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Rate models are often used to study the behavior of large networks of
spiking neurons. Here we propose a procedure to derive rate models that
take into account the fluctuations of the input current and firing-rate adap-
tation, two ubiquitous features in the central nervous system that have
been previously overlooked in constructing rate models. The procedure
is general and applies to any model of firing unit. As examples, we apply
it to the leaky integrate-and-fire (IF) neuron, the leaky IF neuron with
reversal potentials, and to the quadratic IF neuron. Two mechanisms of
adaptation are considered, one due to an afterhyperpolarization current
and the other to an adapting threshold for spike emission. The param-
eters of these simple models can be tuned to match experimental data
obtained from neocortical pyramidal neurons. Finally, we show how the
stationary model can be used to predict the time-varying activity of a large
population of adapting neurons.

1 Introduction

Rate models are often used to investigate the collective behavior of assem-
blies of cortical neurons. One early and seminal example was given by
Knight (1972a), who described the difference between the instantaneous
firing rate of a neuron and the instantaneous rate of a homogeneous popu-
lation of neurons in response to a time-varying input. Ever since, more re-
fined analyses have been developed, some making use of the so-called pop-
ulation density approach (see, e.g., Abbott & van Vreeswijk, 1993; Treves,
1993; Fusi & Mattia, 1999; Brunel & Hakim, 1999; Gerstner, 2000; Nykamp
& Tranchina, 2000; Mattia & Del Giudice, 2002). The population activity
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at time t is the fraction of neurons of the network emitting a spike at that
time. In a homogeneous network of identical neurons and in stationary
conditions, this population activity is the single neuron current-frequency
(f-I) curve (the response function), which is accessible experimentally and
has been the subject of many theoretical (Knight, 1972a; Amit & Tsodyks,
1991, 1992; Amit & Brunel, 1997; Ermentrout, 1998; Brunel, 2000; Mattia
& Del Giudice, 2002) and in vitro studies (see, e.g., Knight, 1972b; Straf-
strom, Schwindt, & Crill, 1984; McCormick, Connors, Lighthall, & Prince,
1985; Poliakov, Powers, Sawczuk, & Binder, 1996; Powers, Sawczuk, Mu-
sick, & Binder, 1999; Chance, Abbott, & Reyes, 2002; Rauch, La Camera,
Lüscher, Senn, & Fusi, 2003). The f-I curve is central to much theoreti-
cal work on networks of spiking neurons and is a powerful tool in data
analysis, where the population activity can be estimated by the peristim-
ulus time histogram but requires many repetitions of the recordings un-
der the same conditions. A suitable rate model would avoid this cumber-
some and time-consuming procedure (see, e.g., Fuhrmann, Markram, &
Tsodyks, 2002).

When the rate models are derived from detailed model neurons, the pre-
dictions on network behavior can be very accurate. Recently Shriki, Hansel,
and Sompolinsky (2003) fitted a rate model to the f-I curve of a conductance-
based neuron with Hodgkin-Huxley sodium and potassium conductances
and an A-current. The A-current was included to linearize the f-I curve as
observed in experiment. With their model, Shriki et al. (2003) can predict,
in several case studies, the behavior of the network of neurons from which
the rate model was derived.

A similar approach was taken by Rauch et al. (2003), who fitted the re-
sponse functions of white noise–driven IF neurons to the f-I curves of rat
pyramidal neurons recorded in vitro. They found that firing-rate adaptation
had to be included in the model in order to fit the data. As opposed to the
approach of Shriki et al. (2003), the contribution of the input fluctuations to
the output rate was taken explicitly into account. Here we present a general
scheme to derive adapting rate models in the presence of noise, of which
the model used by Rauch et al. (2003) is a special case.

The general scheme that we introduce may be considered a generalization
of a model due to Ermentrout (1998). This author introduced a general rate
model in which firing-rate adaptation is due to a feedback current; that is,
the adapted rate f is given as the self-consistent solution of the equation
f = �(I − αf ), where I is the applied current, � is the f-I curve in stationary
conditions, and α is a parameter that quantifies the strength of adaptation.
In this model, the effect of noise is not considered. For most purposes, the
input to a cortical neuron can be decomposed in an average component, m,
and a fluctuating gaussian component whose amplitude is quantified by its
standard deviation, s, and the response of the neuron can be expressed as a
function of these two parameters (see, e.g., Ricciardi, 1977; Amit & Tsodyks,
1992; Amit & Brunel, 1997; Destexhe, Rudolph, Fellous, & Sejnowski, 2001).
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We show that under such conditions, Ermentrout’s model can be easily
generalized, and the adapted response can be obtained as the fixed point of
f = �(m − αf, s). For this result to hold, it is necessary that adaptation is
slow compared to the timescale of the neural dynamics. In such a case, the
feedback current αf is a slowly fluctuating variable and does not affect the
value of s. Note that a slow adaptation is a minimal request in the absence
of noise (Ermentrout, 1998).

The proposed model is very general, but it can be used to full advantage
only if the response function � is known analytically. This is the case of sim-
ple model neurons, for which the rate function can be calculated, or more
complex neurons whose f-I curve can be fitted by a suitable model function
(e.g., Larkum, Senn, & Lüscher, in press). In section 2, the adapting rate
model is introduced and tested on several versions of IF neurons, whose
rate functions are known and easily computable. The resulting rate mod-
els are checked against the simulations of the full models from which they
are derived, including the leaky IF (LIF) neuron with conductance-based
synaptic inputs. Only slight variations are needed if a different mechanism
of adaptation is considered, as, for example, an adapting threshold for spike
emission, which is dealt with in section 2.2. Evidence is also provided that
the LIF neuron with an adapting threshold is able to fit the response func-
tions of rat pyramidal neurons (see section 2.3), a result that parallels those
of Rauch et al. (2003) obtained with an afterhyperpolarization current. Fi-
nally, in section 3, we show how the stationary response function can be
used to predict the time-varying activity of a large population of adapting
neurons.

2 Adapting Rate Models in the Presence of Noise

Firing-rate adaptation is a complex phenomenon characterized by several
timescales and affected by different ion currents. At least three phases of
adaptation have been documented in many in vitro preparations, referred to
as initial or one-interspike (ISI) interval adaptation, which affects the first or
at most the first two ISIs (Schwindt, O’Brien, & Crill, 1997), early adaptation,
involving the first few seconds, and late adaptation, shown in response to a
prolonged stimulation (see Table 1 of Sawczuk, Powers, & Binder, 1997, for
references and a list of possible mechanisms).

Initial adaptation depends largely on Ca2+-dependent K+ current (Sah,
1996; Powers et al., 1999), although other mechanisms may also play a role
(Sawczuk et al., 1997). The early and late phases of adaptation are not well
understood, and several mechanisms have been put forward: in neocortical
neurons, it seems that Na+-dependent K+ currents (Schwindt, Spain, & Crill,
1989; Sanchez-Vives, Nowak, & McCormick, 2000), and slow inactivation
of Na+ channels (Fleidervish, Friedman, & Gutnik, 1996) may play a major
role; in motoneurons, evidence is accumulating for an interplay between
slow inactivation of Na+ channels, which tend to decrease the firing rate,
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and the slow activation or facilitation of a calcium current, which tends to
increase the discharge rate (Sawczuk et al., 1997; Powers et al., 1999).

Despite the many mechanisms involved, we derive in the following a
simple model for the adapted rate at steady state, which describes synthet-
ically the overall phenomenology. The cellular mechanism is inspired by
those mentioned above: upon emission of a spike, a quantity AN of a given
ion species N (one can think of Ca2+ or Na+) enters the cell and modifies
the intracellular ion concentration [N]i, which then exponentially decays to
its resting value in a characteristic time τN. Its dynamics are described by

d[N]i

dt
= − [N]i

τN
+ AN

∑
k

δ(t − tk), (2.1)

where the sum is taken over all the spikes emitted by the neuron up to
time t. As a consequence, an outward, N-dependent current Iahp = −gN[N]i,
proportional to [N]i through the average peak conductance gN, results and
causes a decrease in the discharge rate. Following the literature, we give
this current the name of afterhyperpolarization (AHP) (e.g., Sah, 1996).

Experimentally, the time constant τN of the dynamics underlying AHP
summation (see equation 2.1) is found to be of the order of tens of mil-
liseconds (fast AHP), hundreds of milliseconds to a few seconds (medium-
duration AHP), to seconds (slow AHP) (see, e.g., Powers et al., 1999). Values
often used in modeling studies are of the order of 100 ms (Wang, 1998; Er-
mentrout, 1998; Liu & Wang, 2001). In all cases, N-dynamics is typically
slower than the average ISI. This fact can be exploited to obtain the station-
ary, adapted output frequency by noticing that from equation 2.1, the steady
state (ss) intracellular concentration would be proportional to the neuron’s
output frequency in a time window of a few τN:

[N]i,ss = τNAN

∑
tk<T

δ(t − tk) ≈ τNAN f,

where T � τN. This causes a feedback current Iahp,ss proportional to [N]i,ss,
Iahp = −gN[N]i,ss, which is in general a fluctuating variable, as the output
spike train is. We assume the neuron to be driven by a fluctuating current
that can be described as an average component m plus a fluctuating com-
ponent with zero mean and variance s2. If the current is gauss distributed,
as we always assume in this article, m and s2 are sufficient to characterize
the current. Since [N]i dynamics are slow, Iahp,ss is only weakly fluctuating
compared to the input current, so that only m is significantly affected. The
total current felt by the neuron, spiking at frequency f , is then m − αf , with
α = gNτNAN, plus the fluctuating component, which is unaffected by adap-
tation. This would cause the neuron to fire at a reduced frequency f1, which
in turn causes the mean current to be affected as m − αf1, and so on. At
equilibrium, the adapted frequency can be numerically obtained by solving
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the self-consistent equation

f = �(m − αf, s), (2.2)

which requires only the knowledge of the response function � (the actual
dynamics leading to equation 2.2 is dealt with in more detail in section 3). It
is easy to prove that the adapted firing rate, fα , is always a stable fixed point
of equation 2.2: the condition for stability reads 	 ≡ ∂f �(m − αf, s)|fα < 1;
for equation 2.2, one has 	 = −α∂m�(m − αf, s)|fα < 0, as α > 0 and � is an
increasing function of m.

2.1 Examples. We checked the rate model, equation 2.2, against full sim-
ulations for several versions of IF neurons. In each case, the rate function in
the presence of noise, �, is known.

2.1.1 Leaky Integrate-and-Fire Neuron. The leaky integrate-and-fire (LIF)
neuron is the best-known and most widely used of all IF neurons (see sec-
tion A.1 for details of the model). Its response function in the presence of
noise has been known for a long time; it reads

�LIF(m, s) =
[
τr + τ

∫ Cθ−mτ

σ
√

τ

CVr−mτ

σ
√

τ

√
πex2

(1 + erf(x))dx

]−1

(2.3)

(Siegert, 1951; Ricciardi, 1977; Amit & Tsodyks, 1991). Vr and τr are the reset
potential and the absolute refractory period after spike emission, which is
said to occur when the membrane potential hits a fixed threshold θ ; τ is
the membrane time constant; C is the membrane capacitance; and erf(x) =
(2/

√
π)
∫ x

0 dte−t2
is the error function. m and σ = √

2τ ′s are the average
current and the amplitude of the fluctuations, with s in units of current and
τ ′ a time constant to preserve units (set equal to 1 ms throughout).

The equivalence between the rate model and the full simulation for dif-
ferent values of the noise is shown in Figure 1A. We report also the lower
bound for the time constant (around τN ∼ 80 ms) for which the result
holds (see Figure 1B). For irregular spike trains the agreement is remark-
able also at very low frequencies, where the condition that the average ISI be
smaller than τN is violated. This may be explained by the fact that although
<ISI> > τN, the ISI distribution is skewed towards smaller values, and
Iahp ∼ −αf is still a good approximation.

2.1.2 Quadratic Integrate-and-Fire Neuron. The quadratic integrate-and-
fire (QIF) neuron—see section A.2—is related to a canonical model of type I
membrane (see, e.g., Ermentrout & Kopell, 1986; Ermentrout, 1996). As such,
it is expected to reproduce the firing behavior of any type I neuron close to
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Figure 1: Adapting rate model from the LIF model neuron, theory versus sim-
ulations. (A) rate functions of adapted LIF neuron. Plots show firing rate as
a function of the mean current m at constant noise s = 0, 200 and 600 pA
(from right-most to left-most curve). Lines: Self-consistent solutions of equation
f = �LIF(m−αf, s) ( fth), with �LIF given by equation 2.3. Dots: Simulations of the
full model, equations 2.1 and A.1 ( fsim). Adaptation parameters: τN = 500 ms,
gNAN = 8 pA (so that α = 4 pA·s). Neuron parameters: τr = 5 ms, C = 500 pF,
θ = 20 mV, Vr = 10 mV, Vrest = 0, τ = 20 ms. Inset: Sample of membrane voltage
(mV, top trace) and feedback current Iahp (pA, bottom trace) as a function of time
(in seconds) for the input point (m, s) = (550, 200) pA. Note how equilibrium
is reached after ≈ 1s = 2τN. (B) Dependence of ( fsim − fth)/fsim on τN. As τN is
varied, AN is rescaled so that the total amount of adaptation (α = 4 pA·s) is kept
constant. Parameters of the current: m = 600 pA (full symbols) and m = 800 pA
(empty symbols); s = 0 (circles) and s = 200 pA (triangles). All other parameters
as in A. Mean spike frequencies assessed across 50 s, after discarding a transient
of 10τN. Integration time step dt = 0.1 ms. For s > 0, finite noise effects have
to be expected, but the error is always below 3%. For τN < 80 ms, the error
is positive, meaning that fsim > fth: the neuron adapts only slightly because N
decays too quickly (vertical dotted line: 80 ms).
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Figure 2: Adapting rate model from the QIF neuron, theory versus simulations.
f-I curves plotted as in Figure 1A. Lines: Self-consistent solutions of equation
f = �QIF(µ − αf, σ ), with �QIF given by equation 2.4. Dots: Simulations of the
full model, equations 2.1 and A.2 ( fsim). Parameters: τN = 500 ms, gNAN = 0.06
(α = 0.03 s), τ = 20 ms, τr = 0; σ = 0, 0.8, 1.6 (from right to left). Inset: Same
as in Figure 1A, for the point (µ, σ ) = (−0.2, 1.6). Mean spike frequencies fsim

assessed across 50 s, after discarding a transient of 10τN.

bifurcation, where the firing rates are low. Its firing rate in the presence of
white noise reads

�QIF =
[
τr + √

πτ

∫ +∞

−∞
dx exp

(
−µx2 − σ 2x6

48

)]−1

, (2.4)

(see Brunel & Latham, 2003). µ and σ quantify the drift and the fluctuations
of a (dimensionless) gaussian input current. The adapted response in sta-
tionary conditions is given by f = �QIF(µ − αf, σ ). The match between the
predictions of the adapting rate model and simulations of the QIF neuron
is presented in Figure 2.

2.1.3 Conductance-Based IF Neuron. The scenario outlined so far consid-
ered only current-based model neurons—models in which the input current
does not depend on the state of the membrane voltage. A more realistic de-
scription takes into account the dependence of the current on the reversal
potentials, VE,I, for the excitatory and inhibitory inputs, respectively. The
adapting rate model for this class of neurons can be derived in the same
way as done for the current-based models. For the LIF neuron with reversal
potentials defined in section A.3, and referred to as the conductance-based
(CB) neuron in the following, one finds that the adapted response is the
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fixed point of the self-consistent equation,

f = �CB(m0 − αf, s0), (2.5)

where

�CB =

τr + τ ∗

∫ Cθ−m0τ∗
s0

√
τ∗

CVr−m0τ∗
s0

√
τ∗

√
πex2

(1 + erf(x))dx




−1

. (2.6)

�CB is the rate function of the CB neuron (Burkitt, Meffin, & Grayden, 2003).
Note that the only difference with the response function of the current-based
LIF neuron, equation 2.3, is in the dependence of the quantities m0, s0, τ

∗,
given, respectively, by equations A.10, A.11, and A.6, upon the input pa-
rameters ḡE,I, νE,I. Here ḡE,I are the excitatory and inhibitatory peak con-
ductances and νE,I the mean frequencies of the input spike trains, modeled
as Poisson processes. Equations A.10 and A.11 have to be compared with

m = ḡEνE − ḡIνI, s2 = ḡ2
EνE + ḡ2

I νI,

valid for the current-based neuron. Note that one way to obtain the plots of
Figure 1A is to increase νE while scaling ḡE as A/

√
νE, with A held constant

and for constant inhibition (i.e., for constant ḡI, νI). This in fact corresponds
to increasing m as A

√
νE − ḡIνI at constant noise s2 = A2 + ḡ2

I νI. To make
a comparison with the current-based neuron, we plotted �CB as a function
of µE = ḡEνE according to such a procedure in Figure 3, which presents
the match between the predictions of the rate model and simulations of the
adapting CB neuron.

2.1.4 Other Model Neurons. A similar agreement is obtained for other
IF model neurons (results not shown). Particularly worth mentioning is the
constant leakage IF neuron with a floor (CLIFF) (Fusi & Mattia, 1999; Rauch
et al., 2003), whose response function is very simple and does not require
any integration:

�(m, s) =
[
τr + σ 2

2(m − λ)2

(
e− 2Cθ(m−λ)

σ2 − e− 2CVr(m−λ)

σ2

)
+ C(θ − Vr)

m − λ

]−1

.

The input parameters m, σ are defined as for the LIF neuron. The CLIFF
neuron is an LIF neuron with constant leakage (i.e., with the term −(V −
Vrest)/τ in equation A.1 replaced by the constant −λ/C), and a reflecting
barrier for the the membrane potential (Fusi & Mattia, 1999).

However, the scheme proposed here to derive the adapting rate models
does not apply to IF neurons only. For example, the response function of
a Hodgkin-Huxley neuron with an A-current can be fitted by the simple
model �1 = a[m − mth]+ − b[m − mth]2+ (Shriki et al., 2003), where a, b
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Figure 3: Adapting rate model from the conductance-based LIF neuron, theory
versus simulations. Lines: Self-consistent response of equation 2.5 plotted as
ḡEνE → f at constant inhibition, with νI = 500 Hz, ḡI = 1 nS throughout.
Dots: Simulations of the full models ( fsim). Each curve is obtained moving along
νE and scaling ḡE so that σ 2

E ≡ ḡ2
EνE constant, to allow comparison with the

current-based neurons in Figure 1A. ḡE [nS] as a function of νE [Hz] shown in
the right inset as ḡE vs log10(νE). The resulting σE values were 7.0, 16.9, 33.1
nS/

√
s (from right to left). Adaptation and neuron parameters as in Figure 1A,

plus VE = 70 mV, VI = −10 mV. Left inset as in Figure 1 with µE = 783 nS/s, σE =
33.1 nS/

√
s. Mean spike frequencies fsim assessed across 50 s, after discarding a

transient of 10τN.

are two positive constants (such that �1 ≥ 0 always), the rheobase mth
is an increasing function of the leak conductance gL (Holt & Koch, 1997),
and [x]+ = x if x > 0, and zero otherwise. The adapting rate model that
corresponds to �1, that is, f = �1(m − αf ; a, b, gL), could be interpreted as
the rate model for the Hodgkin-Huxley neuron underlying it.

Another example is given by the function �2 ∝ √
[m − mth]+, which

describes the firing behavior of a type I membrane close to bifurcation and
has been fitted (Ermentrout, 1998) to the in vitro response of cells from cat
neocortex in the absence of noise (Stafstrom et al., 1984), and to the Traub
model (Traub & Miles, 1991). It is easily seen that �2 is the rate function of
the QIF neuron when σ = 0. Like �1, this model does not take fluctuations
explicitly into account.

2.1.5 IF Neurons with Synaptic Dynamics. The adapting rate model also
works in the presence of synaptic dynamics, provided that the appropriate
response function is used. For example, for the LIF neuron with fast synaptic
dynamics, this is equation 2.3 with {θ, Vr} replaced by {θ, Vr}+1.03sv

√
τs/τ ,
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where sv is the standard deviation of the input in units of voltage and
τs � τ is the synaptic time constant (Brunel & Sergi, 1998; Fourcaud &
Brunel, 2002). This model will be used in section 3, which deals with time-
dependent inputs. For slow synaptic dynamics, the response of the LIF neu-
ron has been given by Moreno-Bote and Parga (2004b), while the response
of the QIF neuron in both regimes has been given by Brunel and Latham
(2003).

2.2 The Adapting Threshold Model. The above construction can be
applied to other models in which the adaptation mechanism is of a differ-
ent type. Among those is a model in which the threshold for spike emis-
sion adapts (see, e.g., Holden, 1976; Wilbur & Rinzel, 1983; Liu & Wang,
2001).

In the adapting threshold model, the emission of an action potential
causes the threshold θ for spike emission to step increase by an amount Bθ

and then exponentially decay to its resting value θ0 with a time constant
τθ :

dθ

dt
= −θ − θ0

τθ

+ Bθ

∑
k

δ(t − tk). (2.7)

There is indeed evidence that the spike threshold rises after the onset of
a current step (Schwindt & Crill, 1982; Powers et al., 1999). Note that the
feedback now affects the threshold, not the current. This case can be handled
in a similar way as done for AHP adaptation: after a transient of the order
of τθ , the neuron will have an average threshold proportional to its own
output frequency,

θ ≈ θ0 + Bθ τθ f ≡ θ0 + β f,

with β = Bθ τθ , and the adapted response f is given by the self-consistent
solution of

f = �(θ0 + β f ; m, s). (2.8)

Also, this reduction is expected to work for slow enough threshold dy-
namics, τθ ∼ 100 ms, but apart from that, at any output frequency. This is
confirmed by Figure 4, in which the prediction of the rate model is checked
against the simulations of the full model for the LIF neuron (that is, equa-
tion 2.7 and equation A.1 with Iahp = 0). A similar agreement is obtained for
the conductance-based LIF neuron (not shown). The qualitative differences
between the two adapting models for the LIF neuron are illustrated in the
next section, where we report the results of fitting the response functions to
those of cortical pyramidal neurons.
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Figure 4: LIF neuron with an adapting threshold, theory versus simulations. f-I
curves plotted as in Figure 1A. Lines: Self-consistent solutions of equation f =
�(θ0 + β f, s), with � given by equation 2.3. Dots: Simulations of the full model,
equations 2.7 and A.1, ( fsim). Adaptation parameters: τθ = 500 ms, Bθ = 0.5 mV·s
(so that β = 0.25 mV·s). Neuron parameters and s values as in Figure 1A. Inset:
Sample of membrane potential and θ(t) for the point (m, s) = (550, 200) pA
(time in seconds). Note that for this point, the output frequency is f ≈ 14 Hz,
so that after the transient 〈θ〉 = θ0 + β f ≈ 23.5 mV, as shown in the inset. Mean
spike frequencies fsim assessed across 50 s, after discarding a transient of 10τθ .

2.3 Quantitative Comparison with Experimental Data. We have shown
previously that the LIF neuron with AHP adaptation can be fitted to the ex-
perimental response functions of rat pyramidal neurons under noisy current
injection (Rauch et al., 2003). We extended the analysis to the LIF neuron
with an adapting threshold to find basically the same result. The results
for the 26 rat pyramidal neurons considered for the analysis are summa-
rized in Table 1 (see appendix B for details). Two examples are shown in
Figure 5.

The two adapting models can be made equivalent in the region of low
frequencies, being both threshold-linear with slopes 1/α (AHP) and τ/Cβ

(adapting threshold; see appendix C for details). This is confirmed by Ta-
ble 1, which shows that C and τ are the same for the two models and
Cβ/τ = 4.46 pA·s, consistent with α = 4.3 ± 2.2.

The two models differ in the value of the refractory period, which is
much shorter for the adapting threshold model. In fact, imposing τr = 0
only marginally affects the quality of the fits. This is because the LIF neuron
with an adapting threshold has a square root behavior in m at intermediate
and large frequencies (see equation C.1). To the contrary, a refractory period
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Figure 5: Best fits of different models to the rate functions of two rat pyramidal
cells (see appendix B). Models: LIF neuron with AHP adaptation (AHP) and with
an adapting threshold (AT). Theoretical curves (full lines) and experimental
points (dots) plotted as in Figure 1A. Best-fit parameters are: Cell A: AHP:
τr = 6.6 ms, τ = 27.1 ms, C = 260 pF, Vr = 1.7 mV, α = 5.1 pA·s, P = 0.32;
AT: τr = 2.2 ms, τ = 28.8 ms, C = 270 pF, Vr = 14 mV, β = 0.58 mV·s,
P = 0.38. Cell B: AHP: τr = 19.8 ms, τ = 41.1 ms, C = 440 pF, Vr = −2 mV,
α = 2.8 pA·s, P = 0.85; AT: τr = 6.8 ms, τ = 40.1 ms, C = 430 pF, Vr = −12.8 mV,
β = 0.30 mV·s, P = 0.80. In all the fits, the threshold (θ0 in AT) was kept fixed
to 20 mV. P equals the probability that χ2 is larger than the observed minimum
χ 2

min. The fit was accepted whenever P > 0.01. Amplitude of the fluctuating
current: cell A: s = 0, 200 and 400 pA; cell B: s = 50, 200, 400 and 500 pA.

is required to bend the response of the model with AHP, otherwise linear
in that region.

3 Adapting Response to Time-Dependent Inputs

The stationary response function can be used also to predict the time-
varying activity of a population of adapting neurons, as shown in this
section. Consider an input spike train of time-varying frequency νx(t), tar-
geting each cell of the population through x-receptor mediated channels.
Each spike contributes a postsynaptic current of the form ḡxe−t/τx , where
ḡx is the peak conductance of the channels. In the diffusion approxima-
tion, such an input Ix is an Ornstein-Uhlenbeck (OU) process with average
m̄x = ḡxνx(t)τx, variance s̄2

x(t) = (1/2)ḡ2
xνx(t)τx, and correlation length τx:

dIx = − Ix − m̄x

τx
dt + s̄xξt

√
2dt
τx

, (3.1)

where ξt is the unitary gaussian process defined in section A.1.
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Table 1: Summary of the Results of the Fit of the LIF Neuron to the Experimental
Rate Functions of 26 Rat Neocortical Pyramidal Cells.

AHP AT

N 14 13

α [pA · s], β [mV · s] 4.3 ± 2.2 0.29 ± 0.13
τr [ms] 9.0 ± 6.5 3.0 ± 4.0
τ [ms] 33.2 ± 9.4 32.5 ± 9.2
C [nF] 0.50 ± 0.18 0.50 ± 0.18

Vr [mV] 0.1 ± 11.2 1.1 ± 13.7
P 0.40 ± 0.30 0.33 ± 0.29

Notes: N is the number of fitted cells that required an
adaptation parameter (α, or β) > 0. Two cells could
be fitted without adaptation and were not included
in the analysis. The parameters (left-most column)
are defined in section 2.1 and their best-fit values are
reported as average ± SD. The threshold for spike
emission was held fixed to 20 mV. P is the probability
P[χ2 > χ2

min] across fitted cells requiring adaptation.
A fit was accepted whenever P > 0.01. The thresh-
old for spike emission was held fixed to 20 mV. AT:
adapting threshold model.

The population activity of noninteracting neurons is well predicted by
f (t) = �(mx, s2

x), where � is the stationary response function, and mx, s2
x

are the time-varying average and variance of Ix (see, e.g., Renart, Brunel, &
Wang, 2003). These evolve according to the first-order dynamics (ẏ ≡ dy/dt),

τxṁx = −(mx − m̄x), (3.2)

and analogously for s2
x, with τx replaced by τx/2 (e.g., Gardiner, 1985). We

now include adaptation in the following way:

f = �(mx − Iahp, s2
x)

τNİahp = −Iahp + αf, (3.3)

where Iahp is the AHP current, which follows the instantaneous output rate
with time constant τN. Note that for a stationary stimulus, that is, νx constant,
after a transient of the order of max{τx, τN}, one recovers the stationary
model, equation 2.2, with m = m̄x, s = s̄x.

In the case of several independent components, they follow their own
synaptic dynamics and sum up in the argument of the response function to
give the time-varying firing rate:

f = �

(∑
x

mx − Iahp,
∑

x
s2

x

)
.
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Figure 6: Time-varying activity of a population of independent, adapting LIF
neurons in response to a noisy, broadband stimulus. (Top) prediction of the
adapting rate model, equation 3.4 (gray), compared to the simulations of 20,000
neurons (black), as described in section 3. Shown is the activity after a transient
of 200 ms. The short horizontal bar indicates a pulselike increase of 1 ms duration
in ν0, of strength 12ν0. The long horizontal bar indicates a 50% steplike increase
in ν0, during which the inhibitory rate step increases by 0.7ν0. (Bottom) Average
time course of the stimulus. Neuron parameters as in Figure 1a, apart from
τr = 2 ms. Other parameters (refer to the text): ν0 = 350 Hz, νinh = 1.2ν0,
Gampa,gaba = 200 pA, Gnmda = 10 pA, τampa,gaba = 5 ms, τnmda = 100 ms. Bin size of
the PSTH: 0.5 ms. Integration time step: 0.01 ms.

In Figure 6 we show an example with two fast (τx = 5 ms) components,
one excitatory (AMPA-like), the other inhibitory (GABAA-like), plus a third
component mimicking slow (NMDA-like) current (with τnmda = 100 ms).
The latter component is only slowly fluctuating, so that its variance can be
neglected (Brunel & Wang, 2001), as in the case of the adaptation current.
The output rate was calculated as

f (t) = �(mampa + mnmda − mgaba − Iahp, s2
ampa + s2

gaba), (3.4)

where � is equation 2.3 corrected for fast synaptic dynamics (Fourcaud &
Brunel, 2002), see section 2.1.5. The excitatory stimulus was of the form ν0(1+
�(t)), with ν0 = 350 Hz and �(t) a rectified superposition of 10 sinusoidal
components with random frequencies ωi/2π , phases φi, and amplitudes Ai
drawn from uniform distributions (the latter between 0 and 0.5):

�(t) =
[∑

i
Ai sin(ωit + φi)

]
+

.
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The maximum value used for ω/2π was 150 Hz. νI was held constant
to 1.2ν0. This gives m̄ampda,nmda = ḡampa,nmdaν0(1 + �(t))τampa,nmda, m̄gaba =
1.2ḡgabaν0τgaba, with mx given by equation 3.2, and analogously for s2

ampa,gaba.
The input currents used in the simulations were [Ix]+, where Ix evolved
according to the OU process, equation 3.1. Each neuron received an inde-
pendent realization of the stochastic currents. The time-varying population
activity was assessed through the peristimulus time histogram (PSTH) with
a bin size of 0.5 ms. The model makes a good prediction of the population
activity, even during fast transients, as in response to the impulse of 1 ms
duration at t = 250 ms and a step increase in ν0, νinh occurred at t = 400 ms
(horizontal bars in Figure 6). The small discrepancies are due to finite size
effects (Brunel & Hakim, 1999; Mattia & Del Giudice, 2002), and to the ap-
proximation used for the stationary response function.

Similar results were obtained with the adapting threshold model (i.e.,
with Iahp = 0 and equation 3.3 replaced by τθ θ̇ = −(θ − θ0)+β f ), and for the
CB neuron (not shown). It has to be noticed that the condition τampa,gaba � τ ∗,
where τ ∗ is the effective time constant of the CB neuron (see equation A.6), is
usually more difficult to fulfill, as τ ∗ can reach values as small as a few ms,
depending on the input (see, e.g., Destexhe et al., 2001). However, when
τ ∗ < τampa,gaba, a good approximation to the response function has been
given by Moreno-Bote and Parga (2004a).

4 Discussion

We have proposed a general scheme to derive adapting rate models in the
presence of fluctuating input currents. The adapting rate model is a reduced
two-dimensional model that is a minimal model to fit the response of cor-
tical neurons to in vivo–like current with stationary distribution. The rate
models are easily computable; reproduce well the simulations of the full
models from which they are derived; are of wide applicability (e.g., apply
to model neurons with conductance-based synaptic inputs); allow for dif-
ferent mechanisms of adaptation to be used; and can be used to predict
the activity of a large population of adapting spiking neurons in response
to time-varying inputs. We considered an AHP current and an adapting
threshold for spike emission, two mechanisms for which there is experi-
mental evidence and which are often used in modeling studies. The only
requirement is that adaptation be slow compared to the scale of the neural
dynamics.

Since the adapting rate models (with either model of adaptation) consid-
ered in this study are able to fit the rate functions of neocortical neurons, they
offer a synthetic way to describe cortical firing, and the diversity of possible
models can be used for a quantitative (and possibly functional) classifica-
tion of cortical neurons based on their observed response to in vivo–like
currents.
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Since the stationary model predicts the time-varying activity of a large
population of independent neurons, the response function measured by
Rauch et al. (2003) can be used to make quantitative analyses of the pop-
ulation dynamics, and not only of the stationary states (Amit & Brunel,
1997; Mattia & Del Giudice, 2002). This is particularly the case for net-
works of neurons in the fluctuation-dominated regime (e.g., Shadlen &
Newsome, 1998; Fusi & Mattia, 1999), when spikes are emitted because
of large fluctuations of the membrane potentials around an average value
that is below the threshold. Such a regime could be the consequence of
a high-conductance state (Destexhe et al., 2001), as observed in vivo (Paré,
Shink, Gaudreau, Destexhe, & Lang, 1998). Otherwise, the network may fall
in a synchronized regime, for example, in response to a step current, caus-
ing the population activity to oscillate around that predicted by the rate
model.

Additional work is required to investigate the predictions of the time-
varying model in more complex situations, as, for example, in populations of
interacting neurons or in the case of voltage-gated, saturating conductances
(as, e.g., NMDA-mediated). In the absence of adaptation, the predictions of
the model have been shown to be good in these more complex cases as
well (e.g., Renart et al., 2003). We expect no difference in performance when
adaptation is included as done in section 3.

Appendix A: Model Neurons

A.1 Leaky Integrate-and-Fire Neuron. The leaky IF neuron is a single-
compartment model characterized by its membrane voltage V and with a
fixed threshold θ for spike emission. Upon crossing of θ from below, a spike
is said to occur, and the membrane is clamped to a reset potential Vr for a
refractory time τr, after which normal dynamics resume. We assume that a
large number of postsynaptic potentials of small amplitude are required to
reach the threshold. In such a condition, prevalent in the cortex, the sub-
threshold membrane dynamics can be assimilated to a continuous random
walk, the Ornstein-Uhlenbeck (OU) process (this is the diffusion approxi-
mation; see, e.g., Lánský & Sato, 1999). Taking into account the effect of Iahp,
the subthreshold dynamics of the membrane potential obeys the stochastic
differential equation,

dV = −V − Vrest

τ
dt + µdt + σξt

√
dt, (A.1)

where

µ = m + Iahp

C
, σ =

√
2τ ′s
C

are the average and standard deviation in unit time of the membrane volt-
age. m and s2 are the average and the variance of the synaptic input current,
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Iahp = −gN[N]i (see equation 2.1), and
√

2τ ′ is a factor to preserve units (see,
e.g., Rauch et al., 2003). Vrest = 0 is the resting potential, C is the capaci-
tance of the membrane, τ = RC, and R is the membrane resistance. ξt is a
gaussian process with flat spectrum and unitary variance, 〈ξtξt′ 〉 = δ(t − t′)
(white noise; see, e.g., Tuckwell, 1988, or Gardiner, 1985, for more details).
In a nonadapting neuron, Iahp ≡ 0. In the adapting threshold model (see sec-
tion 2.2), Iahp = 0 and the threshold θ ≥ θ0 is a dynamical variable obeying
equation 2.7.

A.2 Quadratic Integrate-and-Fire Neuron. The dimensionless variable
V, to be interpreted as the membrane potential of the white noise–driven
QIF neuron obeys

τdV = (V2 + µ)dt + σξt
√

τdt, (A.2)

where τ is a time constant that mimics the effect of the membrane time
constant, and µ, σ 2 are the average and variance per unit time of the input
current. A spike is said to occur whenever V = +∞, after which V is clamped
to V = −∞ for a refractory period τr. In practice, in the simulations, V is
reset to −50 whenever V = +50. This gives an accurate approximation for
the parameters chosen in Figure 2. On the other hand, in the rate function,
equation 2.4, the actual values used for the integration limits do not matter,
provided they are larger than +10 and smaller than −10 respectively.

A.3 Conductance-Based LIF Neuron. The membrane potential of the
conductance-based LIF neuron obeys

dV = −g̃L(V − Vrest)dt + gE(VE − V)dPE + gI(VI − V)dPI,

where gE,I = τ ḡE,I/C are dimensionless peak conductances, g̃L = 1/τ is the
leak conductance in appropriate units (1/ms), VE,I are the excitatory and
inhibitory reversal potentials, and dPE,I = ∑

j δ(t − tE,I
j )dt are Poisson spike

trains with intensity νE,I. In the diffusion approximation (dPx → νxdt +√
νxdtξt), the equation can be put in a form very similar to equation A.1 (see,

e.g., Hanson & Tuckwell, 1983; Lánský & Lánská, 1987; Burkitt, 2001):

dV = − V
τ ∗ dt + µ0dt + σ0(V)

√
dtξt (A.3)

where

µ0 = g̃LVrest + (gEVEνE + gIVIνI) (A.4)

σ 2
0 (V) = g2

E(VE − V)2νE + g2
I (VI − V)2νI (A.5)

τ ∗ = (g̃L + gEνE + gIνI)
−1. (A.6)
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The main differences with respect to the current-based IF neuron are (1)
the fluctuations depend on the membrane voltage; (2) an input-dependent,
effective time constant τ ∗ appears; (3) the parameter µ0 is not the average
of the total input current (e.g., part of the input contributes to the leak
term −V/τ ∗ and is not considered in µ0); and (4) the voltage is bounded
from below by the inhibitory reversal potential (below VI, inhibitory inputs
become excitatory). Usually the last point is taken care of by imposing a
reflecting barrier R at VI (Hanson & Tuckwell, 1983; Lánský & Lánská, 1987).
The rate function of the CB neuron,

�CB =
[
τr + τ ∗

∫ θ−µss√
2σss

Vr−µss√
2σss

√
πex2

(1 + erf(x))dx

]−1

, (A.7)

has been given in Burkitt et al. (2003) in the absence of a reflecting barrier.
Figure 3 shows that in the typical case, it works also in the presence of a
reflecting barrier at VI. The constants µss, σ 2

ss appearing in equation A.7 are
the stationary average and variance of the free (i.e., spikeless) membrane
voltage, which are (Hanson & Tuckwell, 1983; Burkitt, 2001):

µss = µ0τ
∗ = g̃LVrest + (gEVEνE + gIVIνI)

(g̃L + gEνE + gIνI)
(A.8)

and

σ 2
ss = τ ∗

2
σ 2

0 (µss)

1 − η
≈ τ ∗

2
σ 2

0 (µss), (A.9)

where

η ≡ (g2
EνE + g2

I νI)τ
∗/2.

The approximation in equation A.9 follows from the fact that η is negligible
in the typical case. For example, when ḡE,I ∼ 1 nS, C ∼ 500 pF, and νE,I ∼
103 Hz, then η ∼ 10−4 − 10−3. (A convenient way to obtain the result,
equation A.9, is to make use of the equality σ 2

ss = τ ∗〈σ 2
0 (V)〉/2, where the

average 〈.〉 is taken on the free process. This is a generalization of a well-
known property of the OU process in which σ0 is constant.) equation A.7
can therefore be written as equation 2.6,

�CB =

τr + τ ∗

∫ Cθ−m0τ∗
s0

√
τ∗

CVr−m0τ∗
s0

√
τ∗

√
πex2

(1 + erf(x))dx




−1

,

where m0 ≡ Cµ0 and s0 ≡ Cσ0(µss), so that m0 has units of current:

m0 = Cg̃LVrest + C(gEVEνE + gIVIνI) (A.10)

s2
0 = C2g2

E(VE − µss)
2νE + C2g2

I (VI − µss)
2νI, (A.11)
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with µss given by equation A.8 and gE,I ≡ τ ḡE,I/C. The adapted frequency
is given by the solution of either f = �CB(m0 − αf, s0) (AHP-based model)
or f = �CB(θ0 + β f ; m0, s0) (adapting threshold model).

Appendix B: Fitting Procedure

Here we briefly summarize the experimental procedure and the data anal-
ysis that led to the results of Table 1. Full details can be found in Rauch et
al. (2003). Pyramidal neurons from layer 5 of rat somatosensory cortex were
injected with an OU process with a correlation time constant τ ′ = 1 ms to
resemble white noise. Stimuli were delivered in random order from a pre-
selected pool, which depended on the cell. The time length of the stimulus
was between 6 and 12 seconds. The spike trains of 26 selected cells were ana-
lyzed to assess their mean spike frequencies. A transient ranging from 0.5 to
2 seconds (depending on stimulus duration) was discarded to deal with the
stationary spike train only. On balance, the stationary response was usually
adapted with respect to the transient one. The model rate functions were
fitted to the experimental ones using a random least-square procedure, that
is, a Monte Carlo minimization of the function (see, e.g., Press, Teukolsky,
Vetterling, & Flannery, 1992),

χ2
N−M =

N∑
i=1

[
�MODEL(mi, si; �) − fi

�i

]2

,

where i runs over the experimental points, fi are the experimental spike
frequencies, � is the parameter set, and the weights �i correspond approx-
imately to a confidence interval of 68% for the output rate. M is the number
of parameters to be tuned and N the number of experimental points. The
best-fit was accepted if the probability of a variable χ2

N−M to be larger than
the observed χ2

min was larger than 0.01. The parameter set includes five pa-
rameters: τr, Vr, C, τ , and α [pA·s] for the AHP adaptation or β [mV·s] for
the adapting threshold mechanism. Note that since �LIF, equation 2.3, is
invariant under the scaling θ → θh, Vr → Vrh, C → C/h (h constant), only
two out of these three parameters are independent. Therefore, the threshold
for spike emission (θ0 in the case of an adapting threshold) was set to 20 mV
throughout. The results are summarized in Table 1 and discussed in the text.

Appendix C: The Effects of Adaptation on the LIF Neuron

Here we summarize and compare the properties of the LIF neuron endowed
with the two models of adaptation, which are mentioned in the analysis of
the experimental data in section 2.3. We will refer to the self-consistent solu-
tions of equation 2.2 and 2.8 as fα(m, s), fβ(m, s), respectively. We consider
the regions of low and intermediate-to-large rates in turn.
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1. At low frequencies, the two models can be made equivalent by choos-
ing βC/τ = α. This is because the response at rheobase, otherwise
highly nonlinear, is linearized by either model of adaptation. One ob-
tains

fα,β ≈ ρα,β [m − mth]+

as m → mth = Cθ/τ+, where mth is the rheobase current, ρα = α−1

for AHP adaptation, and ρβ = τ/Cβ for adapting threshold. ([x]+ = x
if x > 0 and zero otherwise, and m → y+ means that the limit is
performed for values of m larger than y.) The linearization argument
is due to Ermentrout (1998) for AHP-like adaptation and can be easily
generalized to the case of an adapting threshold for the LIF neuron.
The slope, ρ, can be obtained by looking at how the two forms of
adaptation affect the rheobase mth = Cθ/τ , that is, by requiring that
m − αfα − Cθ/τ = m − C(θ + β fβ)/τ . One finds fα/fβ = Cβ/ατ so that
for Cβ = ατ the output frequencies at the rheobase (hence, the slopes
of the linearized rate functions) are the same.

2. For τr = 0, the rate functions of the two adapting models differ away
from the rheobase. This can be seen most easily for large inputs, where
the nonadapted response is approximately linear, f ∼ m/C(θ − Vr). It
is easy to derive that AHP adaptation preserves this linearity,

fα ∼ m
C(θ − Vr) + α

,

while for an adapting threshold,

fβ = (θ − Vr)

2β

(√
1 + 4βm

C(θ − Vr)2 − 1

)
, (C.1)

with asymptotic behavior fβ ∼ √
m/Cβ. The introduction of a finite

refractory period makes the AHP model bend in this region,

fα ∼ 1
τr

(
1 − α

τrm

)
,

allowing the two models to match on the entire range of observed
output rates.
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