neurons is governed by the nonlinear
function f(zt), which incorporates prior knowledge as a state-dependent leak. In
addition, they are recurrently connected to populations of novelty neurons nt via the
feedforward synaptic weights Wt and feedback connections whose strength is governed
by the nonlinearity g(zt). The dynamics of the novelty neurons are governed by the
innovation term dnt = dyt − g(zt) dt. As input to this network we consider a neuronal
population yt whose rates are evoked from the underlying hidden stimulus xt via the
generative dynamics in Eq. (2) (Fig. 4).

9/23

(a)

10
-3

10
-2

10
-1

10
0

σ
2
v

-0.4

-0.2

0

0.2

B
ia
s(
Ĵ
)
/
J
tr
u
e

(b)

10
-3

10
-2

10
-1

10
0

σ
2
v

0

0.2

0.4

0.6

M
S
E
/V

ar
(x

t
) NPF with Maximum Likelihood

NPF with Hebbian Learning
PF, no learning

(c)

Fig 3: Model parameters are learned by a stochastic gradient ascent on the
log likelihood. Simulations shown here correspond to the example model with only a
visual cue, i.e. a generative model with Eqs. (6) and (7). The sensory gain in the equation
for the filtering neurons is tuned according to maximum likelihood, the decoding weight
is learned either by maximum likelihood (ML) or the Hebbian learning rule (Hebb) in
Eq. (12), which is a valid approximation for small sensory noise. As benchmark, we use
a standard particle filter with the true model parameters. For all parameters, learning
starts at t = 0. (a) Filtering and online learning of the generative weight J = 1 and
sensory gain W for sensory noise �2

v = 10�3. As Ĵ approaches the true value, the MSE
of the NPF resembles that of the standard PF. (b) Bias of estimated generative weight
Ĵ . (c) The filtering performance is not affected by the bias of Ĵ .

PLOS 11/23

Figure 3: Model parameters are learned by a stochastic gradient ascent on
the log likelihood. Simulations shown here correspond to the example model with
only a visual cue, i.e. a generative model with Eqs. (6) and (7). The sensory gain in
the equation for the filtering neurons is tuned according to maximum likelihood, the
decoding weight is learned either by maximum likelihood (ML) or the Hebbian learning
rule (Hebb) in Eq. (12), which is a valid approximation for small sensory noise. As
benchmark, we use a standard particle filter with the true model parameters. For all
parameters, learning starts at t = 0. (a) Filtering and online learning of the generative
weight J = 1 and sensory gain W for sensory noise σ2

v = 10−3. As Ĵ approaches the true
value, the MSE of the NPF resembles that of the standard PF. (b) Bias of estimated
generative weight Ĵ . (c) The filtering performance is not affected by the bias of Ĵ .

10/23

yt nt zt

Wt

g(zt)

f(zt)

input neurons novelty neurons filtering neurons

Fig 4: Neural Network Implementation. Implementation of Eq. (4) as a recurrent
neuronal network. Here, yt, nt and zt denote neuronal populations.

1 2 4 8 16 32 64 128

Number of particles

10
-1

10
0

M
S
E

/
T
r(
Σ

p
r
io
r
)

NPF
NPF with Maximum Likelihood
PF

Fig 5: The NPF alleviates the ‘curse of dimensionality’. Toy example with
nonlinear hidden dynamics and linear observation dynamics. Solid lines: D = 5 hidden
dimensions, dashed lines D = 1 hidden dimensions for comparison. The error indicates
the mean Euclidean distance of the estimated state hxti from the real hidden state xt,
normalized by the trace of the prior variance to make the error dimension-free. The
black marker indicates the approximate cross-over point between the Neural Filter with
gain matrix Wt obtained by maximum likelihood and particle filter in D = 5 (solid) and
D = 1 (dotted) hidden dimensions, which tends to move towards larger particle numbers
as the dimensionality grows. Note that the number of filtering neurons is not equal to
the number of particles N , but rather to D · N .

for a limited number of samples. If we further allow the NPF to learn its decoding 299

weight matrix Wt by maximum likelihood, the filter is able to solve the filtering task 300

with a single particle almost as good as with more particles. On the other hand, the 301

NPF using Wt = cov(xt,g(xt))⌃
�1
y as well as the standard particle filter unsurprisingly 302

exhibit an MSE, which corresponds to an independent trajectory of the prior. Upon 303

increasing the number of samples, the PF outperforms the NPF again, owing to the 304

approximations employed by it. However, this crossover-point tends to move towards 305

larger number of particles for higher dimensions (e.g. Fig. 5), which is also not 306

surprising: The PF trajectories evolve according to the prior, and in higher dimensions 307

only a few particles will be in the correct spatial domain fitting to the observation and 308

will thus have a non-vanishing weight.10. 309

The robustness of performance for smaller number of particles, which we observe in 310

the NPF, is mainly due to the direct influence of the observations dyt on the 311

trajectories of the samples that correspond to the neuronal activities. In the NPF, each 312

neuronal activity itself can be seen as a ”mini approximation” of the true posterior in 313

terms of a �-function, an approximation which becomes exact for very small observation 314

noise ⌃y. Of course, the larger ⌃y becomes, the less the true posterior resembles a 315

�-function and the more particles are needed to account for its shape in general. 316

10Note that this is not the weight decay due to iterative re-weighting, but rather a simple consequence
of importance sampling in high dimensions, illustrating the ‘curse of dimensionality’ for weighted particle
methods.

PLOS 12/23

Figure 4: Neural Network Implementation. Implementation of Eq. (4) as a recurrent
neuronal network. Here, yt, nt and zt denote neuronal populations.

Hebbian learning In this interpretation, W corresponds to the matrix of synaptic

weights that connects novelty neurons n to filtering neurons z
(i)
t . If the generative

function g(xt) = Jxt is linear, then J denotes the matrix of feedback weights which
connects filtering neurons to novelty neurons. In general, the learning rules for these
weights are not local, i.e. they rely on the state of the whole network (cf. Eqs. 22 and
24). However, in the deterministic limit the learning rule for the generative weight
matrix can be replaced by a learning rule that is both Hebbian and local and relies on a
multiplication between pre- and postsynaptic activity (Eq. 12 and, more generally,
Eq. 26, see Methods). Further, for small observation noise, Wt can be replaced by a
constant matrix without affecting the filtering performance8. Therefore, at least in this
limit, the network presented in Fig. 4 is implementable as a neuronal dynamics of a
recurrent network with local Hebbian synaptic plasticity.

The NPF alleviates the ‘curse of dimensionality’. In our example the frog had
to estimate only a single hidden state, namely the one-dimensional position of the insect.
In a more realistic setting, there is a large number of hidden states, ranging from the
position of an object in three-dimensional space to the relative presence of a features
making up a visual scene. Therefore, any filtering algorithm employed by a neuronal
population in the brain should be economical in its resources, i.e. the number of
neurons needed to solve the filtering task to a certain performance level should scale
well with the number of hidden variables. The NPF, in particular when the decoding
weight Wt is determined with maximum likelihood, is able to solve the filtering task in
higher dimensions with just a limited number of filtering neurons. It thus alleviates the
curse of dimensionality, which would be devastating for a realistic implementation.

We want to illustrate this point numerically with a toy example9 comparing the
filtering performance of the NPF in terms of its MSE for very small number of particles
to that of a standard PF (Fig. 5). In general, we find that the NPF performs well even
for a limited number of samples. If we further allow the NPF to learn its decoding
weight matrix Wt by maximum likelihood, the filter is able to solve the filtering task
with a single particle almost as good as with more particles. On the other hand, in a
single-particle scenario the NPF using Wt = cov(xt,g(xt))Σ

−1
y as well as the standard

particle filter unsurprisingly exhibit an MSE, which corresponds to an independent
trajectory of the prior. Upon increasing the number of samples, the PF outperforms the
NPF again, owing to the approximations employed by it. However, this crossover-point
tends to move towards larger number of particles for higher dimensions (e.g. Fig. 5),
which is also not surprising: The PF trajectories evolve according to the prior, and in
higher dimensions only a few particles will be in the correct spatial domain fitting to

8as long as the weights are large compared to the prior dynamics
9see Methods for numerical details

11/23

yt nt zt

Wt

g(zt)

f(zt)

input neurons novelty neurons filtering neurons

Fig 4: Neural Network Implementation. Implementation of Eq. (4) as a recurrent
neuronal network. Here, yt, nt and zt denote neuronal populations.

1 2 4 8 16 32 64 128

Number of particles

10
-1

10
0

M
S
E

/
T
r(
Σ

p
r
io
r
)

NPF
NPF with Maximum Likelihood
PF

Fig 5: The NPF alleviates the ‘curse of dimensionality’. Toy example with
nonlinear hidden dynamics and linear observation dynamics. Solid lines: D = 5 hidden
dimensions, dashed lines D = 1 hidden dimensions for comparison. The error indicates
the mean Euclidean distance of the estimated state hxti from the real hidden state xt,
normalized by the trace of the prior variance to make the error dimension-free. The
black marker indicates the approximate cross-over point between the Neural Filter with
gain matrix Wt obtained by maximum likelihood and particle filter in D = 5 (solid) and
D = 1 (dotted) hidden dimensions, which tends to move towards larger particle numbers
as the dimensionality grows. Note that the number of filtering neurons is not equal to
the number of particles N , but rather to D · N .

for a limited number of samples. If we further allow the NPF to learn its decoding 299

weight matrix Wt by maximum likelihood, the filter is able to solve the filtering task 300

with a single particle almost as good as with more particles. On the other hand, the 301

NPF using Wt = cov(xt,g(xt))⌃
�1
y as well as the standard particle filter unsurprisingly 302

exhibit an MSE, which corresponds to an independent trajectory of the prior. Upon 303

increasing the number of samples, the PF outperforms the NPF again, owing to the 304

approximations employed by it. However, this crossover-point tends to move towards 305

larger number of particles for higher dimensions (e.g. Fig. 5), which is also not 306

surprising: The PF trajectories evolve according to the prior, and in higher dimensions 307

only a few particles will be in the correct spatial domain fitting to the observation and 308

will thus have a non-vanishing weight.10. 309

The robustness of performance for smaller number of particles, which we observe in 310

the NPF, is mainly due to the direct influence of the observations dyt on the 311

trajectories of the samples that correspond to the neuronal activities. In the NPF, each 312

neuronal activity itself can be seen as a ”mini approximation” of the true posterior in 313

terms of a �-function, an approximation which becomes exact for very small observation 314

noise ⌃y. Of course, the larger ⌃y becomes, the less the true posterior resembles a 315

�-function and the more particles are needed to account for its shape in general. 316

10Note that this is not the weight decay due to iterative re-weighting, but rather a simple consequence
of importance sampling in high dimensions, illustrating the ‘curse of dimensionality’ for weighted particle
methods.

PLOS 12/23

Figure 5: The NPF alleviates the ‘curse of dimensionality’. Toy example with
nonlinear hidden dynamics and linear observation dynamics. Solid lines: D = 5 hidden
dimensions, dashed lines D = 1 hidden dimensions for comparison. The error indicates
the mean Euclidean distance of the estimated state 〈xt〉 from the real hidden state xt,
normalized by the trace of the prior variance to make the error dimension-free. The
black marker indicates the approximate cross-over point between the Neural Filter with
gain matrix Wt obtained by maximum likelihood and particle filter in D = 5 (solid) and
D = 1 (dotted) hidden dimensions, which tends to move towards larger particle numbers
as the dimensionality grows. Note that the number of filtering neurons is not equal to
the number of particles N , but rather to D ·N .

the observation and will thus have a non-vanishing weight.10.
The robustness of performance for smaller number of particles, which we observe in

the NPF, is mainly due to the direct influence of the observations dyt on the
trajectories of the samples that correspond to the neuronal activities. In the NPF, each
neuronal activity itself can be seen as a ”mini approximation” of the true posterior in
terms of a δ-function, an approximation which becomes exact for very small observation
noise Σy. Of course, the larger Σy becomes, the less the true posterior resembles a
δ-function and the more particles are needed to account for its shape in general.

Discussion

In this paper, we formulated the computational task of nonlinear Bayesian filtering.
Based on the theory of nonlinear filtering, we proposed an Itô SDE for the posterior
process and derived a learning rule for the parameters of this filter itself as well as for
the generative weights of the underlying generative model. We have thus put forward an
algorithm that allows for approximate filtering in continuous time for continuous-valued
hidden processes. This algorithm allows the hidden dynamics as well as the observation
dynamics to be nonlinear, and thus our model is flexible in representing a large class of
general signal and emission statistics. The sampling-based framework is a central aspect
of our NPF and as such is well in line with the ‘Neural sampling hypothesis’ [33].

Besides being an ansatz that is broadly consistent with neuronal dynamics, the
neural filter equation we propose in Eq. (4) is particularly suited to model perception
phenomenologically, because it shares some important properties with perception. First,
perception relies on noisy and incomplete sensory data, and uses these to make sense of
the world, which in our model is reflected by inferring the hidden state variable. Second,
because prior dynamics directly enter the neuronal dynamics, prior knowledge about the

10Note that this is not the weight decay due to iterative re-weighting, but rather a simple consequence
of importance sampling in high dimensions, illustrating the ‘curse of dimensionality’ for weighted particle
methods.

12/23

environment is automatically incorporated and can in principle be learned. Third,
information from different sensory modalities is efficiently combined as a weighted input
to the population of filtering neurons. Lastly, perception can adapt to changes in the
environment, which is taken into account by a dynamical gain and online parameter
updates.

The implementation on a biologically realistic architecture imposes constraints on
the algorithm itself as well as on how we can interpret its elements and structure. We
should always be aware that these constraints describe a highly simplified version of the
real biological underpinning, but have successfully been applied in network models to
qualitatively understand core computations in the brain [36, p. 229ff]. First, neurons
communicate among each other via discrete spikes, i.e. a digital signal. In contrast, we
use the term ‘neuronal activity’ to denote an analog quantity. In some cases, for instance
for a large number of neurons [36, p. 231], this ‘analog quantity’ may for instance
correspond to an instantaneous firing rate. To take into account ‘negative’ neuronal
activities, we could also consider deviations from a baseline firing rate or the membrane
potential of the neuron, or the logarithm of the firing rate. Secondly, computations in
and between neurons are performed through a weighted sum of inputs from cells they
are connected to, and these inputs may be a (nonlinear) transformation of the
presynaptic activity. Third, a hallmark of neural circuits is the synaptic connectivity
between the neurons, the connection strength of which quantified by connective weights.
These synaptic weights are modified by learning rules, which in the most simple case are
local, i.e. they depend on the pre- and the postsynaptic neuronal activity. The learning
rules in our model are in general not local, and in fact, each filter neuron z(k) has to
know about the state of every other filter neuron and/or novelty neuron. Apart from
that, when parameters are learned online, it is not clear how the filter derivative should
be implemented in the network. However, we have shown that the learning rules of our
model become both Hebbian and local for small observation noise, making these
learning rules biologically plausible in this limit. Lastly, because the number of neurons
in the brain is finite, computations clearly have to rely on a finite number of neurons, a
fact we are taking into account by representing probability distributions with samples.
Because these requirements are met by our proposed network structure, we consider our
neuronal dynamics for filtering to be in line with standard network models.

Comparison to related work

The NPF is a filtering algorithm for a continuous-time continuous-state generative
model with nonlinear hidden and observation dynamics. Filtering algorithms based on
linear generative models have been subject to extensive research. and mainly study how
the analytical solution to this problem, the Kalman filter, can be implemented with
neurons (e.g. [11, 12,31,37]). However, the posterior resulting from a Kalman filter is
always Gaussian, which is highly restrictive and does not properly reflect activity
distributions observed in neurons (compare for instance the observations related to
sparse coding as in [38]). Unlike the various extensions of the Kalman filter [13] – such
as the EKF or the unscented Kalman filter [39] – which are applied to nonlinear
systems, the NPF is not restricted to approximate the posterior by a Gaussian
parametrized by its first and second moment. Rather, due to the nonlinearity in the
network dynamics it may represent any probability distribution at any given time step.

An important aspect of our work is the sampling-based representation of probability
distributions, whereby the activity of each neuron is considered a single sample. There
are two main competing proposals about how the probability distributions underlying
Bayesian computations might be represented in the brain. Firstly, it has been suggested
that probability distributions are expressed as probabilistic population codes
(PPC [40]), in which each neuron represents a state of the encoded random variable and

13/23

their activities are proportional to the probability of the corresponding state. Filtering
approaches based on population codes, in which the neuronal activity directly relates to
the posterior or the log posterior, have been explored in the literature for a large set of
models, e.g. [11, 12,41,42]. In this representation, neurons directly correspond to the
parameters of the distribution, and thus the critical factor for accuracy is the number of
neurons. Further, they all suffer from the ‘curse of dimensionality’ for multimodal
distribution. The second proposal, called neural sampling hypothesis [33], uses an
inference scheme where the activity of each neuron represents a sample from the
underlying probability distribution. Since our filtering algorithm is based on unweighted
samples, our findings are in line with the advantages of the sampling-based
representation outlined in [33]: it can represent any distribution without the need for a
parametric form, it mitigates the ‘curse of dimensionality’ and it is well-suited for
learning. Filtering approaches implementing Markov-chain Monte Carlo (MCMC)
algorithms have received some attention lately [43, 44], but since they rely on a discrete
state space and assume a different coding scheme than the one suggested in [33], the
advantages listed there do not necessarily emerge from these models.

As a filtering algorithm, the NPF is well in accordance with existing sample-based
filtering approaches. Our ansatz may be seen as a particle filter where all particles carry
the same weight and which, therefore, avoids numerical pitfalls such as weight
degeneracy. This problem is notorious in standard MCMC particle filters [18] and
becomes even more severe as the number of hidden dimensions grows. The curse of
dimensionality, i.e. the exponential growth of approximation error with the dimension of
the underlying model, is an inevitable nuisance in standard MCMC approaches. There
are some tricks to deal with these problems, for instance by particle resampling or using
a more refined propagator for the particles (like the optimal importance function
in [18]), but neither solution is able to properly circumvent weight decay in general.
Moreover, there is currently no proposed implementation of weighted particle methods
in a neural architecture. For instance, the need to renormalize the weights at each time
step introduces a coupling between the particles: While their trajectories are
independent, their weights are certainly not. On the other hand, the neural filter, not
relying on importance weights in the first place, does not suffer from these numerical
pitfalls and their related implementational issues. The curse of dimensionality seems to
be avoided, or at least mitigated, by the fact that the observations directly enter the
particle trajectories. However, the particles following the NPF dynamics are not
completely independent either. Coupling between the particles is mediated by the
decoding weight matrix Wt, whose learning rule is influenced by all the particles. This
could be avoided by fixing Wt to a constant consistent with observational noise Σy,
e.g. after learning. Even if it is numerically a bit off what we think the ‘real’ decoding
weight should be, the filtering performance is not seriously affected and particle
trajectories are effectively decoupled.

In the literature, there have been other approaches for particle filtering without
importance weights, derived rigorously from mathematical filtering theory [45,46]. One
of these approaches, the so-called feedback particle filter [45], is based on a similar SDE
for the particle trajectories as the one we propose in Eq. (4). It can be shown that the
underlying distribution of the feedback particle filter evolves exactly according to the
Kushner equation, whereas our approach merely approximates it. However, the
computation of the gain function in the feedback particle filter needs access to the full
filtering distribution itself, and in order to avoid numerical issues their algorithm relies
on a regularization scheme that would be hard to justify biologically. Though formally a
multivariate version of the feedback particle filter exists, the gain function cannot be
solved for in closed form. The Neural Filter, though not an exact particle algorithm,
overcomes this drawback by being readily applicable in higher dimensions and by being

14/23

comparatively easy to compute.
The neuronal network structure (Fig. 4) we propose to implement the neuronal

dynamics according to Eq. (4) is structurally similar to the one proposed in [9]. As in
their model, we represent neuronal activities in terms of their instantaneous firing rate,
which is an approximation to the spiking nature of biological neurons. In their
predictive coding model, a central role is assigned to the predictive error signal, which
can be compared to the dynamics of the novelty neurons or novelty signal dnt in our
model. Accordingly, equations for the neuronal dynamics and for learning the
generative weight in the small observation noise limit is structurally similar. However,
our model generalizes the one in [9] in the sense that we allow dynamics in the prior,
which is directly reflected in the dynamics of the filtering neurons.

Implications

The three central aspects of our work, namely a sampling-based representation, a
filtering algorithm with adaptive gain and the structure of the recurrent neuronal
network, result in the following implications for the neuronal network:

1. The network is robust against neuronal failure.

2. An internal model about the world becomes manifest in internal neuronal
dynamics

3. Neuronal variability is tuned according to sensory reliability.

4. Neurons may code for the novelty given by discrepancy between prediction by an
internal model and actual observations.

The first implication follows directly from the sampling-based representation, namely
robustness against neuronal failure. For example, if a distribution is represented by 1000
particles, removing 10% will not significantly decrease the ability of the other particles
to represent the probability distribution. In an extreme case, we could consider a single
neuron to represent the whole distribution, given that its activity state can take values
in the same range as the hidden state and we allow it to sample the distribution in time.
Apart from that, as we have seen numerically, the ability to perform filtering with a
reduced number of particles is not affected by particle removal to a large extent either,
at least not in the particular algorithm we propose. However, some degree of plasticity
or rewiring would be necessary in order to read out expectations from the decimated
neuronal population. On the other hand, in parametric representations such as a PPC,
where each neuron determines the height of a particular tuning curve assigned to it and
that actually rely on the tuning curves to cover the space densely [40], neuronal failure
can be devastating: With each neuron that breaks down, a particular point in state
space cannot be represented directly anymore. Clearly, a single neuron would never be
able to account for any other distribution than the one resembling its own tuning curve.

The second and third implication is a consequence of the adaptive gain, i.e. the
decoding weight Wt, that determines the emphasis that is laid on new observations. As
we have demonstrated, the gain Wt in our model increases with sensory reliability both
according to sensory noise and ambiguity in the input generation, putting more
emphasis on the observations versus its internal model. In the absence of observations,
observation noise is maximal and the neuronal dynamics follow those of the hidden state
which comprises an internal model about the world. With availability of observations,
sensory reliability naturally increases and variability across samples should decrease,
because now their dynamics are influenced by the same stimulus via the gain Wt.
Indeed, it has been found that spontaneous neuronal activities relate to prior

15/23

expectations about a stimulus in visual cortex [32]. Further, it has been shown that
inter-trial variability of neuronal responses declines upon stimulus onset [7]. Both these
experimental findings are nicely in line with our theoretical predictions.

Conclusion and Outlook

With the Neural Particle Filter we have come up with an algorithm that allows neurons
to perform nonlinear Bayesian filtering in a sampling-based manner. Specifically, the
neuronal implementation is based on a network of recurrently connected analog neurons
whose dynamics are governed by the NPF algorithm. In future work, the biological
plausibility of this recurrent network model will be further addressed. First, observing
that the learning rules in general, i.e. for nonvanishing observation noise, do not fulfill
the requirement of locality, which is needed for a biologically plausible learning rule (e.g.
a Hebbian learning rule), the model could be enhanced such that individual filtering
neurons obey different rather than identical dynamics. We could for instance consider
N different subnetworks and locally determine the weights in these subnetworks,
possibly taking into account a (slowly-changing) global modulation factor. Such an
approach would also effectively decouple the particles on a smaller timescale. Second,
by including the theory of filtering and identification of point processes, our algorithm
could be extended such that a spike-based representation may be accounted for.

Methods

Details on numerical experiments

The choice of the decoding weight Wt

In our numerical simulations, we consider and compare two choices of the decoding
weight Wt, which we will quickly motivate here.

As a first choice, we consider Wt = cov(x,g(x)T)Σ−1
y , a choice inspired by the

dynamics of the formal solution. In particular, consider the dynamics of the first
posterior moment11, which by comparison with the NPF equation (Eq. 4) directly
motivates this particular choice of the decoding weights. Thereby, the covariance

cov(x,g(x)T) is estimated empirically from the samples z
(k)
t via

cov(x,g(x)) ≈ 1

N

N∑
k=1

z
(k)
t g(z

(k)
t)T − 1

N2

N∑
k,l=1

z
(k)
t g(z

(l)
t)T . (13)

As a second choice, we consider W = WML, i.e. the decoding weight Wt and thus the
Neural Filter itself is tuned via maximum likelihood. The learning rule is given in
Eq. (22) and corresponds to an online update of the decoding weight at each time step.
What is peculiar about this choice is that here a decoding rather than a generative
model parameter is learned, illustrating that inference and learning can be very
intertwined: In fact, it is actually possible to rephrase the filtering problem in terms of a
learning problem by giving an ansatz for a decoder whose parameters have to be learned
such that it can perform filtering, but we will not consider this rather extreme case here.

11see S1 Appendix

16/23

Dynamics and parameters

For our simulations, we use a nonlinear hidden dynamics, that was chosen to have a
bimodal stationary distribution:

dxt = axt(b− x2t) dt+ σxdωt. (14)

The parameters a > 0 and b > 0 can be used to tune the shape of the bimodal
distribution, whereby the positions of the two modes is determined by ±b and a defines
how sharply the distribution is peaked around the modes. Unless stated otherwise,
parameters for the deterministic dynamics were a = 3 and b = 1, resulting in a bimodal
distribution with distinct, but not too sharp peeks at ±1, such that it is possible for the
hidden state to switch from one mode to the other.

In our examples in Fig. 1, we employ both linear and sigmoid observation dynamics
g(x), thereby simulating multisensory integration with our model (cf. Eqs. 8 and 7). For
the plots in Fig. 2, we use only one sensory modality per row. The observation noise σv
and σa is varied between 10−4 and 300.

In the multidimensional simulations in Fig. 5, the hidden dynamics within each
dimension is independent of the other dimensions and and corresponds to Eq. (14), with
Σx chosen to be the unit matrix. The stationary distribution of this dynamics is thus a
multimodal distribution with 2n peaks for n dimensions. The linear generative function
is given by g(x) = Jx with J a rotation matrix rotating the hidden state vector by 30
degrees around each spatial axis. In the simulations shown in Fig. 5, Σy = 0.1 · I.

Mean-squared errors (MSE) and biases of estimated quantities or parameters θ̂ were
computed by

MSE =
1

T

T∑
t=1

|xt − 〈x〉|2, (15)

Bias(θ̂) =
1

T

T∑
t=1

θ̂t − θt, (16)

where θt denotes the true or benchmark (particle filter) value. Unless stated otherwise,
MSEs are normalized with respect to the trace of the stationary prior variance Σprior to
make performance comparable and, if needed, independent of the number of hidden
dimensions.

Other simulation parameters comprise the time step size, which was set to
dt = 0.005 throughout all simulations. All simulations were run for 500’000 time steps,
corresponding to 2500 time units. Unless stated otherwise, MSEs and biases were
averaged over the last 1000 time units, equaling 200’000 time steps.

Benchmark models

We would like to stress that the generative model we chose in our examples are
nonlinear both in prior as well as in observation dynamics. This implies that a closed
form solution to this problem does not exist, and thus approximations have to be
employed. Therefore, when assessing the performance of the NPF, we compare it to two
approximate filtering algorithms, both of which widely used in approximating the
posterior distribution in nonlinear filtering problems: a standard particle filter [18] and
continuous-time version of the extended Kalman filter [26]. For further information on
these algorithms, see S1 Appendix.

17/23

Maximum likelihood parameter learning

The cost function

For the continuous-time continuous state-space generative model given by Eqs. (1) and
(2), learning in the mathematical literature commonly referred to as ‘system
identification’, is a tough problem which has hardly been looked at. In fact, the (to our
knowledge) only reference which gives an explicit cost function for identification in our
setting is a technical report by Moura and Mitter [47]. Based on a change of probability
measure, they propose a cost function that is equivalent to the log likelihood of the
input log pθ(Yt) with model parameters θ, which for our model reads:

Loffline
t (θ) =

∫ t

0

〈g(xs)〉TΣ−1
y dys −

1

2
〈g(xs)〉TΣ−1

y 〈g(xs)〉 ds, (17)

where expectations are taken with respect to the filtering distribution at time s,
p(xs|Ys).

In a discrete-time approximation, Eq. (17) immediately suggests an online
maximization scheme. Instead of maximizing the cost function at a time t for the whole
observation sequence Yt, implying we would have to run the filter all over again each
time we change the parameters, we just perform a gradient ascent with respect to the
parameters θ on the last contribution to the integral, i.e. to

Lonline
t (θ) = 〈g(xt)〉TΣ−1

y dyt −
1

2
〈g(xt)〉TΣ−1

y 〈g(xt)〉 dt, (5)

where expectations are with respect to the filtering distribution at time t, p(xt|Yt). It
can be shown that maximization of this cost function is equivalent to a minimization of
the reconstruction error (dyt − g(xt) dt)

2 at each time step (see S1 Appendix for a
proof).

Learning rules

Parameter learning is implemented by maximizing the log likelihood (Eq. 5) by a
gradient ascent with respect to the model parameters θ, giving rise to the following
online learning rule for the parameters:

η−1
θ ∆θ =

(∂
∂θ
〈g(xt)〉

)T
Σ−1
y

(
dyt − 〈g(xt)〉 dt

)
. (18)

This approximation of learning is justified if the time scale of learning is much larger
than the dynamics of the filter, i.e. for small learning rates.

Equation (18) exhibits a peculiar structure: The novelty signal dyt − 〈g(xt)〉 dt is
multiplied with a parameter gradient on the posterior estimate of the generative
function 〈g(xt)〉. Thus, we have to take into account the implicit change of the posterior
distribution, the so called filter derivative, with respect to the model parameters. The
filter derivative is in general hard or even impossible to compute analytically and many
identification problems deal with estimating it (cf. for instance [19,35]).

In our model, we make use of the approximated posterior dynamics in order to
derive dynamics of the filter derivative for parameter learning. Equation 18 can be
approximated by taking N samples from the NPF equation (4) in order to express the
posterior estimates:

〈g(xt)〉 ≈
1

N

N∑
k=1

g(z
(k)
t), (19)

∂

∂θ
〈g(xt)〉 ≈

1

N

N∑
k=1

G(z
(k)
t)

∂z
(k)
t

∂θ
, (20)

18/23

where Gij(z
(k)) = ∂gi

∂xj
(z(k)) denotes the Jacobian of the generative function. Thus, the

filter derivative is taken into account by considering the infinitesimal change in the
position of sample z(k) with respect to the change in parameter value θ.

The single particle filter derivative,
∂x

(k)
t

∂θ , cannot be computed directly. However,
based on Eq. (4), it is possible to compute its dynamics:

d

(
∂z

(k)
t

∂θ

)
=

∂

∂θ

(
dz

(k)
t

)
. (21)

Note that every single parameter that is learned has N accompanying filter derivatives
of this form.

In this work we are interested in learning the decoding weight matrix Wt and, for a
linear observation dynamics g(x) = Jx, in learning the generative matrix J, respectively.
The resulting learning rules for the components of the decoding weight matrix with
learning rate ηW are given by

∆Wij = ηW
∂

∂Wij

〈g(xt)〉TΣ−1
y (dyt − 〈g(xt)〉dt) , (22)

with filter derivative dynamics

d

(
∂z

(k)
t

∂Wij

)
=

(
F (z

(k)
t)−WG(z

(k)
t)
) ∂z(k)t

∂Wij
dt+

[
dyt − g(z

(k)
t)dt

]
j
ei, (23)

where Fij(z
(k)) = ∂fi

∂xj
(z(k)) denotes the Jacobian of the nonlinear hidden dynamics and

ei denotes the unit vector in the i-th direction. This implies that, when we take Wt to
be a plastic decoding weight matrix that is learned as observations become available, at
least three equations are needed to infer the hidden state at each time step: First,
Eq. (4) to evolve the states of the filter neurons, and second, Eqs. (22) and (23) to
update the weights in the filter equation.

Analogously, learning rules for the components of the generative matrix for linear
observation dynamics g(x) = Jx read

∆Jij = ηJ

[(
∂〈xt〉
∂Jij

)T
JTΣ−1

y (dyt − J〈xt〉 dt) +
(

Σ−1
y (dyt − J〈xt〉 dt)

)
ij

]
.(24)

In addition to a term proportional to the filter derivative, the learning rule contains a
second term that emerges from an explicit dependence of the likelihood in the
generative weight. Filter derivatives are given by

d

(
∂z

(k)
t

∂Jij

)
=

(
F (z

(k)
t)−WJ

) ∂z(k)t

∂Jij
dt− x̂(k)t,jWeidt. (25)

Bias due to sampling In the derivation of these learning rules, we used a
sampling-based representation of the approximated posterior in order to estimate
log-likelihood and gradients. This introduces a bias in these estimations, which we
should correct for when computing parameter estimates. Unfortunately, this bias is in
general not analytically accessible, but at least for a linear generative model it can be
shown that it vanishes with 1/N (for a proof, see S1 Appendix).

19/23

Approximation for small observation noise The learning rules we obtain for the
decoding weights Wt and the generative weights J are not local, implying that the
weights can only be computed when knowing the state of each filter neuron at each time.
However, for small observation noise the learning rule for the generative weight J can
be approximated by a local learning rule with a Hebbian structure. First, we can
neglect the filter derivative, which decays to zero very fast because in this limit, the
decoding weight Wt is generally large (cf. Eq. 25), and thus the first term in Eq. (24)
vanishes. Second, because in this limit the posterior will approach a δ-distribution
around the true hidden state x, as does the approximated posterior, we can
approximate the learning rule for J by:

η−1
J ∆J ∝ (dyt − J〈xt〉 dt)〈xt〉T ≈ 〈(dyt − Jxt)xTt 〉, (26)

which takes the form of a local Hebbian learning rule.

Supporting Information

S1 Appendix. The Neural Particle Filter: Mathematical Appendix.

References

1. Knill DC, Pouget A. The Bayesian brain: the role of uncertainty in neural coding
and computation. Trends in Neurosciences. 2004;27(12):712–719.
doi:10.1016/j.tins.2004.10.007.

2. Doya K, Ishii S, Pouget A, Rao RPN. Bayesian Brain: Probabilistic Approaches
to Neural Coding. The MIT Press; 2007.

3. Wolpert D, Ghahramani Z, Jordan M. An internal model for sensorimotor
integration. Science. 1995;269(5232):1880–1882. doi:10.1126/science.7569931.

4. Körding KP, Wolpert DM. Bayesian integration in sensorimotor learning. Nature.
2004;427(January):244–247. doi:10.1038/nature02169.

5. Ernst MO, Banks MS. Humans integrate visual and haptic information in a
statistically optimal fashion. Nature. 2002;415(6870):429–433.
doi:10.1038/415429a.

6. Churchland AK, Kiani R, Chaudhuri R, Wang XJ, Pouget A, Shadlen MN.
Variance as a signature of neural computations during decision making. Neuron.
2011;69(4):818–831. doi:10.1016/j.neuron.2010.12.037.

7. Churchland MM, Yu BM, Cunningham JP, Sugrue LP, Cohen MR, Corrado GS,
et al. Stimulus onset quenches neural variability: a widespread cortical
phenomenon. Nature Neuroscience. 2010;13(3):369–378. doi:10.1038/nn.2501.

8. Orbán G, Berkes P, Fiser J, Lengyel M. Neural Variability and Sampling-Based
Probabilistic Representations in the Visual Cortex. Neuron. 2016;92(2):530–543.
doi:10.1016/j.neuron.2016.09.038.

9. Rao RPN, Ballard DH. Predictive coding in the visual cortex: a functional
interpretation of some extra-classical receptive-field effects. Nature Neuroscience.
1999;2(1):79–87. doi:10.1038/4580.

10. Huang Y, Rao RPN. Bayesian Inference and Online Learning in Poisson
Neuronal Networks. Neural Computation. 2016;28(8):1503–1526.

20/23

11. Denève S, Duhamel JR, Pouget A. Optimal sensorimotor integration in recurrent
cortical networks: a neural implementation of Kalman filters. The Journal of
neuroscience : the official journal of the Society for Neuroscience.
2007;27(21):5744–5756. doi:10.1523/JNEUROSCI.3985-06.2007.

12. Makin JG, Dichter BK, Sabes PN. Learning to Estimate Dynamical State with
Probabilistic Population Codes. PLoS Computational Biology. 2015;11(11):1–28.
doi:10.1371/journal.pcbi.1004554.

13. Kalman RE. A New Approach to Linear Filtering and Prediction Problems.
Transactions of the ASME Journal of Basic Engineering. 1960;82(Series D):35–45.
doi:10.1115/1.3662552.

14. Kalman RE, Bucy RS. New Results in Linear Filtering and Prediction Theory.
Journal of Basic Engineering. 1961;83(1):95. doi:10.1115/1.3658902.

15. Kording KP, Tenenbaum JB, Shadmehr R. The dynamics of memory as a
consequence of optimal adaptation to a changing body. Nature Neuroscience.
2007;10(6):779–786. doi:10.1038/nn1901.

16. Kushner H. On the Differential Equations Satisfied by Conditional Probability
Densities of Markov Processes, with Applications. Journal of the Society for
Industrial & Applied Mathematics, Control. 1962;2(1).

17. Zakai M. On the optimal filtering of diffusion processes. Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete. 1969;243.

18. Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods
for Bayesian filtering. Statistics and Computing. 2000;10(3):197–208.
doi:10.1023/A:1008935410038.

19. Kantas N, Doucet A, Singh SS, Maciejowski J, Chopin N. On Particle Methods
for Parameter Estimation in State-Space Models. Statistical Science.
2015;30(3):328–351. doi:10.1214/14-STS511.

20. Welling M, Teh YW. Bayesian Learning via Stochastic Gradient Langevin
Dynamics. In: Proceedings of the 28th International Conference on Machine
Learning; 2011.

21. MacKay DJ. Information Theory, Inference and Learning Algorithms. Cambridge
University Press; 2005.

22. Hennequin G, Aitchison L, Lengyel M. Fast Sampling-Based Inference in
Balanced Neuronal Networks. Advances in Neural Information Processing
Systems. 2014;.

23. Moreno-Bote R, Knill DC, Pouget A. Bayesian sampling in visual perception.
Proceedings of the National Academy of Sciences of the United States of America.
2011;108(30):12491–12496. doi:10.1073/pnas.1101430108.

24. Kappel D, Habenschuss S, Legenstein R, Maass W. Network Plasticity as
Bayesian Inference. PLoS Computational Biology. 2015;11(11):1–31.
doi:10.1371/journal.pcbi.1004485.

25. Marr D. Vision - A Computational Investigation into the Human Representation
and Processing of Visual Information. WH Freeman & Co. San Francisco; 1982.

21/23

26. Jazwinski AH. Stochastic Processes and Filtering Theory. Bellman R, editor.
New York: Academic Press; 1970.

27. Bain A, Crisan D. Fundamentals of Stochastic Filtering. New York: Springer;
2009.

28. Doucet A, Johansen A. A tutorial on particle filtering and smoothing: Fifteen
years later. Handbook of Nonlinear Filtering. 2009.

29. Crisan D, Rozovskii B, editors. No Title. 1st ed. Oxford University Press; 2011.

30. Daum F, Huang J. Curse of Dimensionality and Particle Filters. Proceedings of
the IEEE Aerospace Conference. 2003;4:1979–1993.
doi:10.1109/AERO.2003.1235126.

31. Greaves-Tunnell A. An optimization perspective on approximate neural filtering;
M.Sc. Thesis, University of Cambridge. 2015.

32. Berkes P, Orban G, Lengyel M, Fiser J. Spontaneous Cortical Activity Reveals
Hallmarks of an Optimal Internal Model of the Environment. Science.
2011;331(6013):83–87. doi:10.1126/science.1195870.

33. Fiser J, Berkes P, Orbán G, Lengyel M. Statistically optimal perception and
learning: from behavior to neural representations. Trends in Cognitive Sciences.
2010;14(3):119–130. doi:10.1016/j.tics.2010.01.003.

34. Lo JT, Yu L. Recursive neural filters and dynamical range transformers.
Proceedings of the IEEE. 2004;92(3):514–535. doi:10.1109/JPROC.2003.823148.

35. Surace SC, Pfister JP. Online Maximum Likelihood Estimation of the Parameters
of Partially Observed Diffusion Processes. 2016;(3):1–10.

36. Dayan P, Abbott LF. Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems. Computational Neuroscience Series.
Massachusetts Institute of Technology Press; 2001.

37. Wilson RC, Finkel L. A neural implementation of the Kalman filter. Advances in
Neural Information Processing Systems. 2009;22.

38. Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature. 1996;381(6583):607–9.
doi:10.1038/381607a0.

39. Julier SJ, Uhlmann JK. A New Extension of the Kalman Filter to Nonlinear
Systems. System Identification. 1997;3:3–2. doi:10.1117/12.280797.

40. Ma WJ, Beck JM, Latham PE, Pouget A. Bayesian inference with probabilistic
population codes. Nature neuroscience. 2006;9(11):1432–8. doi:10.1038/nn1790.

41. Beck JM, Pouget A. Exact inferences in a neural implementation of a hidden
Markov model. Neural computation. 2007;19(5):1344–1361.
doi:10.1162/neco.2007.19.5.1344.

42. Sokoloski S. Implementing a Bayes Filter in a Neural Circuit: The Case of
Unknown Stimulus Dynamics. ArXiv. 2015;.

43. Pecevski D, Buesing L, Maass W. Probabilistic inference in general graphical
models through sampling in stochastic networks of spiking neurons. PLoS
Computational Biology. 2011;7(12). doi:10.1371/journal.pcbi.1002294.

22/23

44. Legenstein R, Maass W. Ensembles of Spiking Neurons with Noise Support
Optimal Probabilistic Inference in a Dynamically Changing Environment. PLoS
computational biology. 2014;10(10):e1003859. doi:10.1371/journal.pcbi.1003859.

45. Yang T, Mehta PG, Meyn SP. Feedback particle filter. IEEE Transactions on
Automatic Control. 2013;58(10):2465–2480. doi:10.1109/TAC.2013.2258825.

46. Crisan D, Xiong J. Approximate McKean–Vlasov representations for a class of
SPDEs. Stochastics An International Journal of Probability and Stochastic
Processes. 2010;82(1):53–68. doi:10.1080/17442500902723575.

47. Moura JMF, Mitter SK. Identification and Filtering: Optimal Recursive
Maximum Likelihood Approach; MIT Technical Report. 1986

23/23

