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Institute of Physiology, University of Bern, Bühlplatz 5, Switzerland
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La Camera, Giancarlo, Alexander Rauch, David Thurbon,
Hans-R. Lüscher, Walter Senn, and Stefano Fusi. Multiple time
scales of temporal response in pyramidal and fast spiking cortical
neurons. J Neurophysiol 96: 3448–3464, 2006. First published June
28, 2006; doi:10.1152/jn.00453.2006. Neural dynamic processes cor-
related over several time scales are found in vivo, in stimulus-evoked
as well as spontaneous activity, and are thought to affect the way
sensory stimulation is processed. Despite their potential computa-
tional consequences, a systematic description of the presence of
multiple time scales in single cortical neurons is lacking. In this study,
we injected fast spiking and pyramidal (PYR) neurons in vitro with
long-lasting episodes of step-like and noisy, in-vivo-like current.
Several processes shaped the time course of the instantaneous spike
frequency, which could be reduced to a small number (1–4) of
phenomenological mechanisms, either reducing (adapting) or increas-
ing (facilitating) the neuron’s firing rate over time. The different
adaptation/facilitation processes cover a wide range of time scales,
ranging from initial adaptation (�10 ms, PYR neurons only), to fast
adaptation (�300 ms), early facilitation (0.5–1 s, PYR only), and slow
(or late) adaptation (order of seconds). These processes are charac-
terized by broad distributions of their magnitudes and time constants
across cells, showing that multiple time scales are at play in cortical
neurons, even in response to stationary stimuli and in the presence of
input fluctuations. These processes might be part of a cascade of
processes responsible for the power-law behavior of adaptation ob-
served in several preparations, and may have far-reaching computa-
tional consequences that have been recently described.

I N T R O D U C T I O N

Neural dynamic processes correlated over several time
scales have been found in a variety of preparations, including
the cerebral cortex. Reported early in the peripheral nervous
system of invertebrates (Thorson and Biederman-Thorson
1974 and references therein), these processes have been found
more recently in cat auditory cortex neurons, where stimulus-
specific adaptation accounts for the difference in responses to
rare versus common stimuli over an extended range of time
scales (a few hundred milliseconds to hundreds of seconds)
(Ulanovsky et al. 2004). In cat auditory nerve fibers (Lowen
and Teich 1996) and in the lateral geniculate nucleus (LGN) of
the cat thalamus (Lowen et al. 2001), neural activity can
exhibit long-range correlations spanning multiple time scales.

Having been collected in vivo, this experimental evidence
raises the possibility that the interaction between neurons could
underlie the expression of multiple time scales. However, the
existence of ion channels with different kinetics suggests that

individual neurons may be equipped to produce dynamic ac-
tivity which correlates on multiple time scales. For example,
Spain et al. (1991) reported the existence of (at least) two
transient potassium currents in the large pyramidal (PYR)
neurons of the layer 5 of cat sensorimotor cortex. These
currents decayed with different time scales (�20 ms vs. �10 s)
comparable to the time constants of the fastest and slowest
adaptation processes previously found in PYR neurons by
Rauch et al. (2003). However, no quantitative accounts of the
number and the properties of those processes have been re-
ported nor has a similar study been undertaken in neurons the
firing patterns of which distinctively differ from the pyramidal
or the sensory type, like e.g., fast spiking (FS) interneurons
(McCormick et al. 1985).

We analyzed in detail the response of FS and PYR neurons
in vitro to long-lasting, noisy stimuli with stationary statistics.
The noisy stimuli are meant to imitate the synaptic currents that
are observed in vivo in intracellular recordings (Destexhe et al.
2001; Paré et al. 1998). When the input currents were strong
enough, the neural response was highly nonstationary for both
FS and PYR neurons. The largest variations of the firing
frequency over time were observed in the initial phase of the
stimulation, but detectable nonstationarities could be seen in
the late response of the stimulated cell. This is an indication
that several mechanisms operating on multiple time scales
determine the response of a neural cell to a stimulus with
stationary statistics. We used a novel approach to characterize
quantitatively the neuronal response. It consists of two steps:
first, a simple model of an integrate-and-fire (IF) neuron was
fitted to the late, quasi-stationary responses of the neurons to a
variety of input currents (Rauch et al. 2003). Dynamic com-
ponents were ignored because the variations of the firing rate,
although still detectable, were small compared with the firing
rates themselves. The second step is an extended model with
time-varying processes (adaptation) that was fitted to the tem-
poral response of the neurons from the same set of data, with
the neuron parameters set by the previous fit. This second step
gave the parameters of the time-varying processes (magnitude
and time constant). Based on a detailed analysis performed on
those parameters, we report quantitative evidence that multiple
time scales are at play in both PYR and FS neurons. We also
show that a simple spiking model can provide quite a detailed
account of firing rate dynamics of cortical neurons probed in an
in-vivo-like environment. Finally, we study the distribution of
the functional parameters across cells.* G. La Camera and A. Rauch contributed equally to this work.
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Multiple time scales in cortical neurons might profoundly
affect sensory processing and, more generally, neural compu-
tation, as proposed by recent theoretical studies (e.g., Brenner
et al. 2000; Drew and Abbott 2006; Fairhall et al. 2001) that we
briefly review in the Discussion.

M E T H O D S

Experimental preparation and recordings

The experimental preparation was as described previously (Rauch
et al. 2003). Briefly, 300 �m thick parasagittal slices of rat somato-
sensory cortex were prepared from 15- to 40-day-old female and male
Wistar rats according to the institutional guidelines. The preparation
was done in ice cold extracellular solution using a Campden vi-
bratome (752M, Campden Instruments). Slices were incubated at 37°
for 25 min and afterward left at room temperature until transferred to
the recording chamber. The cells were visualized by infrared differ-
ential interference contrast videomicroscopy using a Newvicon cam-
era (C2400, Hamamatsu City, Japan) and an infrared filter (RG9,
Schott Mainz) mounted on an upright microscope (Axioscope FS,
Zeiss).

We recorded in current-clamp whole cell configuration from the
soma of layer 5 (L5) and layer 2/3 (L2/3) FS (McCormick et al. 1985)
neurons and L5 PYR neurons. Recordings and stimulations were
made with an Axoclamp-2A amplifier (Axon Instruments) in combi-
nation with Clampex 8 (Axon Instruments). The access resistance and
the capacitance were compensated using the bridge balance and the
capacitance neutralization after having established the whole cell
configuration. The data were low-pass filtered at 2.5 kHz with sam-
pling frequency twice the filter frequency. The temperature of the
external solution was 31–33° C. Neurons were visually identified,
most of them were filled with biocytin (10 mM) and then stained
according to the ABC procedure (Hsu et al. 1981). A standard
criterion for classification of cells as FS neurons was used (see, e.g.,
Descalzo et al. 2005): short duration of action potentials (�0.5 ms at
half height), fast after-spike repolarization, absence of firing rate
adaptation in the first milliseconds of the spike train, a steep frequen-
cy-current curve around rheobase (see Figs. 1 and 4).

Slices were continuously superfused with an artificial cerebrospinal
fluid containing (in mM) 125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25
NaH2PO4, 2 CaCl2, 1 MgCl2, and 25 glucose, gassed with 95%
O2-5% CO2. The pipette solution contained (in mM) 115 K-gluconate,
20 KCl, 10 HEPES, 4 Mg-ATP, 0.3 Na2-GTP, and 10 Na2-phospho-
creatine, pH adjusted to 7.3 with KOH. The measured osmolarity was
between 310 and 325 mosm.

Stimulation protocol and main observables

The stimuli were fluctuating in time around an average value but
were stationary in the following sense: they were completely charac-
terized by their means and SDs, which were held fixed throughout the
stimulation interval. We chose stimuli with virtually no temporal
correlation, i.e., resembling white noise. Specifically, the input current
was generated as an Ornstein-Uhlenbeck stochastic process by iterat-
ing the following expression

I�t � �t� � I�t� �
I�t�

�I

�t �
mI

�I

�t � SI� 2

�I

�t��t (1)

where �t is a unitary Gauss distributed random variable, updated at
every time step. The process was generated and injected at a rate of 5
kHz (�t � 0.2 ms) and the correlation length �I was 1 ms. The
resulting current I(t) has a stationary Gauss distribution with mean mI

and variance sI
2 (Cox and Miller 1965). Such a noisy stimulus is meant

to emulate the synaptic barrage targeting a cortical neuron in vivo due

to fast excitatory and inhibitory inputs (Rauch et al. 2003). In a few
cells we used �I � 5 ms with similar results.

The {mI,sI} space was systematically explored as follows: data
points were collected at fixed sI (ranging from 0 to 200 pA), stepwise
increasing mI from a subthreshold value up to nonstationary frequen-
cies. The data with sI � 0 (step current) were used to determine the
threshold mean current Irh (the rheobase current), and the whole
procedure served to establish the whole space of suitable {mI,sI} pairs
for the neuron under study. The pool of suitable {mI,sI} pairs was then
discretized and explored in random order to prevent correlations
between time and one of the two parameters mI,sI. This randomized
protocol was used to characterize the response function of the neuron,
i.e., its mean firing rate as a function of mI and sI (more details in the
following text). For each pair {mI,sI}, stimulation lasted 4 s. Between
recordings, the stimulus was switched off and the neuron let to rest for
50–60 s. Some of the recordings were longer (�10 s) to check that the
high spike frequencies found could be sustained for longer stimula-
tions. The first part of the neuronal response (0.5 s) was discarded
when estimating the mean spike frequency.

The mean spike frequency, f, was estimated as the ratio between the
total number of action potentials Nsp and the stimulus duration T. The
confidence intervals (68%) of the experimentally measured frequen-
cies were approximately given by � � (�f� � �f�)/2 with (Rauch et
al. 2003)

�f 	 �
1

T
� 1

2
� �Nsp �

1

4
� (2)

This formula corresponds, roughly, to a Poisson model for spike
emission, corrected at low output rates: for large output rates the
errors tend to be symmetrical and distributed as in a Poisson model of
the spike count (
�Nsp), the longer the observation interval T, the
smaller the confidence intervals; second, if no action potentials are
observed in (0,T), then the “true” output rate falls within the interval
(0,1/T) with �68% confidence. A derivation of Eq. 2 is given in the
APPENDIX.

Particular care was taken to ensure that the response of the cell was
consistent throughout the whole recording session. The cells were
classified as consistent if: less than half of the pairwise differences
between repeated recordings were out of the error range given by Eq.
2; at a given mI, responses to current with different sI preserved the
sign, i.e., if f(mI,sI) � f(mI,sI) in one recording, then the same order
relationship is observed in all of the repeats of the same recording
[f(mI,sI) is the mean firing rate in response to a current characterized
by mI and sI)]. Only consistent cells were further analyzed.

A neuron’s response function is the collection of quasi-stationary
firing rates in response to a set of stimuli with different means and
SDs. We defined a spike train as quasi-stationary if its firing rate was
constant over the recording interval or, in the presence of adaptation,
if its maximal decrease in firing rate per second, 	f, was below a given
threshold, chosen to be 1 Hz/s for PYR neurons and 5 Hz/s for FS
neurons (see also following text). The amount of frequency reduction
was quantified by the index 	f � (finit � ffinal)/	T, where 	T � tfinal �
tinit, and finit/final is the frequency in a temporal window 1 s wide,
centered around tinit/final (for example, if T � 4 s was the total duration
of the stimulus, tinit � 1 s, tfinal � 3.5 s, 	T � 2.5 s). Although firing
rate changes could be detected when the slowest components of
adaptation were analyzed, they did not affect significantly the quality
of the model fits to the response functions (the model fits are described
in the next subsections). This was also the criterion for choosing the
aforementioned thresholds for 	f. Pearson’s linear correlation and
nonparametric Kendall’s tau were used to assess the correlation
between parameter 	f and output firing rate f (across all recordings of
each single neuron).

The coefficient of variability (CV) of the interspike intervals (ISIs)
was estimated as the ratio between the SD and the mean of the ISIs.
An initial portion of the spike train of 0.5 s was removed to evaluate
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the CV on a stationary or quasi-stationary spike train only. The
interval was chosen to be significantly longer than the duration of the
fastest adaptation process (see RESULTS for more details).

Model response function

A leaky IF (LIF) model neuron endowed with a phenomenological
model of spike frequency adaptation (Ermentrout 1998; Fuhrmann et
al. 2002; Rauch et al. 2003) was used to describe quantitatively the
response of the neurons. The output rate of the LIF neuron in
quasi-stationary conditions, f, is described accurately by the solution
of the self-consistent equation (La Camera et al. 2004a; Rauch et al.
2003)

f � 
�mI � �f, sI� (3)

where {mI,sI} are the average and the SD of the input current, � (pA
� s) is a parameter quantifying adaptation, and � is the response
function of the LIF model neuron, i.e.,


�mI,sI� � ��r � � �
CVr�mI�

�I��

C�mI�

�I��

�2ex2
�1 � erf�x��dx�

�1

(4)

where �I � sI �2�I. The meaning of the parameters is as follows: C
is the membrane capacitance, �I is the time constant of the input
current (Eq. 1), �r is the absolute refractory period,  is the threshold
for spike emission, Vr is the reset potential after spike emission, � is

the membrane time constant, and erf(x) � �2/����
0

xdte�t2 is the error

function.

Data analysis and fitting procedure

The theoretical f(mI,sI) curves were fitted to the quasi-stationary
data of consistent cells. The fit was achieved through a Montecarlo
minimization (see e.g., Press et al. 1992) of the square difference
between the measured (fk

exp) and the model (fk
th) firing rate

�2 � �
k

N �f k
exp � f k

th����2

�k
2 (5)

with respect to the set of the effective parameters � � {�r, Vr, C, �,
�}. �k � (�fk

� � �fk
�)/2 amounts to half the confidence interval for

point k, with �fk
	 given by Eq. 2. Because only five of the six

parameters of the model neurons are independent (the response
function Eq. 4 is invariant under the scaling 3 �, Vr3 �Vr, C3
C/� with � � 0), we set the threshold to  � 20 mV without loss of
generality.

The minimum �min
2 of the quantity (5) with respect to the param-

eters set � follows approximately a �2 distribution with N-M degrees
of freedom, where N is the number of experimental points, and M �
5 is the number of free parameters. The fit was accepted whenever the
probability P(�N-M

2 � �min
2 ) was �0.01. An unequal variance t-test

was used to detect differences in average neuron parameters (the same
results were obtained with an equal variance t-test). Significance was
taken at 5% level.

The input resistance of the neurons was calculated from the voltage
transients in response to at least six different hyperpolarizing current
pulses (600-ms duration, average of the last 300 ms; step amplitude:
20 pA). The membrane time constant � was estimated by injecting
brief (0.4 ms) hyperpolarizing current pulses (�2.5 nA) into the soma.
From the averaged (n � 50) decaying voltage transient after this
current pulse, � was obtained from the slope of a straight line fitted to
the tail portion of the semilogarithmic plot of the membrane voltage
against time (Iansek and Redman 1973). The membrane capacitance

was then obtained as the ratio between the membrane time constant
and the input resistance. We refer to these values as to the directly
estimated parameters in the following, as opposed to the effective
parameters obtained from the fit of the model to the response
functions.

Full model fit of the temporal response

The model neuron having the quasi-stationary firing rate given by
Eqs. 3 and 4 is described by a single variable, the membrane voltage
V, which below the spike threshold  obeys

dV � �
V

�
dt �

mI � I�

C
dt �

�I

C
�t�dt (6)

where �I � sI�2�I (symbols have the same meaning as in Eqs. 1 and
4). I� is a feedback current driven by the neuron’s instantaneous
output rate

dI�

dt
� �

I�

��

� g��
k

	�t � tk� (7)

where the sum is over all spikes emitted by the neuron up to time t.
I� can be interpreted as being (proportional to) the internal concen-
tration of the ion species responsible for adaptation (see e.g., Powers
et al. 1999; Sanchez-Vives et al. 2000; Sawczuk et al. 1997; Schwindt
et al. 1989); g�� as its peak conductance, and �� as its decay time
constant to zero between action potentials. When V � , a spike is
said to be emitted, and V is reset to Vr, where it is clamped for �r ms.
The output rate reaches eventually the quasi-stationary value given by
Eq. 3 and 4 with � � g����(for a comprehensive discussion of this
model and its validation in the presence of noise, see La Camera et al.
2004a).

This model, with the neuron parameters as determined by the fit of
the quasi-stationary response function (see the previous section), was
used to fit the instantaneous firing rate, defined as the inverse of the
ISI as a function of time, f(t) � 1/ISI(t). For illustration purposes only,
a smoothed version of f(t), obtained by using a Savitzky-Golay
polynomial smoothing filter (see e.g., Press et al. 1992) was used in
Figs. 1–10. Note that the theoretical ISIs depend on the model neuron
parameters � � {�r, Vr, C, �, �} (see Data analysis and fitting
procedure). Including these as free parameters in the fitting procedure
could have resulted in an over-fitting of the temporal properties.
Moreover, neuron parameters should be the same, both after the
response has reached its quasi-stationary characteristics, and during its
temporal evolution. For this reasons, previously fitted neural param-
eters � were held constant during the analysis of the temporal
response. This limited the analysis to only those neurons with stable
and fitted quasi-stationary response functions. Some of the PYR
neurons studied by Rauch et al. (2003) could not be fitted according
to the �2 test but were well described by the model in terms of average
absolute difference between experimental and theoretical firing rates
(�1.5Hz per data point if the frequencies were �50 Hz, �2.5 Hz per
data point for all the other frequencies). These neurons were included
in the present analysis, giving a total number of nr � 92 single
recordings from n � 21 PYR neurons.

In most cases, one adapting current was not sufficient to reproduce
the instantaneous firing rate, and two or more independent processes
were required. In this more general model, I� in Eq. 6 was the sum of
independent components, I� � �

k
I�k

, each of which obeying an
equation like Eq. 7, with corresponding �k, g�k such that g�k�k' �k, and
�
k

�k � � (negative �ks correspond to facilitating processes). This
constraint ensures that the quasi-stationary firing rate of each spike
train (reached when t �� maxk�k) agrees with that given by Eq. 3.
Note that it is necessary to consider the right number of processes to

estimate the time constants involved because �
k�1

n

g� k�k��, and this
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constraint will be satisfied with different values of �k depending on n,
the total number of processes. The relative percentage of a process
was defined as �k,%' 100��k�/ �

j�1, n
��j� Unlike the neuron parameters,

which were obtained from the fit to the quasi-stationary response and
were therefore independent of firing rate, the parameters characteriz-
ing the temporal response were fitted separately for each recording
and therefore were, at least in principle, firing-rate and/or input-
dependent. Their properties as functions of firing rate and input
current are analyzed in detail in RESULTS.

The fit of the temporal response was achieved via a Montecarlo
procedure as described earlier (see Data analysis and fitting proce-
dure), using as objective function the squared difference of the ISIs,
i.e., �ISI

2 � �
j
(ISIj

exp�ISIj
th)2 . ISIth(t) was obtained by simulating the

full IF model described in this section. The quality of the fit was
assessed by eye and by comparison of the best-fit value of �ISI

2 with
the number of degrees of freedom N-M (N is the number of ISIs in a
given spike train and M is the number of parameters to be tuned,
described in the following text). Most fits of the responses to step-like
stimulation gave values of �2 around or less than N-M. This would
make the fits acceptable if the errors on the single experimental ISIs,
not available, would be around unity (in ms) (Press et al. 1992): a
conservative value because it is comparable to the duration of an
action potential. The (unknown) error in the ISIs would most likely be
higher and hence the observed �2 smaller, making the test more
significant. The exact reproduction of spike times, as assessed, e.g.,
through the Victor metric and similar spike train distances (see Victor
2005 for a review), was not the aim of the fitting procedure. Param-

FIG. 1. The typical response of a L5 FS cell to a low-noise
(mI � 400, sI � 20pA) input current. Top: experimental data;
bottom: model reproduction using the leaky integrate-and-fire
(LIF) neuron. A: beginning and end of the spike train. No initial
adaptation is visible, although the final part of the spike train
clearly shows larger interspike intervals (ISIs; late adaptation).
B: same as A with a different scaling. No initial adaptation is
visible in the first 200 ms. C: end of spike train shows that there
is neither slow afterhyperpolarization (sAHP) current after
stimulus offset (left), nor difference in spike shape (DSS)
between the average (n � 20) spike at the beginning (0.5 s,
black) and at the end (3.6 s, gray) of stimulation (right). A
longer recording time may reveal the presence of both (see e.g.,
Fig. 10). D: instantaneous firing rate f(t) (see the text) shows the
presence of slow adaptation [in MODEL, experimental f(t) is in
gray for comparison]. Neuron parameters are the best-fit pa-
rameters to the entire response function (including the adapta-
tion parameter �):  � 20 mV, Vr � 8.4 mV, C � 86 pF, � �
8.4 ms, �r � 0, � � 0.4 pA � s. The adaptation time constant ��

remained undetermined by this fitting procedure and it was
adjusted to match the time course of the spike frequency
(MODEL, D). The value found was �� � 2.2 s and could be
used to match the frequency time course of all other data points
for this cell (see e.g., Figs. 2 and 7).
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eters to be tuned were the �ks (max n � 3), the �ks (n � 1, the nth

being determined by �n��� �
k�1

n�1

�k), plus one additional parameter,

	mI, representing a constant offset current. The input current to the
model neuron was I � 	mI, where I was exactly the current injected
during the experiment (i.e., the term 	mI � dt/C must be added to the
right hand side of Eq. 6). [	mI turned out to be different from zero
only in PYR neurons to compensate for the strong burst-like initial
adaptation which involves only the first one to three ISIs (most
commonly a doublet of spikes, see RESULTS) (see also Rauch et al.
2003), not captured by model Eq. 7. This subtraction procedure
compensates for the initial adaptation current in its steady state while
neglecting the initial transient during the first few action potentials.
No corrective term was required for fast spikers, consistent with the
absence of strong initial adaptation in these neurons.

The peak conductances g�k were given by the ratio �k/�k (negative if
�k � 0, representing facilitation instead of adaptation). In total, this
makes M � 2n parameters to be fitted. For n � 3 processes (the
maximum number of processes found to be required), M � 6. The
number of ISIs (N) was in the range 300–600 for PYR neurons
(30–60 Hz for 10 s); 400–800 (4 s) or 1,000–2,000 (10 s) for FS
neurons (100–200 Hz). For each cell, four to eight different spike
trains were analyzed, often with repetitions of the same input to
compare intra-cell with inter-cell variability. The repetitions were
never consecutive; FS neurons had typically a consistent response to
the same stimulus, whereas PYR neurons would often display differ-
ent time constants and amounts of the processes involved, although
within the same order of magnitude. Most fits were obtained in case
of step current stimulation, and then the best-fit parameters were used
as the initial guess to fit the responses to noisy current.

Dependence of the adaptation/facilitation parameters on
input current

Linear correlation of the adaptation/facilitation parameters ��i� and
�i (indicated generically with the symbol Y in the following), with
output firing rate and input current (across all recordings of all
neurons of the same type, i.e., either FS or PYR) was taken as a
measure of the dependence of those parameters on output firing rate
and input current, respectively. Because this analysis involved multi-
ple comparisons, significance was taken at 0.5% level. The details of
the analysis are reported in the APPENDIX. The dependence of Y on
input current, x ' mI � Irh, was then summarized either in the form
of a linear relationship, Y(x) � ax � b (if Y was positively correlated
with x), or in the form of an exponential function, Y(x) � ae�bx (if
anticorrelated with x), where a,b are constants. By interpolation, this
provides the function Y(I�) for all input currents in the physiological
range, where I�' I � Irh. Parameters a and b were obtained through
a standard least-square procedure. The functions Y(x) were chosen
because of the following observations: first, adaptation/facilitation can
be observed only when the neuron is firing, hence it is more appro-
priate to describe them as functions of mI � Irh as opposed to mI;
moreover, this avoids the problem of possibly having negative values
of Y above rheobase, i.e., for mI � Irh (the parameters are positive by
definition); second, increasing variables were, in the domain of
interest, well described by their regression lines; and third, exponen-
tial curves provided fits almost as good as the regression lines to
decreasing variables at the same time preventing them from reaching
negative values at large inputs.

In the absence of correlation between Y and x � mI � Irh, we
summarized the statistical properties of Y by reporting the (combina-
tion of) truncated Gaussian distributions that approximate the exper-
imental distribution. The Gaussian distributions were truncated at
negative values because the parameters are positive by definition.
Although it would be more appropriate to use a positive-definite
distribution like, e.g., the Gamma distribution, in our data, there was
little practical difference between the Gamma and the truncated

Gaussian distribution that approximates it, and for the sake of sim-
plicity we chose the latter.

The experimental distributions shown in Fig. 8 were obtained by
smoothing the data with a Gaussian filter at half the optimal band-
width, to reveal features such as multiple modes (Bowman and
Azzalini 1997). For the red curve in Fig. 8, bottom right, the optimal
bandwidth was used. Correlations and other statistical analyses were
performed on the raw data.

R E S U L T S

FS neurons response to in vivo-like input current

The response of n � 15 cells from the L5 of rat somatosen-
sory cortex (P28-43) were collected using the random step
protocol with fluctuating current described in METHODS. n �
10/15 were identified as FS cells, showed a consistent response
function (see METHODS), and were further analyzed. A standard
criterion for classification of cells as FS neurons was used (see
e.g., Descalzo et al. 2005): short-duration of action potentials
(�0.5 ms), fast after-spike repolarization, absence of firing rate
adaptation in the first milliseconds of the spike train, a steep
frequency-current curve around rheobase (Figs. 1 and 4). We
recorded also from n � 12 neurons in L2/3 (P16-27), 9 of
which were clearly identified as FS cells as described in the
preceding text. n � 5/9 neurons showed a consistent response
function and were considered for further analysis. L5 and L2/3
interneurons had similar physiological parameters (i.e., directly
estimated membrane time constant and capacitance, see METH-
ODS and Table 1, last 3 rows), were injected with currents of
similar magnitude and SD, and showed similar response pat-
terns. As a consequence, their properties were summarized
together unless explicitly noted.

Typical spiking patterns in response to prolonged (�4 s)
step- and noisy-current injections are shown respectively in
Figs. 1 and 2. FS interneurons showed no initial adaptation
(defined as a strong but transient decrease in firing rate that
involves the first few spikes only) in accord with what reported
in previous studies (e.g., McCormick et al. 1985). Neverthe-
less, the cells showed consistent slow reduction in firing rate
over time for stimuli longer than a few hundred milliseconds,
see Fig. 1, A and B (experiment). This behavior is well
captured by the simple adapting model described in METHODS

(Eqs. 6 and 7; Fig. 1, model) with an adaptation time constant
�� � 2.2 s. The presence of slow adaptation in FS neurons has
been reported only recently by Descalzo et al. (2005) in ferret
visual cortex, both in vitro and in vivo; preliminary evidence in
rat somatosensory cortex in vitro had been reported by Reuti-
mann et al. (2004).

In a fraction (n � 5/15) of interneurons one adapting process
was not enough to capture the time course of the firing rate, and
the generalized model described in METHODS had to be used.
Two components were sufficient to reproduce the data, one
with a time constant of � �100–300 ms, the other slower and
spanning a large range of time constants (� �0.8–30 s). Nine
cells of 15 showed stuttering behavior (see Fig. 5, left, inset),
in response to low noise current (sI � 0 –30 pA). Such
behavior was consistently suppressed in the presence of
higher input fluctuations (sI � 50 –200 pA) as found for
PYR neurons (Rauch et al. 2003). A more detailed analysis
of the temporal properties of the response will be reported in
later sections.
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Due to slow adaptation, the firing rate either reached an
almost constant value during the last segment of stimulation
(quasi-stationary response, see METHODS) or continually de-
clined in a linear-like fashion until the end of stimulation
(nonstationary response), depending on the neuron and on the
strength of the input. This was quantified by the index 	f �
(finit � ffinal)/	T (see METHODS), which provided a measure of
late (or slow) adaptation. For the sake of subsequent analysis,
nonstationary responses were considered as quasi-stationary if
their inclusion in the fitting procedure described in Data
analysis and fitting procedure did not alter the outcome of the
fit (see also the next section). Typically, in FS interneurons this
happened for 	f smaller than �5 Hz/s (�10 Hz/s in a few L2/3
interneurons) at maximal frequency (150–200 Hz); in PYR
cells, for 	f � 1 Hz/s at maximal frequency (40–60 Hz).
Hence the decrease in firing rate over time after the initial
transient was much more pronounced in FS cells than in PYR
neurons (see also Fig. 6). In n � 10/15 interneurons, 	f values
were strongly correlated with the quasi-stationary output rate f;
in eight of these neurons, correlations were strong but signif-
icant only at low values of sI (Pearson � and Kendall’s tau, P �
0.05). Note that although a large amount of noise typi-
cally weakened the correlation between 	f and f, it did not
decrease the amount of maximal adaptation (quantified by the
maximal 	f).

IF reduction of FS interneurons

The response function of the modified LIF neuron was fitted
to the response of consistent cells as described in METHODS. A
high percentage of cells could be fitted in both L5 and L2/3.
Results are summarized in Table 1, where also the effective
parameters for PYR neurons taken from Rauch et al. (2003) are
reported. A few examples are shown in Fig. 3. L5 and L2/3 FS
neurons differ significantly in the (effective) capacitance C
(smaller in L5), the membrane resistance R (larger in L5), and
in the rheobase current Irh (smaller in L5). These differences
could in part be accounted for by the different age of the rats
in the two groups. It is interesting to note that although the
directly estimated C, �, R had similar values for L5 and L2/3
FS neurons, the effective C, R were the only parameters which
were significantly different between L5 and L2/3 FS cells
(t-test, P � 0.05). A discrepancy between directly estimated
and effective parameters was found also in PYR neurons
(Rauch et al. 2003).

Comparison between the response functions of FS and
PYR neurons

The “average” response functions of PYR and FS neurons
are shown in Fig. 4, where the average best-fit parameters from
Table 1 were used. The maximal amount of noise which could
be used for FS interneurons was sI � 200 pA, as opposed to
500 for pyramids. However, the response at rheobase for the
maximal sI used (�50 Hz) was stronger than for PYR neurons
(�10 Hz). This can be attributed to a significantly smaller
membrane time constant in FS neurons (Table 1; t-test, P �
0.002), mostly due to a smaller membrane capacitance. More-
over, because of a larger input resistance, FS neurons have a
smaller rheobase current. Taken together, these factors imply
that FS neurons respond faster and to a much higher extent to

any kind of change in the input than PYR neurons. Consis-
tently, FS cells had smaller effective C, �, and �r, than PYR
neurons (Table 1).

Note that � is smaller in FS neurons, despite the larger index
	f quantifying slow adaptation (1 Hz/s for pyramids vs. 5–10
Hz/s for fast spikers). This is the consequence of the steeper
slope of FS cells’ response function (Fig. 4). Indeed, to quan-
tify adaptation, both � and the slope of the response function
are required. According to Eq. 3, where the non-adapted
response function � appears, the adapted firing rate f is given
by the nonadapted response at mI � mI � �f, so that a steeper
response function requires a smaller value of � to produce the
same amount of adaptation. In Fig. 3, one can notice that the �
values are indeed anticorrelated with the slopes of the corre-
sponding response functions. The results of this section point
to a faster and larger response of FS neurons to in-vivo-like
current, compared with PYR neurons.

Variability of the ISIs

We also measured the ISI variability of FS neurons in
response to in-vivo-like current, through its coefficient of
variability (CV, see METHODS). Strictly speaking, this measure
can be meaningfully applied only to stationary spike trains
(Gabbiani and Koch 1998). Given the presence of several
temporal processes, the CV was calculated on the portion of
spike train left after the removal of the first 500 ms, an initial
transient of the duration of the faster adaptation/facilitation
processes (see the next section and Table 2 for details). This
allows us to deal with the variations due to slow adaptation of
the firing rate only. Two typical cases are shown in Fig. 5 for
one L5 (left) and one L2/3 (right) FS interneuron, together with
the prediction of the LIF model neuron the parameters of which
were tuned to fit the firing rates only (full lines). Only one
adapting current was used in the model Eqs. 6 and 7. The use
of more adapting/facilitating components to fit the temporal
response did not significantly improve the match to the CV (not
shown). In the model with one adaptation component, the CV
slightly increases with �� up to �� � 500 ms, which was the
value used in Fig. 5 to get the best match with the data. This
type of behavior is expected for �� larger than the membrane
time constant (Liu and Wang 2001). Above �� � 500 ms, no
change in variability was observed.

FS neurons show variable spike trains in response to in-vivo-
like current, even for small input fluctuations and large output
rates. The uppermost curve in the left panel was obtained in
response to current with sI � 150 pA and the CV was of the
order of (or larger than) 0.6 for all output frequencies (up to f �
200 Hz). In the 20- to 50-Hz output range, the level of ISI
variability in FS neurons is close to what found extracellularly
and intracellularly in vivo in many areas of the cortex of
different animal species, (e.g., Gershon et al. 1998; Gur et al.
1997; Holt et al. 1996; Lee et al. 1998; Shinimoto et al. 2003,
2005; Wiener et al. 2001). For larger output rates (�200 Hz),
the coefficient of variability drops to values that are still �0.5,
if there is enough variability in the input. High ISI variability
in the intact brain is believed to be the result of a balanced
synaptic input current, characterized by large fluctuations
around a sub-threshold average (e.g., Amit and Brunel 1997;
Destexhe et al. 2001; Haider et al. 2006; Holt et al. 1996;
Lerchner et al. 2006; Shadlen and Newsome 1994, 1998; Shu
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FIG. 2. The typical response of a L5 fast
spiking (FS) cell to a high-noise (mI � 300,
sI � 150 pA) input current. The plots are as in
Fig. 1. D: instantaneous frequency of the
model is plotted in gray (same parameters as
in Fig. 1).
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FIG. 3. Fit of the LIF model response function to the
experimental response of FS interneurons. Shown are 4 ex-
amples from L5 (top) and 2 from L2/3 (bottom). Symbols are
experimental quasi-stationary firing rates, full lines are the
model fits to the data (Eqs. 3 and 4). Error bars are the
confidence intervals of Eq. 2. The output rates are plotted
against input current, mI, for different values of the input
fluctuations, sI. Each curve corresponds to a constant value of
sI, which in pA were (clockwise from top left panel; from
right- to left-most curve in each plot): (50,100,150);
(10,50,100,150); (10,50,100,150); (10,50,100,150,200) (bot-
tom right); (10,50,100,150) (bottom left); (20,50,100,150).
The best fit parameters (defined in METHODS) are reported in
the left top corner of each plot. P is the probability that a �2

variable with the same number of degrees of freedom is larger
than the best-fit one. A fit was accepted if P � 0.01. d is the
absolute discrepancy, i.e., the average (across all points)
absolute difference between the measured and the theoretical
frequencies of the best-fit curves.

3454 LA CAMERA, RAUCH, THURBON, LÜSCHER, SENN, AND FUSI
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et al. 2003; van Vreeswijk and Sompolinsky 1996). Compari-
son between the cases of small and large input fluctuations in
the data of Fig. 5 supports this view.

It is also interesting to compare this result with the typical
variability of a L5 PYR neuron (dashed lines in left panel). The
maximal CV is �0.5 even though s � 300 pA was used (for
s � 400 pA, CV � 0.6, but only for f � 30 Hz) (see Rauch et
al. 2003). As opposed, for the L5 FS cell in the left panel,
CV � 0.8 for f � 80 Hz, the maximal stationary firing rate
found for a L5 PYR neuron. These results are consistent with
the higher sensitivity to fluctuations found in FS neurons
compared with PYR neurons. Interneurons in L2/3 tend to be
less variable than in L5, especially around maximal frequency
(typically CV � 0.5 compared with �0.6 for inputs with
maximal sI). A few spike trains in response to low-noise input
showed high variability due to stuttering behavior (Fig. 5,
inset), that cannot be reproduced by the model.

Dynamics of the response: adaptation/facilitation of the
firing rate

So far we have been concerned with the properties of the
quasi-stationary response as reached after prolonged exposure

to a stationary stimulus, and only mentioned in passing the
temporal dynamics through which the quasi-stationary behav-
ior was reached. In this section, we characterize the dynamic
processes involved, summarizing some of their statistical prop-
erties.

PYR and FS neurons showed different temporal patterns in
response to a sustained input with stationary statistics. A
comparison is shown in Fig. 6. Note the phasic response of the
PYR neuron, characterized by an extremely fast and strong
initial adaptation, followed by an increase in firing rate, and
then by a slow decay. FS interneurons lacked the strong initial
phase, and were characterized by tonic firing, although of
slowly decreasing rate over time. To capture these behaviors,
we extended the model IF neuron to include a minimal number
np of independent processes, sufficient to characterize the
temporal response. In order for the extended model to have the
same quasi-stationary firing rate as the original model used to
fit the response functions of Fig. 3, the same neuron parameters
were used, including � � �i�i (see Full model fit of the
temporal response). This left np � 1 independent �i and their
time constants to be adjusted by fitting the instantaneous firing
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FIG. 4. Comparison between the quasi-stationary response of FS and PYR
cells. The steady state responses were obtained using the average best-fit
parameters of Table 1. Response functions plotted as in Fig. 3, with sI � 0,
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TABLE 1. LF neuron effective parameters

FS, L5 FS, L2/3 PYR, L5

�, pA � s 0.8 	 0.5 1.0 	 0.9 10.8 	 6.3
�r, ms 1.4 	 2.1 3.3 	 2.6 9.4 	 6.5
Vr, mV 8.8 	 9.4 5.3 	 11.3 9.9 	 10.2
�, ms 7.5 	 1.5 8.3 	 3.6 26.3 	 13.2
C, pF 80 	 13* 140 	 48* 530 	 290
R, M� 95 	 14* 59 	 10* 50 	 10
Irh, pA 216 	 30* 351 	 66* 410 	 70
�de, ms 14.2 	 1.7 12.7 	 1.0 23.8 	 2.5
Cde, pF 150 	 30 135 	 38 890 	 150
Rde, M� 98 	 22 99 	 20 27 	 5

Summary of the results of the fit of the leaky integrate-and-fire (LIF) neuron
response function (Eqs. 3 and 4) to the experimental response functions of fast
spiking (FS) interneurons (6 fits of 10 interneurons from L5 and n � 5/5 fits
to neurons from L2/3) and pyramidal (PYR) cells (n � 4/14 from L5) from
acute slices of rat somatosensory cortex. Values are shown as means 	 SD
across fitted neurons (see METHODS for a definition of the neuron parameters).
The last three rows show directly estimated (de) parameters. The threshold for
spike emission was held fixed to 20 mV (see METHODS). The parameters for
PYR cells (rightmost column) are taken from Rauch et al. (2003). *, visual aid
to quickly detect significant differences between L5 and L2/3 FS (P � 0.05,
t-test). Rats’ ages were (post-natal days) 37 	 6* (FS, L5), 22 	 4* (FS, L2/3),
and 27 	 3 (PYR, L5).
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FIG. 6. Comparison between the temporal response of FS and PYR cells.
The figure shows 3 examples of firing rate activity as a function of time,
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are reported in the figure). Shown are: a L5 FS that can be fitted with 2
processes (time constants of 220 ms and 3.6 s), a L2/3 FS (1 process, � � 15 s),
and a PYR neuron (3 processes, time constants of 43 ms, 920 ms and 2.9 s).
Note that the time constants might look more similar than they are because the
firing rates converge to different steady-state values.
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rate. Two examples of this fitting procedure are shown in Fig.
7, for a noisy-driven L5 FS cell (top) and a step-driven PYR
neuron (bottom). A summary of the results is reported in
Table 2.

No more than two processes were needed for FS interneu-
rons (the fast and slow adapting processes mentioned in a
previous section), whereas three to four processes were re-
quired for PYR neurons, to which we will refer as (from faster
to slowest) initial adaptation (iA, affecting the first few ISIs
only), fast adaptation (fA, � � 50–200 ms), early facilitation
(F, � � 0.5–1 s), and slow (or late) adaptation (sA, order of
seconds). The adaptation/facilitation components became
clearly visible above a critical firing rate, �30 Hz for PYR
neurons (all processes) and above �40 Hz (sA) or 80 Hz (fA)

for FS interneurons (with no difference between L5 and L2/3).
We next discuss their properties in turn.1

INITIAL ADAPTATION. Initial adaptation (iA), defined as a
burst-like adapting process affecting only the first one to
three ISIs (Rauch et al. 2003; Sawczuk et al. 1997), was
present in 13/21 PYR neurons [nr � 15 recordings, across
which initial frequency was fi � 52 	 24 (SD) Hz, with a
minimal value of fi � 17 Hz], and absent in FS neurons. The
model Eq. 7 is inadequate to describe iA, therefore we used

1 The values reported in the text are taken from data biased toward high
output rates to have as many processes as possible in each recording. This
means that the minimal frequency reported for a given process could be larger
than the actual critical frequency required for the process to be observed.

FIG. 7. Examples of the fitting procedure of the temporal
response for a L5 FS interneuron (top) and a PYR neuron
(bottom). Shown (from top to bottom in each panel) are the
membrane potential, the adaptation current (Eq. 7), the total
input current, and the instantaneous firing rate. The input
current is the same as injected into the neuron. The LIF model
is reported in gray, the experimental data in black. Top: details
of the fit of the response of the FS interneuron shown in Fig. 2,
which can be obtained with a single process of slow adaptation
(time constant of 2.2 s). Bottom: a typical example of the
response of a PYR neuron to step-current stimulation, together
with its model best-fit. Note the presence of facilitation (F) and
2 adaptation processes, 1 fast (fA, time constant of 58 ms,
representing 47% of the adaptating/facilitating components),
the other much slower (sA, 6.3 s, 9%). The facilitating process
had a time constant of 230 ms. Note the different time scales
between top and bottom panels.
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a constant offset current 	mI, which activates immediately
after the onset of the stimulus (see Full model fit of the
temporal response).

FAST ADAPTATION. Fast adaptation (fA). Fast- and slow-du-
ration adaptation mechanisms are well documented in the
literature on PYR neurons but only recently were reported in
FS neurons (Descalzo et al. 2005; Reutimann et al. 2004). The
longest time constants of fA were 132 ms (PYR) and 260 ms
(FS), whereas the shortest time constant of sA was �1 s in all
cells. The two distributions were clearly separated around the
value of 0.5 s, which was then used to discriminate fA from sA.
Fast adaptation was slower in FS neurons compared with
pyramids, �fA � 200 (FS) versus 50 ms (PYR), see Table 2;
was always present in PYR neurons, while present only in
�30% of interneurons (for output rates larger than �80 Hz),
where it contributed �30% of the total adaptation (vs. �50%
in PYR neurons, see Table 2).
SLOW ADAPTATION. Slow adaptation (sA) was present in all
neurons, for output rates larger than �30 Hz (PYR) or �50 Hz
(FS). In PYR neurons, sA spanned a unimodal range of time
constants, 1.4–15.7 s (n � 17/17 cells, nr � 66 recordings),
peaked around 6 s (see Fig. 8). In FS interneurons, sA spanned
a bimodal range of time constants (mostly in the range 0.8–15
s, with � � 30 s in a few cases; n � 14/14, nr � 60), peaked
around �sA

(1) � 2 and �sA
(2) �12 s, respectively (see Fig. 8 and

Table 2). This suggests that sA in FS neurons could be divided
further into two processes. We will take this possibility into
account in a later section, when attempting a model of the
dependence of sA on input current.
EARLY FACILITATION. Early facilitation (F) manifests itself
with a progressive shortening of the ISIs during, approxi-
mately, the first second of stimulation, after which the ISIs
either remain constant or start to increase steadily (signature of

sA), sometimes until a new plateau has been reached (quasi-
stationary points). Facilitation was found in all PYR neurons,
but in none of the FS neurons. The time constant of the process
ranged from a few hundreds milliseconds to �1 s (n � 17/17,
nr � 77), and accounted for 37% of the adaptation/facilitation
processes, with an extended range (12–100%; see Table 2).
Purely facilitating spike trains were observed at low frequen-
cies, 20–30 Hz, where neither iA nor sA made an observable
contribution (n � 2 neurons). Facilitation was found also at
high initial rates (�120 Hz), where both iA and sA were
strongly present. All three processes were present if the output
rate was above a critical value �30 Hz, as in Fig. 7, bottom
(occasionally, also at lower output rates). In such cases, the
spike train toward the end of stimulation was typically adapted,
evidencing a larger effect of adaptation versus facilitation on
the final output rate. F was present also when other pipette
solutions were used, i.e., in the presence of 135 mM of
K-methylsulfate, or in the presence of 10 mM EGTA, with
similar time constants (Rauch et al. 2003). In both PYR and FS
neurons, there was occasionally evidence of a delayed response
of the first action potential after stimulus onset, especially for
stimulus strength around rheobase. Such a behavior is to be
kept distinct from facilitation, given the absence of (transient)
monotonic decrease of ISI duration after the onset of the
delayed response.

A few outlier cells had atypical behavior and were not
included in the analysis of Table 2. Instead of sA, two PYR
neurons had slow facilitation (� � 20 s), whereas a third
neuron had two components of faster adaptation (nr � 4
recordings); moreover, facilitation was rare in this neuron, and
visible only at an unusually large initial firing rate of 100 Hz.
One L2/3 FS cell showed intermediate-duration adaptation of
500 ms.
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Interaction between the adaptation/facilitation processes

For both FS and PYR neurons, the percentages of the three
processes (fA, F, and sA) were mutually (i.e., pair-wise)
anticorrelated (for example, for PYR neurons � � �0.4, P �
10�3): the more of one process, the less of the others. In PYR
neurons, the higher the output rate, the more (and faster) sA,
the less (and slower) F, whereas fA did not depend on firing
rate (see the APPENDIX for details). At high firing rates, sustained
activity was overtly affected by slow adaptation. As opposed to
PYR neurons, no clear relation to firing rate emerged in FS
neurons. The �%s were not correlated with output rate, and no
pairwise correlations were found among the sA parameters,
whether the time constants were considered separately (�sA

(1) and
�sA

(2)) or not (see the previous section). Recordings with larger
output rates had a tendency to be dominated by sA, with less
(but faster, as opposed to PYR neurons) fA.

Effect of input fluctuations on adaptation

In FS neurons, neither fA nor sA were correlated with
average input current (either mI or mI � Irh; details are deferred
to the next section). However, fast adaptation was found only
in the presence of small fluctuations (sI � 60 pA), whereas
slower adaptation was just as strong irrespective of input
fluctuations. This suggests that the input fluctuations play a
role in selecting the type of adaptation taking place, indepen-
dently of average input current (for each sI, the same spectrum
of mI values were used). However, there was no clear relation-
ship between the amount of fA and the value of sI (not shown).

We found no evidence of a similar effect in PYR neurons. In
the presence of large input fluctuations, the clear phasic re-
sponse of Figs. 6 and 7 is more difficult to make out, but initial
adaptation was still perceivable (data not shown). A compari-
son of the duration of the first few ISIs compared with the
subsequent few ISIs, in the presence and in the absence of
fluctuations, showed no appreciable difference in the two
conditions, pointing to the presence of the same temporal
processes in both cases. Specifically, we counted the number n1
of ISIs in the first 100 ms (the order of magnitude of duration

of fA), calculated their cumulative duration T1, and compared
T1 with the cumulative duration T2 of the same number n1 of
subsequent ISIs. A spike train was considered fast adapting if
T1 � 0.75 T2 (a conservative measure, aimed at preventing
taking into account spikes due to the occasional excess of
upward deflections of the input current in the first 100 ms). For
each cell, we compared the fraction of fast-adapting spike
trains obtained in response to fluctuating and constant stimuli,
respectively. These fractions were similar in all of the analyzed
neurons and were sometimes larger in case of fluctuating
inputs, leading to the conclusion that our data do not support a
strong, general effect of input fluctuations on fast adaptation in
PYR neurons. Moreover, the slow adaptation index 	f had its
maximal value unaffected by fluctuations, and early facilitation
was observed in all recordings. In summary, input fluctuations
did not disrupt the cellular properties of adaptation/facilitation
in PYR neurons.

Dependence of adaptation/facilitation on input current

In this section, we report how adaptation/facilitation relate to
input current. In the following, we indicate with the symbol Y
the generic parameter �i or �i. A dependence of Y on input
current was inferred if Y was linearly correlated with mI � Irh
(across all recordings of all neurons of the same type, see
METHODS). Two examples of correlations are shown in Fig. 9.
The details of the correlation analysis are reported in the
APPENDIX.

If Y and x ' mI � Irh were positively correlated, the
regression line, Y(x) � ax � b, was used to describe the
dependence of Y on x, whereas an exponential function, Y(x) �
ae�bx, was used in case of anticorrelation, mainly to avoid
negative values of the parameters for large input currents (see
METHODS for details). The effect of initial adaptation in PYR
neurons, affecting only the first 1–3 ISIs, was taken into
account by a corrective term 	mI, as explained in Full model fit
of the temporal response. 	mI [�200 	 210 pA, range (�800,
480) pA] was negatively correlated with mI � Irh (�0.263, P �
0.016), and we chose a linear model for it as there was no need
to prevent negative values. The results are summarized in
Table 3, where models are reported as Y(x) 	 CVY, where Y(x)
expresses parameter Y as a function of input current x, and CVY
is its coefficient of variability (SD/mean). CVY gives a measure
of the variability found across different recordings and differ-
ent neurons.

In Table 3, G(�,�) stands for truncated Gaussian distribution
with mean � and SD �, and represents the best Gaussian
approximation to the experimental distributions (Fig. 8) of
those parameters not correlated with input current (see METHODS

and the APPENDIX for details of the analysis). This was the case
for all adaptation parameters in FS interneurons. In particular,
�sA’s distribution had two peaks of similar magnitude and was
well approximated by a linear combination of two Gaussian
distributions (Table 3).

A model of adaptation in FS neurons should also take into
account that fA was present only in 30% of the cells and
disappeared for sI � 60 pA, whereas sA was always present.
The peak of the �fA distribution could be made dependent on sI,
so to vanish for large input fluctuations. However, no simple
monotonic relationship between the amount of sA and sI was
found in the data.

TABLE 2. Summary of the temporal properties of the response
of FS and PYR neurons

FS PYR

�fA, ms 180 	 40 [100–260] 48 	 25 [6–132]
�F, ms — 580 	 300 [125–1380]
�

sA

(1), s 2.1 	 0.9 [0.8–5] 5.8 	 3.4 [1.4–15.7]
�

sA

(2), s 12.1 	 6.2 [7.3–30]
�,% (fA) 31 	 14 [5–58] 52 	 16 [15–79]
�,% (F) — 37 	 19 [12–100]
�,% (sA) 92 	 15 [42–100] 23 	 18 [4–45]

�% is the relative contribution of each process. 100 ��k�/�j ��j� (see METHODS,

Full model fit of the temporal response), whereas � is the time constant of the
corresponding process (note that there are 2 �sA for FS intemeurons, because
the distribution of this time constant was bimodal, see Fig. 8). Results are
reported as means 	 SD, with ranges reported in square brackets. The median
was always very close to the mean and was not reported in the table.
Recordings with sA only were found in 10 out of 14 interneurons (for a total
of 55 recordings from which the parameters of this table were estimated); 4 of
14 interneurons had recordings with fast and slow adaptation (15 recordings);
all PYR neurons (17/17) displayed the pattern fA-F-sA (77 recordings). See
also the text. fA, fast adaptation; F, facilitation; sA, slow adaptation.
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Finally, one may look for a generalization of the relationship
Y � Y(x) in the presence of a slow time-varying mean current
x(t) (slow enough that the assumption of quasi-stationarity is
not substancially violated). The easiest generalization would be
a first-order dynamical approach to x(t), as in �Y(dY/dt) �
�Y � Y[x(t)], with �Y a suitable time constant and Y(x) given
by Table 3. We could not test this hypothesis because we
stimulated the neurons with stationary current only (i.e., with
current of constant mean and variance). However, we checked
with simulations that an instantaneous dynamics Y(t) � Y[x(t)]
results in a time course of the instantaneous firing rate which
is indistinguishable from that produced by the first-order dy-
namics.

D I S C U S S I O N

We studied in detail the firing patterns of FS and PYR
neurons from rat neocortex in response to prolonged stimula-
tion with in-vivo-like input current. In the first part of this
paper, the quasi-stationary response of FS neurons (both the
average firing rate and the variability of the interspike inter-
vals) was characterized as a function of the average and the SD
of the Gaussian input current and compared with the response
of PYR neurons, previously studied with the same protocol
(Rauch et al. 2003). This was a necessary step to study, in the
second part of the paper, the temporal properties of the re-
sponse of FS and PYR neurons. Several processes were found

to underly the time course of the instantaneous frequency,
which could be reduced to a small number (1–4) of phenom-
enological mechanisms. A LIF neuron model, endowed with
such mechanisms, reproduces the observed temporal response.
The distributions of the temporal parameters (across all record-
ings of all neurons of the same type) are broad (Fig. 8) and
cover several time scales, ranging from a few milliseconds to
several seconds, suggesting that a continuum of time scales
could be represented in the firing patterns of FS and PYR
neurons, also in response to stationary stimuli and in the
presence of input fluctuations.

Comparison between FS and PYR neurons

FS neurons differ from PYR neurons in several ways. The
slope of the response function was steeper in FS neurons,
200–1,000 Hz/nA as opposed to �50 Hz/nA for PYR neurons
with a maximal firing rate �200 Hz (FS) versus 60 Hz found
in pyramids (Fig. 4). FS interneurons were more sensitive to
input fluctuations: sI as small as 150 pA was able to elicit f �
50 Hz at rheobase for FS cells, but �15 Hz in PYR neurons
(Fig. 4). Moreover, at parity of input fluctuations and output
firing rate, the CV of the ISIs is more than twice as large in FS
interneurons (�0.7) compared with pyramids (�0.3; Fig. 5).
The response was always tonic in FS neurons, whereas PYR
neurons at high rates exhibit a phasic component in the first
few hundred milliseconds (Fig. 6). Finally, as opposed to PYR
neurons, initial adaptation and early facilitation were absent in
FS cells.

Adaptation in the presence of input fluctuations

In FS interneurons, the amount of input fluctuations was
found to correlate with the type of adaptation taking place:
faster adaptation disappears in the presence of large fluctua-
tions, whereas slower adaptation remains just as strong (see
Effect of input fluctuations on adaptation). In pyramidal neu-
rons, we found no evidence that input fluctuations would
disrupt any of the adaptation/facilitation processes. This is
consistent with the presence of slow adaptation found in vivo
by Descalzo et al. (2005). Tang et al. (1997) reported that in the
presence of input fluctuations, adaptation was much reduced in
rat visual cortical neurons. This statement pertains to fast
adaptation only, as these authors did not study prolonged firing
patterns. Their analysis was based on the comparison between
the spike count in the first and second halves of the total
stimulus duration (900 ms). With a slightly different analysis
based on cumulative ISIs durations (see RESULTS), we found
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FIG. 9. Example of input-dependent models:
�sA (left) and �sA (right) for PYR neurons. Best-fit
parameter values (dots), their regression lines
(straight lines) and their models (full lines) are
shown. For �sA, the regression line is also the
model (as reported in Table 3); for �sA (right), the
model is the exponential curve (full line). Linear
correlations are 0.53 (P � 10-5; left) and �0.51
(P � 0.0001; right).

TABLE 3. Summary of the models of the temporal properties
of the response of FS and PYR neurons

FS PYR

� fA, ms G(180,40) G(48,25)
� F, ms — (0.198x � 400) 	 0.53
� sA, s 0.6G(2.1,0.9) � 0.4G(12.1,6.2) (7.685e�0.000408x) 	 0.58
	mI, pA — �0.107385x � 95.6 	 1.1
� fA, pAs G(0.04,0.04) G(10.6,5.5)
��� F, pAs — G(7.1,4.4)
� sA, pAs G(0.57,0.27) (0.00438x � 0.145) 	 1

The results are reported as (combinations of) Gaussian distributions,
G(mean,SD), for input-independent parameters, and as “models” for input-
dependent parameters, i.e., for parameters significantly correlated with input
current (see the text). The models were exponential curves, Y(x) � ae�bx, for
decreasing variables, or straight lines, Y(x) � ax � b, for increasing variables,
where a,b are constants and x � mI�Irh (pA), with ranges: 0–200 pA (FS, L5),
0–250 pA (FS, L2/3), and 0–3 nA (PYR). The model for each input-dependent
parameter is reported as model 	 CV, where CV is the ratio SD/mean for that
parameter, and gives a measure of its variability across different recordings and
different neurons. 	m1, is the corrective term that accounts for strong initial
adaptation in PYRneurons.
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that the fraction of spike trains that were categorized as fast
adapting was the same in the presence and in the absence of
input fluctuations. This indicates that fluctuating inputs do not
disrupt adaptation but does not rule out its reduction for a given
range of input parameters, as claimed by Tang et al. (1997).
Factors like a different range of input currents, the different
preparation (visual versus somatosensory neurons), and
slightly different pipette solutions should also be taken into
account while comparing the two studies.

Putative mechanisms of adaptation in FS neurons

Slow adaptation in FS neurons was found to be associated to
a slow duration afterhyperpolization (sAHP) current in ferret
visual cortex (Descalzo et al. 2005). We also observed an
sAHP current in FS neurons and found indirect evidence for a
slow inactivation of ion currents responsible for action poten-
tial generation (Fleidervish et al. 1996; Schwindt et al. 1997)
(see Fig. 10).

The fact that occasionally sAHP was not visible at the end of
stimulation (for instance, it is not visible in Figs. 1 and 2, C)
does not necessarily rule out its presence. For example, no
sAHP is visible in Fig. 1C (MODEL) even though it was
present in the model. Typically, in such a case a more pro-
longed stimulation is sufficient to reveal the presence of sAHP
as well as a difference in spike shape (DSS) between the
beginning and the end of stimulation (see e.g., Fig. 10, left vs.
middle inset). A DSS means that the average spike shapes, at
the end and at the beginning of the spike train, are visibly
different (usually wider toward the end). Such a difference
could be the signature of slow inactivation of Na� channels (or
other ionic channels responsible for action potential genera-
tion), and was consistently found in those PYR neurons which
would eventually stop firing after prolonged stimulation (see
Rauch et al. 2003; their Fig. 3B). When the same neurons were
stimulated for longer time intervals (e.g., 10 s instead of 4),
both an sAHP and a DSS were found in almost all of the
recordings above a critical frequency (�50 Hz), as shown in
Fig. 10 (note how only a negligible DSS is to be seen after 4 s).
This strongly points to the presence of the postulated adapting
processes even when they are not visible in recordings of
shorter duration.

Putative mechanisms of early facilitation in PYR neurons

Firing rate facilitation in neocortical neurons is not usually
reported in the literature. However, we found the phenomenon

to be present in response to almost all input currents and with
three different pipette solutions (Rauch et al. 2003). Phenom-
ena that resemble early facilitation have been described in
noncortical neurons, where they lead to afterdepolarizations
and plateau potentials, often involved in the production and
control of burst discharge conditional on backpropagation of
dendritic spikes (e.g., Noonan et al. 2003 and refs. therein).
Mechanisms found to underly these types of facilitatory activ-
ity are a slow activation of calcium currents (Rekling and
Feldman 1997; Svirskis and Hounsgaard 1997) and a persistent
sodium current (Doiron et al. 2003). Although with seemingly
different functional purposes, it is possible that the same
mechanisms underlie early facilitation in regular spiking neo-
cortical neurons.

Mechanistic description

Despite the differences, PYR neurons [from acute slices
(Rauch et al. 2003) and dissociated cultured networks (Giugli-
ano et al. 2004)] and FS neurons could be described by a
simple IF model with adaptation/facilitation components that is
easy to simulate and amenable to theoretical analysis (La
Camera et al. 2004a). Such an approach represents a notable
difference with the approach usually taken in the literature,
where the time course of adaptation is characterized by the
firing rate reduction over time, and typically in response to DC
stimulation only. In our study, we did not fit directly the firing
rate over time but fitted a model endowed with rate-dependent
modifications of the input current, which in turn are responsi-
ble for the observed adaptation/facilitation of the firing rate. In
general, the time constants defined in these two different ways
need not be the same, although are probably correlated. This
might also explain the differences with other studies; in par-
ticular, why other authors have found only one time constant
(e.g., Descalzo et al. 2005; Sanchez-Vives et al. 2000).

In-vivo-like stimulation

The stimulation used was meant to emulate the heavy
synaptic bombardment experienced by cortical neurons in the
intact brain. Synaptic currents in the cortex have a finite
correlation length, ranging from a few ms (e.g., AMPA- and
GABAA-receptor mediated) to several hundreds of ms (e.g.,
NMDA and GABAB receptor mediated). However, because
temporal correlations in the input are partially reflected in the
output spike train (La Camera et al. 2002; Salinas and Se-
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FIG. 10. Putative mechanisms underlying slow adap-
tation in FS neurons. The instantaneous firing rate of a
L2/3 FS cell in response to a long-lasting stimulus (10 s)
is shown (mI � 300 pA, sI � 0). Left and middle insets:
difference in spike shape (DSS) between 0.5 (black) and
3.6 s (gray; left inset), and between 0.5 and 8.8 s (middle
inset; average spike shape over 20 consecutive spikes,
starting at the mentioned times). The corresponding firing
rates are marked with a circle. A DSS could be the
signature of slow inactivation of ion channels responsible
for action potential generation (see the text). Right inset:
presence of an AHP current after the removal of the
stimulus.
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jnowski 2002; Svirskis and Rinzel 2000), we chose stimuli
with virtually no temporal correlation, i.e., resembling white
noise. This was necessary not to interfere with the temporal
properties of the response. Moreover, modeling studies (Renart
et al. 2003) have shown that the white-noise driven response
can be used to predict the dynamics of a network of neurons
with AMPA-, GABAA-, and NMDA-like receptor mediated
current, also when adaptation is included (La Camera et al.
2004a). The issue of whether things would change when
conductance injection is used in experiment (see e.g., Robinson
and Kawai 1993; Sharp et al. 1993), has been addressed
recently in a series of works. In one direction, the importance
of conductance fluctuations (as opposed to current fluctuations)
has been minimized (Richardson 2004); in another direction, it
has been shown that a network of conductance-driven neurons
can be mapped onto a network of current-driven neurons which
have the same response functions (La Camera et al. 2004b;
Rauch et al. 2003).

Modified LIF neuron

Although lacking biophysical detail, the modified LIF neu-
ron employed in this study proved very effective at reproduc-
ing the firing behavior of cortical neurons, confirming the
results of previous studies (e.g., Giugliano et al. 2004; Holt et
al. 1996; Jolivet et al. 2006; Rauch et al. 2003) and extending
those results to the temporal domain of the firing rate response
(see also Sakai et al. 1999; Jolivet et al. 2006). According to
our findings, the modified LIF neuron is the simplest model
neuron that can capture the firing behavior of cortical neurons
in response to stationary, in-vivo-like stimuli. In our context,
this model represents an appropriate trade-off: a simpler
model, for example a LIF without adaptation, might not even
capture the stationary response function (Rauch et al. 2003);
whereas a more biophysically grounded model would be too
complex to be used in theoretical studies (in fact, the fitting
procedure of this study would have not been possible because
of the lack of analytical results like e.g., Eq. 4). Related models
of spiking neurons of similar complexity and power as the
modified LIF neuron could also be used, as long as the
response function is known (La Camera et al. 2004a). We
emphasize that even though cortical input is temporally corre-
lated (e.g., Destexhe and Paré 1999, 2000; Destexhe et al.
2001; Paré et al. 1998; Salinas and Sejnowski 2002; Stern et al.
1998; Svirskis and Rinzel 2000), closed formulae for the white
noise-driven response function like Eq. 4 should not be dis-
missed: it has been shown that the (adapting) firing rate in
response to “colored” inputs can be obtained by modeling the
input current as temporally correlated (for example, as an
Ornstein-Uhlenbeck process), but using the response function
of the (adapted) white-noise driven LIF neuron, Eqs. 3 and 4
(La Camera et al. 2004a; Renart et al. 2003).

The use of the neuron effective parameters is a way to
compensate for the lack of biophysical detail in the IF model.
Given the absence of correlations between “effective” and
“directly estimated” parameters, our results indicate that the
former should be preferred in theoretical studies if the aim is to
reproduce the behavior of cortical neurons embedded in an
in-vivo-like environment. For similar quantitative reductions
of cortical firing patterns, see e.g., Jolivet et al. (2004).

Computational consequences of multiple time scales

The temporal processes and the wide distributions of their
time constants found in this work may be linked to an already
rich repertoire of experimental findings, among which the
stimulus-specific adaptation of auditory cortex neurons that
spans several temporal decades (Ulanovsky et al. 2004) or the
long-range correlations in firing rate of, e.g., cat auditory
nerves and LGN (Lowen and Teich 1996; Lowen et al. 2001).
In LGN, the correlation length can be hundreds of seconds,
also in the absence of sensory stimulation (Lowen et al. 2001).
Those long-range correlations are only slowly reduced by
averaging the spike train over progressively longer time win-
dows, a signature of fractal behavior, i.e., due to one or more
dynamical processes showing scale-free statistics. Scale-free
adaptation has also been found in both vertebrate and inverte-
brate peripheral sensory systems (Thorson and Biederman-
Thorson 1974; Xu et al. 1996), where it has been argued to be
the consequence of a multitude of (adapting) exponential
processes the time constants of which span several decades
(Thorson and Biederman-Thorson 1974).

The results of this study encompass a broad range of time
scales (spanning milliseconds to tens of seconds) but cannot
provide direct evidence for scale-free adaptation, which would
require stimulations of extremely long duration (ideally, infi-
nite). Stimulus duration was limited by the protocol (the
maximal stimulus duration was 10 s) in an effort to provide a
quantitative description without overfitting the data, as ex-
plained in METHODS. Different experiments might expose other
mechanisms which work on longer time scales, e.g., hundreds
of seconds (Lowen et al. 2001; Ulanovsky et al. 2004). How-
ever, even a few multiple time scales—and sometimes just one
of the single processes characterized here—can have a wide
range of computational consequences, some of which are
mentioned in the following text.

Neural codes that adapt on multiple time scales optimize the
information that the neural response carry about both the rapid
and the slow modifications of the external environment (Bren-
ner et al. 2000; Fairhall et al. 2001), possibly allowing an
efficient representation of real world environments that change
on a variety of different time scales. Multiple time scales can
be also used to extract the envelope of a signal, to distinguish
between common and rare stimuli, and to link stimuli separated
in time by several seconds (Drew and Abbott 2006). Reuti-
mann et al. (2004) exploited the slow adaptation of inhibitory
neurons to build a model of climbing persistent activity in
primate infero-temporal cortex, proposed as the neural mech-
anism to encode the time interval between two relevant events.
Cellular facilitation in PYR neurons, alongside with synaptic
mechanisms with comparable kinetics (Wang 1999), might
help sustain persistent activity, a network state that might
mediate working memory (Amit 1995; Amit and Brunel 1997;
Wang 2001). The same facilitation process might have a role in
shaping cortical UP states (Sanchez-Vives and McCormick
2000) and “cortical flashes” (where only a small number of
neurons are coactive in the UP state) (Cossart et al. 2003), even
though these states are believed to be recurrent-network prop-
erties, made possible by both glutamatergic and GABAergic
synaptic transmission (Cossart et al. 2003).

At least some of these computational consequences rely on
the possibility that single neurons or populations are able to
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respond at all time scales. Although our phenomenological
description allowed us to cluster all the temporal processes in
only four groups with distinct characteristics, the distributions
of the model parameters are broad and have considerable
overlap after the units are rescaled for comparison (Fig. 8).
Hence even if the neurons studied in this work could express
temporal properties with only a limited number of distinct time
scales, a much larger spectrum, approximating a continuum of
time scales, could be found at the population level by pulling
together the activity of many neurons, each occurring to be in
a different adapting state.

An alternative description of our results could be given by
the presence of one or just a few adaptation mechanisms that
modify dynamically their inherent time constant depending on
the stimulation history (Gilboa et al. 2005; Millhauser et al.
1988). At the phenomenological level, we cannot discriminate
a discrete set of processes, each with a fixed time constant,
from a single mechanism with a history-dependent time con-
stant. However, whatever this mechanism might be, its effects
should be compatible with our results.

Finally, gaps in the distribution of time constants, however
originated, could be covered by other dynamical processes, like
those of dynamic synapses, especially in light of the recent
proposal (Fusi et al. 2005) that a cascade of synaptic processes
can represent a multitude of time scales much in the same way
as, we argued here, adaptation in single neurons.

A P P E N D I X

Derivation of Eq. 2

Let T be the total stimulation time and f� the mean output rate of the
neuron. We will find an approximate confidence interval on f� by
means of a binomial model for spike emission. Let N� sp be the number
of spikes observed in the time interval T, and assume that T can be
divided in n elementary intervals where at most one spike can be
observed, with probability p: then p� � N� sp/n is the average estimated
probability of having a spike in an elementary interval. When the
firing activity of the neuron is stationary, p is constant and equals p� in
all elementary intervals, i.e., p� is an estimate of the stationary firing
rate, f� � N� sp/T, and its 68% confidence interval, p� � p� � p�, gives
a 68% confidence interval for f�. Given the bimodal model for p, p	 are
the solution of

�p� � p�
�p�1 � p�/n

� k (A1)

i.e.

p	 �
p�n � k2/2 � k�p��1 � p��n � k2/4

n � k2 (A2)

where k is the number of SDs from p� . In the well-known limit of an
infinite number of elementary intervals, n3 �, with p3 0 and pn �
Nsp, we can use the Gaussian approximation to the binomial distribu-
tion, and derive that k � 1 gives the wanted confidence interval of
68%

P� �p � p�
�p�1 � p�/n

� 1	 

1

�2�
�

�1

1

e�t2/2dt 
 0.68

Multiplying both sides of Eq. A2 by n � k2, and performing the same
limit, one obtains (n� k2)p	 � np	 3 Nsp

	, np� 3 N� sp and

N� sp
	 � N� sp � �k2/2� � k�N� sp � �k2/4�

hence

�Nsp
	 � �Nsp

	 � N� sp� � �k2/2 � k�N� sp � �k2/4��

Finally, �f	 � �Nsp
	/T, which for k � 1 gives Eq. 2.

Details of the interaction between the
adaptation/facilitation processes

Since initial (fi) and final (ff) firing rate turned out to be strongly
correlated (� � 0.86, P � 10�5 for PYR neurons, � � 0.88, P � 10�5

for FS neurons), we will speak loosely of correlations with output rate
without further specification. In the following analysis, correlations
were taken as significant at the 0.5% level to compensate for multiple
comparisons, but for completeness were reported also if �0.4.

PYR NEURONS. In PYR neurons, the processes were differentially
correlated with output rate, with the �s and their �%s anti-correlated.
�F% was anti-correlated with fi (�0.46, P � 10�5): the higher the
output rate, the less prominent contribution of F, and the slower
because �F and �F% were anti-correlated (� � �0.52, P � 10�5). As
a result, �F had a positive correlation with output rate (although not
significant, � � 0.2, P � 0.07). Similarly, fA had anti-correlated �%

and � (� � �0.34, P � 0.003): the larger one process’s contribution,
the faster. However, neither �fA,% nor �fA were correlated with output
rate. Finally, �sA,% was positively correlated with output rate (0.57,
P � 10�5): the higher the output rate, the larger the relative contri-
bution of sA compared with the other processes (mainly F, because
fA% and output rate were not correlated). �sA,% was significantly
anti-correlated with fi (�0.53, P � 10�5): at high rates, sA becomes
more prominent and faster. However, �sA,% and �sA were not corre-
lated (� � �0.1, P � 0.4).

FS NEURONS. As opposed to PYR neurons, the �%s were not
correlated with output rate in FS interneurons. Also, �fA,% and its time
constant were positively correlated (� � 0.59, P � 0.02), i.e., a larger
contribution of fast adaptation had a tendency to be slower, as
opposed to PYR neurons. �fA was anti-correlated with firing rate (� �
�0.48, P � 0.068), similarly to �sA in PYR neurons (where �fA was
not correlated with output rate). Hence, fA in interneurons retains
some of the features of slow adaptation in PYR neurons. No pairwise
correlations were found among the sA parameters, whether the time
constants were considered separately (�sA

(1) and �sA
(2)) or not. In sum-

mary, recordings with larger output rates had a tendency to be
dominated by sA, with less (but faster) fA. Note that only 30% of the
FS cells had fA, which produced a rather small sample for this
particular analysis. This might explain why substantial correlations
were not found significant at the 0.5% level.

Details of the dependence of adaptation/facilitation on
input current

PYR NEURONS. In PYR neurons, if the correlation with mI � Irh was
significant (i.e., P � 0.005), so was the correlation with mI. The
strongest dependence on input current was found for slow adaptation:
�sA (4.2 	 4.3 pA, range: 0–20 pA) was correlated with mI � Irh (� �
0.53, P � 10�5), and so was �sA,% (� � 0.44, P � 10�4); �sA was
anti-correlated with mI � Irh (� � �0.51, P � 0.0001).

Early facilitation also had a clear dependence on input current: �F

was correlated with mI � Irh (� � 0.35, P � 0.003), whereas �F,% was
anti-correlated with mI � Irh (� � �0.37, P � 0.0006). However, the
actual value of ��F� (7.1 	 4.4 pA, range: 0–22.6 pA) was not
correlated with input current (� � 0.05, P � 0.64). In other words, the
relative contribution of F decreases with input current (due to an
increase in sA), but its absolute value fluctuates around a constant
value throughout the input range. Hence, ��F� was modeled as a
Gaussian-distributed variable independent of input current.

Finally, fast adaptation was not correlated with input current. The
distributions of the parameters were Gaussian-like (see Fig. 8), with
�fA � 10.6 	 5.5 pA (range: 0–20.7 pA). Note that the algebraic sum
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of the three �s is 7.7 	 6.8 pA, consistent with the results of Table 1
(PYR, L5).

FS NEURONS. In FS interneurons, none of the parameters were
correlated with either mI or with mI � Irh. As a consequence, as a
“model” of these parameters we report the Gaussian distribution that
best fit the data (refer to Fig. 8 for the following).

�sA had a multi-peak distribution, with the largest peak around
�0.5 pAs. Its secondary peaks were neglected in the model. The two
distributions �sA{� � �sA

(1)} and �sA{� � �sA
(2)} overlap (not shown),

and no special relationship was there between �sA and either �sA
(1) or

�sA
(2), hence we pulled all �sA values together.

�fA (range: 0–0.32 pA) had approximately a Gaussian distribution
corrected at high values by a tail accounting for �10% of the total
count. Apart from this tail, the distribution was very narrow around
the main peak, �0.04, so that it could be almost described as a delta
function centered in 0.04. We chose to give little weight to the tail and
approximate the original distribution with a Gaussian with mean 0.04
and SD 0.04. The bimodal distribution of �sA was well approximated
by the sum of two Gaussian distributions with 60 and 40% weight,
respectively, see Table 3. �fA had a narrow, Gaussian-like distribution
around a major central peak, and its secondary peaks were neglected.
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