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Abstract—Despite being originally inspired by the central
nervous system, artificial neural networks have diverged
from their biological archetypes as they have been remod-
eled to fit particular tasks. In this paper, we review several
possibilites to reverse map these architectures to biologically
more realistic spiking networks with the aim of emulating
them on fast, low-power neuromorphic hardware. Since
many of these devices employ analog components, which
cannot be perfectly controlled, finding ways to compensate
for the resulting effects represents a key challenge. Here, we
discuss three different strategies to address this problem: the
addition of auxiliary network components for stabilizing
activity, the utilization of inherently robust architectures
and a training method for hardware-emulated networks that
functions without perfect knowledge of the system’s dynam-
ics and parameters. For all three scenarios, we corroborate
our theoretical considerations with experimental results on
accelerated analog neuromorphic platforms.

I. Introduction

Artificial neural networks (ANNs) rank among the most

successful classes of machine learning models, but are –

superficial similarities to sensory processing pathways in

cortex notwithstanding – difficult to map to biologically

realistic spiking neural networks. Nevertheless, we argue

that such a reverse mapping is worthwhile for two reasons.

First, it could help us understand information processing in

the brain – assuming that it follows similar computational

principles. Second, it enables machine learning applications

on fast, low-power neuromorphic architectures that are

specifically developed to mimic biological neuro-synaptic

dynamics. In this manuscript, we discuss several ways

to answer what we consider to be a key challenge for

neuromorphic architectures with analog components: Is it

possible to design spiking architectures and training meth-

ods that are amenable to neuromorphic implementation and

remain functionally performant despite substrate-inherent

imperfections?

More specifically, we review three different approaches

[1]–[3]. The first two are based on recent insights about

how networks of spiking neurons can be constructed to

sample from predefined joint probability distributions [4],

[5]. When these distributions are learned from data, these

networks automatically build an internal, generative model,

which is then straightforward to use for pattern recognition

and memory recall [6]. Practical problems arise when the

hardware dynamics and parameter ranges are incompatible

to the target specifications of the network, as these in-

evitably distort the sampled distribution. The first approach

involves the addition of auxiliary network components in

order to make it robust to hardware-induced distortions

(Sec. II). The second one restricts the network topology in a

way that endows it with immunity to some of these effects

(Sec. III). We demonstrate the effectiveness of both these

approaches on the Spikey neuromorphic system [7].
The third strategy maps traditional feedforward architec-

tures, trained offline with a backpropagation algorithm, to

a network of spiking neurons on the neuromorphic device

(Sec. IV). Here, the key to good performance is an additional

learning phase where parameters are trained on hardware

in the loop, while using the abstract network description

as an approximation for the parameter updates. We show

how this approach can restore network functionality despite

having incomplete knowledge about the gradient along

which the parameters need to descend. These experiments

are performed on the BrainScaleS neuromorphic system [8].
While our networks are small compared to those used in

contemporary machine learning applications, they showcase

the potential of using accelerated analog neuromorphic

systems for pattern representation and recognition. In par-

ticular, the used neuromorphic systems operate 104 times

faster than their biological archetypes, thereby significantly

speeding up both training and practical application.

II. Fast sampling with spikes

Following [4], [5], neural network activity can be inter-

preted as sampling from an underlying probability distribu-

tion over binary random variables (RVs). The mapping from

spikes to states z = (z1, . . . , zk) is defined by

z
(t)
k =

{
1 if tsk < t < tsk + τref ,
0 otherwise ,

(1)

where tsk are spike times of the kth neuron and τref
its absolute refractory period (Fig. 1 A). When using leaky

integrate-and-fire (LIF) neurons, Poisson background noise

is used to achieve a high-conductance state, in which the
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Fig. 1. Sampling with LIF neurons. (A) Exemplary membrane potential
traces and mapping of refractory/non-refractory neuron states to states
1/0 of binary RVs. (B) Exemplary structure of a BM. A subset of 2 units
(z1, z2) with biases (b1, b2) (green) and connected by weights w12 = w21

(blue) is highlighted to exemplify the neuromorphic network structure in
subplot C. (C) Sketch of sampling subnetworks representing binary RVs.
Each subnetwork consists of a principal LIF neuron (black circle) and an
associated synfire chain that implements refractoriness (red synapses), and
coupling between sampling units (blue synapses). (D) Exemplary spike
activity of a sampling unit and membrane potential of its PN. (E) Target
(blue) vs. sampled (red) distribution on the Spikey chip. (F) Evolution
of the Kullback-Leibler divergence between the sampled and the target
distribution for multiple experimental runs. Time given in biological units.

stochastic response of a single neuron is well approximated

by a logistic activation function

p(zk = 1) = σ
(
[ūk − ū0

k]/α
)
, (2)

where σ(·) is the logistic function and ūk represents the

noise-free membrane potential of the kth neuron. The

parameters ū0
k (bias parameter determining the inflection

point) and α (slope) are controlled by the intensity of the

background noise. With appropriate settings of synaptic

weights wij and bias parameters ū0
k , these networks can

be trained to sample from Boltzmann distributions

p(z) ∝ exp[−E(z)] = exp
[
zTWz/2 + zT b

]
, (3)

where the weight matrix W and the bias vector b can

be chosen freely. This enables the emulation of Boltzmann

machines (BMs) with networks of LIF neurons (Fig. 1 B).

A core assumption of the neural sampling framework is

that the membrane potential uk of a neuron reflects the state

z\k of all presynaptic neurons at any moment in time:

uk(z\k) =
∑n

j �=k Wkjzj + bk . (4)

In particular, this requires that all neurons instantaneously

transmit their states (spikes) to all their postsynaptic part-

ners. In any physical system, this assumption is necessarily

violated to some degree, since signal transmission can

never be instantaneous. In the particular case of acceler-

ated neuromorphic hardware, synaptic transmission delays

become even more problematic, as they can be in the same

order of magnitude as the state-encoding refractory times

themselves. Furthermore, the required equivalence between

post-synaptic potential (PSP) durations and refractory states

(1,4) can be violated if either of these are unstable. On

Spikey, for example, refractory times have relative spike-

to-spike variations στref/τref between 2% and 20%. These

two kinds of timing mismatch pose a fundamental problem

to the implementation of spiking BMs in accelerated analog

substrates.
Here, we alleviate the issue of substrate-induced timing

mismatches by using a recurrent network structure that

represents each RV with a small subnetwork, called a sam-

pling unit. The subnetworks are built such that refractory

times can be well controlled and, in addition, intra-unit

refractory states and inter-unit state communication across

the network are inseparably coupled (Fig. 1 C).
Sampling units consist of a single principle neuron (PN)

and a small synfire chain of excitatory (EPs) and inhibitory

populations (IPs). The EPs of each stage project to both pop-

ulations in the following stage, thereby relaying an activity

pulse in the forward direction. The IPs project backwards,

ensuring that neurons from previous stages only spike once.

Additionally, all IPs and the last EP also project onto the PN

with large weights. Therefore, after the PN elicits a spike,

the IPs sequentially pull its membrane potential close to

the inhibitory reversal potential, prohibiting it from firing

as long as the synfire chain is active (Fig. 1 D). When the

pulse has reached the final synfire stage, its EP pulls the

PN’s membrane potential back to its equilibrium value. The

total duration of this pseudo-refractory period can then be

controlled by the synfire chain length and parameters.
In addition to controlling refractoriness, the synfire

chains also mediate the interaction between PNs. The

connections from a synfire chain to other PNs simply

mirror its connections to its own PN. This guarantees a

match between effective interaction durations and pseudo-

refractory periods. The correct synapse parameter settings

(weights, time constants) are determined in an iterative

training procedure [1].
The results of a hardware emulation can be seen in

Fig. 1 E, F. A network of four sampling units was trained

on Spikey to sample from a target Boltzmann distribution.

After training, the network needs about 104 ms of biological

time to achieve a good match between the sampled and the

target distribution. Considering the hardware acceleration

factor of 104, this happens in 1ms of wall-clock time.

III. Robust hierarchical networks

As discussed in the previous section, sampling LIF

networks are ostensibly sensitive to different types of

hardware-induced timing mismatch. In this subsection, we

discuss how a sampling network model can be made robust

by imposing a hierarchy onto the network structure [2].

This is the equivalent of moving from general BMs to re-

stricted BMs (RBMs). In addition to making their operation
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Fig. 2. Robustness from structure in hierarchical networks. (A) Hierarchical spiking network emulating an RBM. (B)–(E) Effects of hardware-induced
distortions on the classification rate of the network. Each test image was presented for a duration of 1000ms. Green: training data, blue: test data,
brown: mean value and range of distortions measured on Spikey. Error bars represent trial-to-trial variations. (B) Synaptic transmission delays. (C)
Spike-to-spike variability of refractory times. (D) Membrane time constant. (E) Synaptic weight discretization. (F) Comparison of classification rates in
three scenarios: software simulation of the ideal, distortion-free case (black), software simulation of combined hardware-induced distortions as measured
on Spikey (purple), hybrid emulation with the hidden layer on Spikey (green). Light colors for training data, dark colors for test data.

more robust, as we discuss below, this hierarchization has

the distinct advantage of significantly speeding up training.

To emulate an RBM, we construct a hierarchical LIF

network model with 3 layers: a visible layer representing the

data, a hidden layer that learns particular motifs in the data

and a label layer for classification (Fig. 2 A). The network

was trained with a contrastive learning rule

ΔWij ∝ 〈zizj〉data − 〈zizj〉model , (5)

Δbi ∝ 〈zi〉data − 〈zi〉model (6)

on a modified subset of the MNIST dataset (〈·〉data and

〈·〉model represent expectation values when clamping train-

ing data and when the network samples freely, respectively).

Due to hardware limitations, we used a small network and

dataset (6 digits, 12×12 pixels, each with 20 training and 20

test samples) for this proof-of-principle experiment.

The specific influence of various hardware-induced dis-

tortion mechanisms were first studied in complementary

software simulations. These simulations show that the clas-

sification accuracy of the network is essentially unaffected

by the types of timing mismatch discussed above, even

when their amplitudes are much larger than those measured

on our neuromorphic substrate (Fig. 2 B, C). In order to facil-

itate a meaningful comparison with hardware experiments,

two further distortion mechanisms were studied. An upper

limit to the membrane conductance can prevent neurons

from entering a high-conductance state, thereby distorting

their activation functions away from their ideal logistic

shape (2) and consequently modifying the sampled distribu-

tion. However, within the range achievable on Spikey, the

effect on the classification accuracy remains small (Fig. 2 D).

The largest effect (about 5.6 % regression in classification

accuracy compared to ideal software simulations) stems

from the discretization of synaptic weights, which have a

resolution of 4 bits on Spikey (Fig. 2 E).

The robustness of this hierarchical architecture to timing

mismatches is a consequence of both the training procedure

and the information flow within the network. Training has

the effect of creating a steep energy landscape E(z) (3),

for which deep energy minima, corresponding to particular

learned digits, represent strong attractors, in which the sys-

tem is placed during classification by clamping of the visible

layer. Throughout the duration of such an attractor, visible

neurons represent pixels of constant intensity encoded in

their spiking probability, thereby entering a quasi-rate-

based information representation regime. Therefore, the

information they provide to the hidden layer is unaffected

by temporal shifts or zero-mean noise. As they outnumber

the hidden neurons 24:1, they effectively control the state

of the hidden layer. The hidden layer neurons themselves

are unaffected by timing mismatches because they are

not interconnected. Second-order (hidden→label→hidden)

lateral interactions are indeed distorted, but as they are

mediated by only few label neurons, their relative strength

is too weak to play a critical role.

These findings are corroborated by experiments on

Spikey (Fig. 2 F). Due to the system’s limitations, we used

a hybrid approach, with the visible and label layers im-

plemented in software and the hidden layer running on

Spikey. In the ideal, undistorted case, the LIF network had

a classification performance of 86.6± 1.7 % (93.4± 0.9 %) on

the test (training) set. This was reduced to 78.1± 1.5 %

(90.7± 1.7 %) when all distortive effects were simultane-

ously present in software simulations. In comparison, the

hybrid emulation showed a performance of 80.7± 2.3 %

(89.8± 1.8 %), which closely matched the software results

within the trial-to-trial variability. We stress that this was

a result of direct-to-hardware mapping, with no additional

training to compensate for hardware-induced distortions (as

compared to Sec. IV).

IV. In-the-loop training

In Sec. II, we used a training procedure based on (5,6)

to optimize the hardware-emulated sampling network. Such

simple contrastive learning rules can yield very good clas-

sification performance in networks of spiking neurons [6].

Another class of highly successful learning algorithms is

based on error backpropagation. This, however, requires

precise knowledge of the gradient of a cost function

with respect to the network parameters, which is difficult

to achieve on analog hardware. We propose a training

method for hardware-emulated networks that circumvents

this problem by using the cost function gradient with

respect to the parameters of an ANN as an approximation of

the true gradient with respect to the hardware parameters
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[3]. A similar method has previously been used for network

training on a digital neuromorphic device [9].
Our training schedule consisted of two phases. In the first

phase, an ANN was trained in software on a modified subset

of the MNIST dataset (5 digits, 10×10 pixels, with a total of

30690 training and 5083 test samples) using a simple cost

function with regularization

C(W ) =
∑

s∈S ‖ỹs − ŷs)‖2 +
∑

kl
1
2λW

2
kl (7)

and backpropagation with momentum [10]

ΔWkl ← η∇Wkl
C(W ) + γΔWkl , (8)

Wkl ← Wkl −ΔWkl . (9)

Here, ỹs and ŷs denote the target and network state of

the label layer, respectively, and the sum runs over all

samples within a minibatch S. The learned parameters were

then translated to a feed-forward spiking neural network

(Fig. 3 A). Here, the BrainScaleS wafer-scale system [8] was

used for network emulation. Due to hardware imperfections,

the ANN classification accuracy of 97 % dropped to 72+12
−10%

after mapping the network to the hardware substrate.
In the second training phase, the hardware-emulated

network was trained in the loop (Fig. 3 B) for several itera-

tions. Parameter updates were calculated using the same

gradient descent rule as in the ANN, but the activation

of all layers was measured on the hardware. The rationale

behind this approach is that the activation function of an

ANN unit is sufficiently similar to that of an LIF neuron

to allow using the computed gradient as an approximation

of the true hardware gradient. As seen in Fig. 3 C, this

assumption is validated by the post-training performance of

the hardware-emulated network: after 40 training iterations,

the classification accuracy increased back to 95+1
−2%.

V. Discussion

We have reviewed three strategies for emulating perfor-

mant spiking network models in analog hardware. The pro-

posed methods tackled the problems induced by substrate-

inherent imperfections from different (and complementary)

angles. The three strategies were implemented and evalu-

ated with two different analog hardware systems.
An essential advantage of the employed neuromorphic

platforms is provided by their accelerated dynamics. Despite

possible losses in performance compared to precisely tun-

able software solutions, accelerated analog neuromorphic

systems have the potential to vastly outperform classical

simulations of neural networks in terms of both speed and

energy consumption [3] – an invaluable advantage for on-

line learning of complex, real world data sets. The network

in Sec. II, for example, is already faster than equivalent soft-

ware simulations (NEST 2.2.2 default build, single-threaded,

Intel Core i7-2620M) by several orders of magnitude.
The studied networks serve as a proof of principle and

are scalable to larger network sizes. Future research will

have to address whether the results obtained for these

small networks still hold as training tasks increase in

complexity. Furthermore, the generative properties of the

described hierarchical LIF networks remain to be studied.

Another major step forward will be taken once training

can take place entirely on the hardware, thereby rendering

sequential reconfigurations between individual experiments

unnecessary. Future generations of the used systems will

feature on-board plasticity processor units, with early-stage

experiments already showing promising results [11].
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