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Comparison between networks of conductance-
and current-driven neurons: stationary

spike rates and subthreshold depolarization
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Abstract

The problem of an equivalence between conductance- and current-driven neurons in terms of
mean stationary output rates is investigated. We show that it is possible to study a network
of conductance-driven neurons by means of a mean 0eld analysis of an equivalent network of
current-driven neurons. The current drive is Gauss distributed and not voltage dependent. The
equivalent network is composed by the same neurons and exhibits the same stable 0ring rates
at the only price of having di2erent connectivity. In addition, the di2erences in the subthreshold
depolarization and the interspike-interval distribution can be studied at parity of output rates,
providing a method to study those e2ects of the conductance drive which do not arise in a
network of current-driven neurons.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of how conductance-driven neurons di2er from current-driven neurons
has become increasingly popular recently, to the point of questioning the results obtain-
able by studying networks of current-driven spiking neurons [7]. To give a meaningful
answer to this question, it is necessary to specify the observables with respect to which
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di2erently driven neurons ought to behave equivalently. Here we study the problem
of mean rates of asynchronous activity in large networks of spiking neurons. Popula-
tion density approach provides a synthetic and reliable description of cortical phenom-
ena like spontaneous or delay activity observed in many areas of behaving animals
(see e.g. [1] and references therein). BrieFy, neurons of the same kind are grouped in
homogeneous populations which can be fully described by the population spike rate
and whose neurons all share the same input statistics. The stationary patterns of activity
in the network are given by the self-consistent solutions of mean 0eld equations like
fiout =�

i(f in), where i labels the population and the frequencies fi describe the state
of the network. In such a framework, conductance- and current-driven neurons are to
be considered equivalent if they are described by the same self-consistent equations.
Given a network of conductance-driven neurons, we show how to build an equivalent
network of current-driven neurons which exhibit the same stationary spike rates.

2. The network of conductance-driven neurons

For the sake of simplicity, we consider only two homogeneous populations, excitatory
(e) and inhibitory (i). In the cortex, hundreds of synaptic inputs delivered to the target
cells by means of local conductance changes (independent or only weakly correlated),
can be described in terms of Gauss distributed conductances ge; i(t) (see e.g. [3]), whose
average �e; i and variance �2e; i are given by

�e; i = Hge; iNe; ice; i�e; i�e; i;

�2e; i =
1
2 Hg2e; iNe; ice; i�e; i�e; i;

where N is the total number of neurons of a population; c is the fraction of neurons
of this population which are directly connected; � is the mean frequency of synaptic
releases; Hg is the peak conductance change induced by a single event; � is the time
constant of the exponential decay of a single post-synaptic change in conductance,
which allows ionic current to Fow into the cell. A good choice to match experimental
data is � ∼ 5 ms [3], and therefore we use �e = �i = 5 ms.

Note that the statistics of the input are completely speci0ed by the quadruplet
= {�e; Hge; �i; Hgi}. The input current is obtained by multiplying the total synaptic con-
ductances ge; i(; t) by the corresponding voltage-dependent driving forces

Ie; i(; t) = ge; i(; t) (Ve; i − V (t));
where Vi = Vrest − 10 and Ve = Vrest + 70 mV are the reversal potentials, and Vrest
is the resting membrane potential of the post-synaptic cell. Its total input current is
Icond ≡ Ie + Ii.

3. The equivalent Gaussian current to get the same mean �ring rates

If one injects a Gaussian current characterized by the same average and variance of
the total current Icond arising in conductance drive, in general one would not get the
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same spike rate as one would in the full simulation with the conductance drive. This is
because the driving force can skew the Gaussian distribution of the conductances and
can introduce complex correlations in the resulting current Icond, not taken into account
by a Gaussian current with the same average and variance as Icond.
The problem, then, is to 0nd the e4ective or rescaled Gauss distributed, voltage-

independent current which, given a large pool of inputs {}, gives for each  the
same output frequency f which would be obtained under conductance drive. This
would map a network of conductance-driven neurons in a network of current-driven
neurons which exhibit the same stationary spike rates. The two networks will then be
equivalent in the sense that their stationary mean 0eld activities are the same.
The most natural candidate for an equivalent Gaussian current is probably that com-

ing from the attempt to linearize the dynamical equations for the couple (V; I) around
an holding potential V ∗ = V (∗), where ∗ represents a typical input in cortical con-
ditions, as done e.g. in [2]. Such procedure amounts to looking for e2ective ‘average’
potentials V e; i

J (playing the role of ‘average’ driving forces Ve; i − 〈V 〉, see [2]) such
that the Gaussian current with average and variance given by

m̂I = HgeV e
J Nece�e�e − HgiV i

J Nici�i�i;

ŝ2I =
1
2 ( HgeV

e
J )

2Nece�e�e + 1
2 ( HgiV

i
J )

2Nici�i�i

gives the same output frequency at parity of input . Although this may work for a
single , it does not work for all ’s in a large pool (results not shown).
Note that in the above procedure, the map is given in terms of e2ective synaptic

e:cacies Je; i ≡ Hge; iV
e; i
J . It is natural then to increase the number of degrees of freedom

and look for a solution in terms, for example, of properly rescaled connectivities in
addition to synaptic e:cacies. In formal terms, for each quadruplet  = {�e; Hge; �i; Hgi}
characterizing the statistics of the input, we build a Gaussian current Icur() with mean
mI () and variance s2I () according to

mI = JeNec̃e�e�e − JiNic̃i�i�i;

s2I =
1
2 J

2
e Nec̃e�e�e + 1

2 J
2
i Nic̃i�i�i;

where Je; i = Hge; iV
e; i
J are, as above, the peak currents per single pre-synaptic spike, and

c̃e; i = �e; ice; i are the rescaled connectivities in the network of current-driven neurons.
Two networks (of conductance- and current-driven neurons) will then be equivalent if
values for V e; i

J , �e; i, independent of �e; i, can be found such that the neuron’s mean rate
fcond under conductance injection Icond is the same as the mean rate fcur under current
injection Icur. In such a case, in fact, the mean 0eld activities for the two networks are
the same. Note that the scaling parameters {V e; i

J , �e; i} may still depend on the other
parameters de0ning , i.e. Hge; i, and yet the equivalence be achieved. We found that, for
a network of integrate-and-0re neurons, a remarkable match can be found with unique
(i.e. -independent) scaling factors (Fig. 1, top left). These scaling factors depend only
on the parameters of the neurons (capacitance, membrane time constant, reset potential,
threshold for spike emission, etc.)
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Fig. 1. Top left: Comparison between a conductance-driven (symbols) and a current-driven (full curves)
IF neuron after rescaling (simulations). The dynamics of the subthreshold membrane potential V evolve
according to the Eq. dV=dt = −V=�m + I=C, with I = Icond(), and thresholded at � = 20 mV to emulate
a spike emission, with reset at Vr = 10 mV and no refractory period (C = 500 pF, �m = 20 ms, Vrest = 0).
The frequency match was obtained through a Montecarlo minimization of the squared di2erence between
the observed frequencies and the output mean rates of a current-driven neuron driven by the same inputs
(whose stationary spike rate is given in [4] as a function of mI , sI ). The best-0t parameters values were
V e
J ≈ 24:7 mV, V i

J ≈ 59:1 mV, �e = c̃e=ce ≈ 2:2 and �i = c̃i=ci ≈ 0:5. Each curve was generated by setting
Hge; i equal to constant values (reported in the top left corner of the 0gure), and then by sweeping along the
diagonal of the {�e; �i} plane (i.e. �e = �i for each point; �e ranges reported in the plot. Ne; ice; i = 1000).
This procedure was chosen to explore di2erent quadruplets  arising form realistic parameters and giving
reasonable input currents and output frequencies. Top right: Coe:cient of variability of the depolarization
in conductance (dot-dashed) and current (full) drive. A thickness code replaces the symbol code of the top
left panel, with the thickest line corresponding to the circles. Bottom left: CVISI as a function of the output
frequency for both drives (same convention as for top right panel). Arrows help link corresponding curves.
Bottom right: Same as top right panel plus the CVV for the case of an equivalent Gaussian, delta-correlated
current (dots; see text). The arrows show the e2ect (in current drive) due to the time correlation length of
the input (�s). A residual di2erence with the CVV in conductance drive remains and cannot be accounted
for by �s.

4. Beyond the spike rates

The scheme outlined above is not enough to get a complete match in the response as
quanti0ed by the entire spike train, but it allows to study conductance vs. current-driven
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neurons at parity of output spike rates for all inputs, in particular enables us to study
the statistics of the depolarization and of the interspike intervals (ISIs). For a given
quantity, higher moments like the variance, or equivalently the coe9cient of variability
(CV=standard deviation/mean), are usually di2erent even if the mean spike rates are
the same (and often they have to be di2erent in order to achieve the same spike
rates, as shown in the previous section). In general, the rescaled Gaussian current is
in a complex relationship with the input current in conductance drive, but for the
subthreshold depolarization a clear feature emerges: its standard deviation is always
larger in current drive, while its average is smaller, causing its coe:cient of variability
(CVV ) to be smaller in conductance drive (Fig. 1, top right).
Surprisingly, such voltage variability is anticorrelated with the variability of the

ISIs, as the CVISI is always larger in conductance drive (Fig. 1, bottom left). The
di2erent statistics of the depolarization can be due to at least three di2erent factors:
(a) the correlations between current and depolarization; (b) the presence of an e2ective
reFective barrier for the depolarization located at the inhibitory reversal potential Vi
(below Vi, inhibitory inputs become excitatory and as a result excursions below Vi
are forbidden in conductance drive); (c) the correlation length �s of the current which
naturally arises in conductance drive, here equal to 5 ms (the CVISI is always increased
by a larger synaptic time [5], both in conductance and current drive). To investigate
the e2ect of the correlation length, we found the unique scaling parameters which give
the frequency match with a �-correlated Gaussian current (�s = 0). The e2ect of �s on
the CVV is shown in Fig. 1 (bottom right), in which one can see that there is still a
residual di2erence in the CVV between conductance and current drive, which cannot
be accounted for by the correlation length only. We also checked that the presence of
a reFecting barrier at Vi for the depolarization in current drive has a negligible e2ect
(not shown). As a result, the cross-correlations between depolarization and current
in conductance drive is likely to be the factor responsible for the di2erences in the
depolarization and in the ISI statistics, at parity of output rates. These correlations may
in fact also change the e2ective correlation length of the current, so that a comparison
at parity of �s would be unfair. This suggests that the dynamics of the two (equivalent)
networks may be di2erent although the steady states of asynchronous activity are the
same (but see [4]).

5. Discussion

In this work current- vs. conductance-driven neurons were studied in the framework
of the mean 0eld theory of large recurrent networks of spiking neurons. For such
networks, equivalence means having the same patterns of stable 0ring rates in homo-
geneous populations, regardless of the modality in which the input is delivered to the
target cells, i.e. either in conductance or in current drive. Our main result is that it
is possible to obtain the same mean 0ring rates of a network of conductance-driven
neurons by studying an equivalent network of current-driven neurons, whose inputs
are Gauss distributed and not voltage dependent. Compared to the original network,
the companion network has the same number of neurons and the same stable 0ring
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rates at the only price of di2erent connectivities and suitable synaptic e:cacies. This
result was obtained with a method that allows comparison, at parity of output rates,
of the statistics of important quantities like the subthreshold depolarization and the ISI
distribution. Finally, our results also provide a bridge between in vitro experiments in
which conductance injection is emulated via the dynamic clamp technique (see e.g.
[6]), and in vitro experiments with current injection. To this purpose, the problem of
an equivalent formulation in terms of current-driven neurons must be approached care-
fully, and its solution relies upon a correct choice of the relevant variables which are
to be investigated. This work presents an example of how such a procedure may be
carried out.
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