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The precise times of occurrence of individual pre- and postsynaptic action
potentials are known to play a key role in the modification of synaptic
efficacy. Based on stimulation protocols of two synaptically connected
neurons, we infer an algorithm that reproduces the experimental data by
modifying the probability of vesicle discharge as a function of the rela-
tive timing of spikes in the pre- and postsynaptic neurons. The primary
feature of this algorithm is an asymmetry with respect to the direction
of synaptic modification depending on whether the presynaptic spikes
precede or follow the postsynaptic spike. Specifically, if the presynaptic
spike occurs up to 50 ms before the postsynaptic spike, the probabil-
ity of vesicle discharge is upregulated, while the probability of vesicle
discharge is downregulated if the presynaptic spike occurs up to 50 ms
after the postsynaptic spike. When neurons fire irregularly with Poisson
spike trains at constant mean firing rates, the probability of vesicle dis-
charge converges toward a characteristic value determined by the pre-
and postsynaptic firing rates. On the other hand, if the mean rates of
the Poisson spike trains slowly change with time, our algorithm predicts
modifications in the probability of release that generalize Hebbian and
Bienenstock-Cooper-Munro rules. We conclude that the proposed spike-
based synaptic learning algorithm provides a general framework for reg-
ulating neurotransmitter release probability.

1 Introduction

Since the work of D. Hebb (1949), several attempts were made to formu-
late precise learning rules that could enable one to determine the change in
synaptic efficacies from the known activities of neurons (Sejnowski, 1977; Bi-
enenstock, Cooper, & Munro, 1982; Artola & Singer, 1993; Fregnac & Shulz,
1994). In these rules neuronal activities are represented by an analog vari-
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able reflecting the average firing rates of the neurons. Such formulations
were used in training neural networks to perform various computational
tasks.

Recent experiments indicate that the relative timing of pre- and post-
synaptic activity is crucial in determining the magnitude and direction of
synaptic modifications (Gustafsson, Wigström, Abraham, & Huang, 1987;
Fregnac, Shulz, Thorpe, & Bienenstock, 1988; Stanton & Sejnowski, 1989;
Tsumoto, 1990; Debanne, Shulz, & Fregnac, 1995; Bell, Han, Sugawara, &
Grant, 1997; Zhang, Tao, Holt, Harris, & Poo, 1998; Bi & Poo, 1998). In par-
ticular, Markram, Lübke, Frotscher, & Sakmann (1997) reported that synap-
tic modification depends on the millisecond relative timing between the
pre- and postsynaptic spikes. They found that if presynaptic spikes occur
10 ± 2 ms before the postsynaptic one, then synaptic responses were in-
creased, while the same pattern of stimulation with the opposite time de-
lay resulted in a decrease of responses. In addition, Markram and Tsodyks
(1996) showed that the synaptic modification at this synaptic connection
is not a uniform scaling of synaptic strength, but rather a redistribution of
synaptic efficacy between the spikes in the train. This redistribution can re-
sult from the increase in the probability of neurotransmitter release (Tsodyks
& Markram, 1997).

The experiments of Markram et al. (1997) provide for the first time the
experimental basis for formulating the synaptic learning rules based on
individual spikes rather than firing rates. In this article, we present a phe-
nomenological model that reproduces the experimental results and allows
the computation of the synaptic modification for arbitrary patterns of spikes.
This model can now be tested against other experimental paradigms and
provides a useful foundation for computational models that utilize exact
spike timing for information processing (see, e.g., Hopfield, 1995). We think
that the restriction to the relative spike timing in describing synaptic long-
term modifications is a useful simplification that reduces the wealth of pos-
sible molecular mechanisms to the functionally relevant behavior of the
neurons.

We also investigate the mean-field behavior of our model when applying
Poisson spike trains and compare this with existing learning rules based on
firing rates. We found that as a function of the postsynaptic activity, our
rule has an anti-Hebbian and a Hebbian regime similar to the Bienenstock-
Cooper-Munro (BCM) rule. It also reproduces a sliding threshold property
similar to the BCM theory. Moreover, by setting the synaptic parameters, it is
possible to generate different types of Hebbian modifications that are closer
to a covariance, a Hebbian, or an anti-Hebbian rule. We consider simplifi-
cations of our physiologically motivated algorithm and provide a minimal
model for an asymmetric spike-based learning rule for the vesicle release
probability. Finally, the nonlinearities in our model are put into relation to
other spike-based learning rules focusing on aspects of synaptic stability
and sensitivity (Abbott & Song, 1999; Kempter, Gerstner, & van Hemmen,
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1999a, 1999b). A short form of this work is published in Senn, Tsodyks, and
Markram (1997).

2 The Model

Our scheme enables the adaptation of the probability of neurotransmit-
ter release resulting from simultaneous activity of pre- and postsynaptic
neurons. Specifically, we adapt the probability that a presynaptic spike dis-
charges a vesicle that is ready at the site of release. We refer to this probability
as the probability of discharge, Pdis. The biophysical processes involved in
modifying Pdis are triggered by either a postsynaptic spike or a presynaptic
release. Upregulation of Pdis is assumed to be induced by a postsynap-
tic spike following a presynaptic release. Downregulation of Pdis, on the
other hand, is induced by a presynaptic release following a postsynaptic
spike.

Practically, long-lasting synaptic modification does not instantaneously
follow the pairing but develops slowly, peaking 10 to 20 minutes after
the pairing. Accordingly, while implementing the algorithm, Pdis is kept
fixed and effects of each spike are summed up to determine the overall
change in the limit probability, denoted as P∞dis. This work does not include a
short-lasting upregulation of Pdis analogous to post-tetanic potentiation be-
cause this phenomenon is not clearly evident at these depressing synapses.
Also not considered is any decay of P∞dis that could occur on a timescale of
hours.

In detail, the synaptic modification works as follows (see Figures 1 and 2).
The primary events for up- and downregulation are mediated by the NMDA
receptors located at the postsynaptic membrane. The following scheme is
chosen because both up- and downregulation depend on NMDA receptor
activation (Markram, Roth, & Helmchen, 1998b; H. M., unpublished results).
These receptors may be in three different states: the recovered state, Nrec,
the state saturated with glutamate, Nu, and the state altered by intracellular
calcium, Nd. The secondary messenger for up- and down-regulation may
be in an active state, Su and Sd, or an inactive state, S̄u and S̄d, respectively.
If a vesicle of neurotransmitter discharges, either spontaneously or due to
a presynaptic action potential, glutamate is released and bound by postsy-
naptic NMDA receptors (Nrec→Nu). Being in a state saturated by glutamate,
the NMDA receptors will open when the postsynaptic membrane potential
increases due to a backpropagating postsynaptic action potential, and this
induces calcium flowing through NMDA channels into the postsynaptic
cell. This calcium activates a secondary messenger (S̄u → Su), which dif-
fuses to the presynaptic site and upregulates the probability of discharge
(P̄∞dis → P∞dis). If, on the other hand, the postsynaptic membrane potential
first increases due to a backpropagating action potential, voltage-activated
calcium channels open; calcium flows in through these channels and binds
to the NMDA receptors (Mayer, McDermott, Westbrook, Smith, & Barker,
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Figure 1: (a) Experimental arrangement. (b) Modification of Pdis. A vesicle at the
site of release is discharged with probability Pdis (arrow pre1). Upregulation of
Pdis requires a presynaptic release (vesicle discharge) followed by a postsynaptic
spike (rel1, post2). Downregulation requires a postsynaptic spike followed by
a presynaptic release (post1, rel2). Nu and Nd represent NMDA receptors in the
up- and downregulating state, and Su and Sd represent up- and downregulating
secondary messenger, respectively.

1987), altering or redirecting their function (Nrec→ Nd). Subsequently re-
leased glutamate, which is triggered by a presynaptic action potential, now
activates an altered NMDA receptor, and this leads to the activation of
downregulating secondary messenger (S̄d→ Sd). This messenger diffuses
back to the presynaptic location, and the probability of discharge is down-
regulated (P∞dis→ P̄∞dis).

2.1 The Algorithm for Modifying the Discharge Probability. The above
scenario can be summarized in the following “learning rule.” Whenever a
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Figure 2: Kinetic scheme for modification of the limit probability of discharge,
P∞dis. Upregulation of P∞dis is mediated through the states Nu and Su, while down-
regulation is mediated through the states Nd and Sd. These states decay natu-
rally with time constants τN and τ S, respectively. Transitions labeled with reli
and posti (i = 1, 2, 3) occur instantaneously at either a presynaptic release or at a
postsynaptic spike. These instantaneous transitions are weighted by the factors
written onto their arrows. For instance, at a postsynaptic spike, the state Nd is
increased by Nrec · rN

d (post1), and the state Su is increased by S̄u ·Nu · rS (post2).
At a presynaptic release, for instance, P∞dis is decreased by rP

d · P∞dis · [Sd − Sθd]+

(rel3).

postsynaptic action potential arrives at the synaptic site, three different pro-
cesses are induced (indicated by post1–post3 in the scheme):

post1. The fraction rN
d of Nrec is moved to Nd. This describes the altering of

NMDA receptors due to calcium flowing into the postsynaptic site
through voltage-activated channels.
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post2. The fraction rSNu of S̄u is moved to Su (S̄u = 1− Su). This describes
the activation of upregulating secondary messenger proportional to
the amount of receptors saturated with glutamate.

post3. The limit probability P∞dis is increased by rP
uP̄∞dis [Su − Sθu]+, where

P̄∞dis = 1− P∞dis and Sθu denotes the threshold to trigger upregulation
( [x]+ = max(x, 0)). Thus, P∞dis is pushed toward 1 proportional to the
amount of secondary messenger above threshold.

A release of a vesicle at the presynaptic site induces, completely symmet-
rically, the following three processes (indicated by rel1–rel3 in the scheme):

rel1. The fraction rN
u of Nrec is moved to Nu. This describes the saturation

of the recovered NMDA receptors with glutamate.

rel2. The fraction rSNd of S̄d is moved to Sd (S̄d = 1−Sd). This describes the
activation of downregulating the secondary messenger proportional
to the amount of altered NMDA receptors.

rel3. The limit discharge probability is reduced by rP
d P∞dis [Sd− Sθd]+, that is,

proportional to P∞dis and to the amount of Sd above threshold Sθd .

In a temporal order, up- and downregulation of P∞dis is each mediated
by a primary and secondary event. The primary event for upregulation
is a presynaptic release (rel1), and the secondary event is a postsynaptic
spike (post2). The primary event for downregulation is a postsynaptic spike
(post1), and the secondary event is a presynaptic release (rel2).

Beside these instantaneous transitions, the states Nu, Nd and Su, Sd decay
exponentially with the corresponding time constants τN and τS, respec-
tively. In the diagram, these continuous transitions are represented by the

arrows Nu
τN

−→Nrec, Nd
τN

−→Nrec and Su
τ S

−→ S̄u, and Sd
τ S

−→ S̄d, respectively.
The convergence of Pdis to the limit probability P∞dis evolves with a modifi-
cation time constant τP

M = 10 min. (For a formulation of the kinetic scheme
in terms of differential equations, see section A.1.)

2.2 The Model of Stochastic Release. Since on the presynaptic side the
algorithm deals with release events, we modeled their generation by presy-
naptic spike events. This was done by two independent stochastic processes.
First, a presynaptic action potential arriving at the synaptic bouton dis-
charges a vesicle docked at the site of release with probability Pdis. Second,
the probability that a vesicle is available at the site of release, Pv, is zero im-
mediately after a vesicle discharge and recovers by a Poisson process with
time constant τ rec

v ≈ 800ms; that is, at any time step there is a small proba-
bility (proportional to 1/τrec) that the site of release will be reoccupied by a
vesicle. The effective probability of release is given by the joint probability
of the two stochastic processes, Prel = PdisPv. Thus, to complete the algo-
rithm, a presynaptic spike induces the following instantaneous transition
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Table 1: Pseudocode for the Stochas-
tic Synapse with Depression, Together
with the Kinetic Scheme for Modifying
Pdis (Figure 2).

for t=1 : dt : T
if postsynaptic spike at t

Nd = Nd + rN
d Nrec

Su = Su + rSNu (1− Su)

P∞dis = P∞dis + rP
u [Su − Sθu]+(1− P∞dis)

end % end of postsynaptic spike
if presynaptic spike at t

if vesicle docked == ’yes’
if random ≤ Pdis

vesicle docked = ’no’
Nu = Nu + rN

u Nrec
Sd = Sd + rSNd (1− Sd)

P∞dis = P∞dis − rP
d [Sd − Sθd]+P∞dis

end % end of vesicle discharge
end % end of discharge trial

end % end of presynaptic spike
if random ≤ dt

τrec
vesicle docked = ’yes’

end % end of vesicle recovery
Su = Su exp(− dt

τS ), Sd = Sd exp(− dt
τS )

Nu = Nu exp(− dt
τN ), Nd = Nd exp(− dt

τN )

Nrec = 1−Nu −Nd

Pdis = Pdis + dt
τM
(P∞dis − Pdis)

end % end of simulation

Notes: The time step is set to dt = 1 ms,
and the simulation time extends over T ms.
The variable “random” represents a ran-
dom number sampled from the uniform
distribution between 0 and 1. The two sets
of parameter values are given in the cap-
tions to Figure 3 and Figure 7.

(denoted by pre1 in Figure 1b):

pre1. If the site of release is occupied by a vesicle (which occurs with prob-
ability Pv), this vesicle is discharged by a presynaptic spike with
probability Pdis and the site of release is cleared (setting Pv = 0).

Note that in accordance with the univesicular hypothesis (Triller & Korn,
1982), we assume that per release site, there is maximally one vesicle ready
for release. The complete algorithm for synaptic modification and synaptic
depression is compiled in a pseudocode in Table 1.
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The vesicle depletion model described above is a stochastic version of
the depressing synapse model introduced in Tsodyks and Markram (1997).
Since the recovery is not instantaneous, a presynaptic spike following a
previous discharge has less chance of encountering again a vesicle for dis-
charging, and thus in the average the response appears to be depressed. To
decide iteratively whether a presynaptic spike is successful, we introduce
the probability Pn

rel that the nth presynaptic spike induces a release. Note
that Pn

rel = PdisPn
v is the product of the vesicle discharge probability and

the probability of encountering a docked vesicle at the arrival of the nth
spike. The probability of release for the (n + 1)th spike is calculated to (cf.
section A.2)

Pn+1
rel = Pn

rel(1− Pdis) e−
4n
τ + Pdis(1− e−

4n
τ ), τ = τ rec

v , (2.1)

where4n = tsp,n+1
pre − tsp,n

pre is the time difference between the two presynaptic
spikes and Pdis is the current value of the discharge probability. Averaged
over different trials with the same stimulation protocol will give an average
excitatory postsynaptic potential (EPSP) amplitude in response to the nth
spike, which is proportional to Pn

rel. In Tsodyks and Markram (1997), this
proportionality constant is called absolute synaptic efficacy (A), while in their
mean-field model, the use of synaptic efficacy (U) describing the fraction of
available transmitter discharged by a presynaptic spike corresponds to our
discharge probability Pdis. In turn, the probability Pv of a vesicle’s being
docked at the site of release is interpreted as the fraction of transmitter
available for release. In the mean-field model, the average is taken over
several repetitions of the stimulation frequency or, equivalently, over several
release sites in the same or different boutons for a single sample stimulus.
Note that implicitly the univesicular hypothesis (per release site) is assumed
since the full amount of discharged transmitter is missing immediately after
a presynaptic spike, indicating that after discharge, no additional vesicles
are ready for release. Our stochastic version may replicate the statistics of
the nonaveraged responses during single trials of the synaptic stimulation
experiments (cf. Tsodyks & Markram, 1997).

3 Results

3.1 Application of Specific Stimulation Protocols. The algorithm is
based on dual whole-cell voltage recordings of neocortical pyramidal cells
(Markram et al., 1997). It was tested against the following three experiments:

Experiment 1 (see Figure 3). Pre- and postsynaptic spike trains of 10 Hz
and 5 spikes were paired with a lag of the presynaptic spikes of −10 and
+10ms, respectively, repeated 10 times each 4 seconds. After pairing, the
change in Pdis was recorded during the next 60 min. The increase in P∞dis
for the 10 ms advanced presynaptic spikes and the decrease for the 10 ms
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Figure 3: Experiment 1: Asymmetry of the synaptic modification. The evolution
of Pdis toward P∞dis induced by pairing of 5 spikes at 10 Hz with a delay of the
presynaptic spike train of −10 ms (upper trace) and 10 ms (lower trace). If
the last presynaptic and the first postsynaptic spike were separated by 100 ms,
no change occurs (middle traces). (a) Simulation results. The parameter values
appearing in the scheme (see Figure 2) were chosen to fit the experimental data
optimally. We set rN

u = 1, rN
d = 0.5, τN = 300 ms, rS = 0.7, rP

u = rP
d = 0.1,

and τ S = 600 ms. The thresholds for the secondary messengers were set to
Sθu = rS and Sθd = rNrS. As a starting value for the discharge probabilities, we
used Pdis = P∞dis = 0.5. (b) The same experiment in the slices. (Reprinted with
permission from Markram et al., 1997.) Note that the change in Pdis (as shown
in a) is proportional to the change in the EPSP amplitude of an isolated spike
(as shown in b; cf. text). Vertical bars in a and b represent standard deviations.

retarded presynaptic spikes was faithfully reproduced by the algorithm. By
translating the spike trains such that the last presynaptic spike was 100 ms
apart of the first postsynaptic spike (and vice versa), no change occurred.

Experiment 2 (see Figure 4). Paired pre- and postsynaptic spikes trains of
5 spikes were triggered with a delay of the postsynaptic train of 2 ms, re-
peated 10 times each 4 seconds. The simulation was performed for different
frequencies ranging from 2 to 40 Hz, and the final change in the probabil-
ity of discharge, P∞dis, is evaluated. The main characteristics of the learning
curve, the steep upstroke at 10 Hz, and the saturation at higher frequencies
are well reproduced.

Experiment 3 (see Figure 5). Pre- and postsynaptic spike trains of 20 Hz
were paired with a postsynaptic spike delay of 2 ms, repeated 10 times each
4 seconds. The number of spikes in the paired trains were varied from 2
up to 20, and for each number, P∞dis was determined. The surprising fact
in this experiment was that the change in P∞dis did not accumulate but was
neutralized by the following spikes. The simulations are compatible with
these results and lay within the high standard deviations.
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Figure 4: Experiment 2: Dependency on the frequency of the paired spike trains,
each composed of 5 spikes. The change in Pdis shown 60 minutes after pairing
of the spike trains with 2 ms delay of the postsynaptic train. In our model, the
value of Pdis 60 minutes after pairing corresponds to P∞dis (cf. equation A.7).
(a) Simulation results with the same parameter values as in Figure 3. The value
at the dot (20 Hz) and the circle (1 Hz) should be compared with corresponding
ones in Figures 5a, 6a, and 6b, respectively. (b) Same experiments in the slices.
(Reprinted with permission from Markram et al., 1997.)
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Figure 5: Experiment 3: Dependence on the number of spikes within the paired
20 Hz spike trains. (a) Simulation results with the same parameter values as in
Figure 3. (b) Same experiments in the slices. The triangles show the outcome of
the experiment with different pairs of cells (2 APs: n = 6; 5 APs: n = 6; 10 APs:
n = 5; 20 APs: n = 4; n = number of different pairs).

The experimental data in Figures 3 through 5b show the changes in the
amplitude of a first EPSP after a long period of silence. These changes could
be induced by a change in either the absolute synaptic strength or the vesi-
cle discharge probability. Inspecting the depression within a spike sequence,
however, shows that after pairing, synapses with higher amplitude in the
first EPSP are also more depressed in the responses to the subsequent spikes
(data not shown). The time course of this depression is well predicted by
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Figure 6: Change of Pdis versus interspike delays (tsp
pre−tsp

post). (a) In analogy to the
experiment in Zhang et al. (1998), 50 paired spikes at 1 Hz were applied with a
fixed presynaptic spike delay between−60 and 60 ms. The curve is qualitatively
similar to the experimentally observed one, but due to the threshold effect,
almost no change in Pdis is manifested (cf. Figures 4a and 4b evaluated at 1 Hz).
(b) Pairing with the same number of spikes but now ordered in a 20 Hz train
of 5 spikes with a fixed delay of the presynaptic spike train between −350 and
350ms, repeated 10 times, leads to a marked change in Pdis (note the different
scales in a and b). Error bars drawn for selected points only.

formula 2.1 with a modified Pdis and a fixed proportionality constant. We
therefore conclude that it is indeed Pdis that is subject to the long-term mod-
ification, and not the absolute synaptic strength.

What yet has to be tested for the cortical synapses in consideration is the
change in Pdis for pre- and postsynaptic spike trains of a given frequency and
varying delays. In other preparations, pairs of single pre- and postsynaptic
spikes with frequency 1 Hz and various interspike delays were applied
(Zhang et al., 1998; Bi & Poo, 1998). The same protocol applied to our model
with parameter values used to fit experiments 1 through 3 yields a change
in Pdis (see Figure 6a), which looks rather close to the change in the synaptic
strength observed in Bi and Poo’s experiments and matches well the width
of the modification window. However, the size of the induced changes is
much smaller than that seen in their experiment. In our simulation, we had
to introduce thresholds precisely to exclude too much upregulation at a low
stimulation frequency (see Figure 3). Cortical synapses seem to be protected
against modifications induced by single pairs of spikes as long as these pairs
arrive less frequently than 5 Hz. Such a protection mechanism would make
sense in stabilizing memory (Fusi, Annunziato, Badoni, Salamon, & Amit,
2000).

If the same number of paired spikes with the same relative delay as in the
experiment is applied to our cortical synapse model with a frequency higher
than 5 Hz, a considerable change is evoked. The time constant with which
the repetitive stimulations are integrated is determined by the time constant
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of the secondary messenger τS, while the width of the learning window it-
self is determined by the time constant of the NMDA receptors τN, each
corrected by the threshold effect. Figure 6b shows the relative change in P∞dis
for spike trains of 5 spikes at 20 Hz with different delays of the presynaptic
train with respect to the postsynaptic one. The five peaks in the upper and
lower branch are each due to the partial synchrony induced by a full shift
of an interspike interval. For a delay below −200 ms and above +200 ms,
the spike patterns do not interfere anymore, and the smoothly decaying
branches represent the effective window of modification. Notice that down-
regulation is maximal at a delay of 100 ms of the presynaptic spike train,
while upregulation is maximal at a delay of−50 ms. The minimum at 100 ms
(instead of 1 ms) delay is explained by the fact that at a postsynaptic spike,
only the fraction rN

d of Nrec is moved to Nd. In turn, the maximum at−50 ms
(instead of −1 ms) delay is explained by the fact that not each presynaptic
spike induces a neurotransmitter release. The singularity in our simulation
at zero delay is an artifact of our simplified model, which assumes instan-
taneous changes in the kinetic scheme. Depending on the true time course
of the reactions in the scheme, the singularity will smooth out, and the zero
change of P∞dis may appear at either a positive or a negative delay.

It is interesting to note that our cortical synapse model would reproduce
the same size of the synaptic change as in the cited experiments if not 50
but 500 paired spikes at 1 Hz are applied. The reason is that for frequencies
below 5 Hz, the induced changes in P∞dis add nearly linearly with the number
of paired action potentials. This is not true anymore for a frequency of 20 Hz,
as revealed by experiment 3 (see Figure 5).

3.2 Application of Poisson Spike Trains. Next we investigate the aver-
age behavior of our spike-based learning rule when applying nonstationary
Poisson spike trains. In this case, the kinetic scheme can be translated di-
rectly into differential equations with time-varying coefficients. Following
the diagonal arrows in the scheme, P∞dis is upregulated at each postsynap-
tic spike proportionally to (1− P∞dis) [Su − Sθu]+ and downregulated at each
presynaptic release proportionally to P∞dis [Sd−Sθd]+, where [x]+ = max{x, 0}.
If we denote the presynaptic release and postsynaptic spike frequency by
f rel
pre and f sp

post, respectively, the expected change of P∞dis at time t is obtained
from the kinetic scheme according to

dP∞dis

dt
= rP

u(1− P∞dis) [S+u − Sθu]+ f sp
post − rP

d P∞dis [S+d − Sθd]+ f rel
pre, (3.1)

where S+u and S+d represent the expectation values of the secondary messen-
gers for up- and downregulation immediately after a post- and presynaptic
spike, respectively (cf. sections A.1–A.3). Such an expectation value cor-
responds to the average over a population of identical synapses with the
same instantaneous spike statistics. If the secondary messenger has a time
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Figure 7: (a) Convergence to the steady states of Nu, Nd, Su, Sd, and P∞dis from
the starting values 0 and 0.1, respectively. The applied Poisson frequencies were
fixed to f sp

pre = 20 and f sp
post = 30 Hz. The noisy curves represent an average over

100 trials (of the algorithm in Table 1) while the smooth lines represent the mean-
field solutions (obtained by integrating the differential equations, equations A.1–
A.8). (b) For each pre- and postsynaptic Poisson spike frequency, there is a
unique steady state for P∞dis = Pdis (plot of equation A.16). The sensitivity to
f sp
post is mainly due to the higher-order term in f sp

post, and the insensitivity to

f sp
pre is due to the synaptic depression. The white curve shows P∞dis restricted

to f sp
pre = 20 Hz, and the dot on this curve corresponds to f sp

post = 30 Hz with

a discharge probability of P∞dis ≈ 0.37 (cf. left panel). The insensitivity in f sp
pre

is explained by the synaptic depression, and the sensitivity in f sp
post is mainly

due to the higher-order term in f sp
post. The parameters were τN

u = τN
d = 100 ms,

τ S
u = τ S

d = 800 ms, rN
u = rN

d = 0.8, rS = 0.4, rP
u = 0.1, rP

d = 1, Sθu = Sθd = 0.

constant large enough to integrate the signals, it will be itself roughly pro-
portional to the first-order correlation f rel

pre f sp
post. Neglecting the thresholds

Sθ , the first term in equation 3.1 then is of order f rel
pre( f sp

post)
2, and the second

term is of order f sp
post( f rel

pre)
2. It is this higher-order nonlinearity that keeps

the synapse sensitive not only to spike correlations but also to average fir-
ing rates. For stationary Poisson trains, P∞dis converges to a unique steady
state (see Figure 7a and equation A.16), which is increasing with respect to
f sp
post and weakly decreasing with respect to f sp

pre and f rel
pre, respectively (see

Figure 7b). In this section we preferred to choose a simpler parameter set-
ting with vanishing thresholds and that is symmetric with the exception of
the rates for up- and downregulation. In order to obtain the anti-Hebbian

regime at low postsynaptic frequencies in the BCM rule, a high-ratio
rP

d
rP

u
is

necessary.
In the following we modulate the Poisson spike frequencies and impose

additional spike-by-spike correlations. We consider three scenarios, each of
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which reveals a particular aspect of our learning rule:

1. A jump in the postsynaptic spike frequency leads to an adaptation of
P∞dis similar to the synaptic weight adaptation in the BCM theory.

2. Modulating sinusoidally the pre- and postsynaptic frequencies with a
fixed phase lag leads to an adaptation of P∞dis reminiscent of a Hebbian-
anti-Hebbian rule.

3. Introducing spike-by-spike correlations within the pre- and postsy-
naptic spike trains (while keeping their frequencies fixed) leads to an
adaptation of P∞dis depending on the relative spike timing.

3.2.1 Comparison with the BCM Rule. The BCM theory was developed
to explain the synaptic modifications in the visual cortex of cats observed
under various rearing conditions (for a review, see Bear, Cooper, & Ebner,
1987). In the monocular deprivation experiment, a cortical cell that initially
dominantly responded to the deprived eye is shown to shift its dominance
slowly to the untouched eye. In BCM theory, this is explained by a sliding
threshold for the postsynaptic activity, θM, which determines whether the
synaptic strengths are down- or upregulated. After suturing the dominant
eye, the preferred stimulus may only subcritically excite the postsynaptic
cell, and the strengths of the activated synapses are downregulated. To gain
the sensitivity to an activity pattern from the unsutured eye, the modifica-
tion threshold θM slowly decays until the postsynaptic activity becomes su-
percritical, and the synapses from the untouched eye are now strengthened
and finally dominate the cell’s firing behavior. In our context, the synaptic
modification may be written as

dP∞dis

dt
= rP

u φ( f sp
post) f rel

pre , (3.2)

where φ, as a function of the postsynaptic activity, satisfies the BCM prop-
erties φ(0) = φ(θM) = 0 and φ( f sp

post) ≤ 0 if f sp
post ≤ θM and φ( f sp

post) > 0

if f sp
post > θM (see Figure 8b). Note that unlike the BCM theory, where the

φ is only a function of the postsynaptic rate, it depends on the individual
synapse in our case. Distinguishing between the fpost-dependency of φ on a
fast and slow timescale leads to the sliding threshold property. Taking into
account the transfer from the presynaptic frequencies to the postsynaptic
response, this is an important means of the synapses to keep the postsynap-
tic activity around a point of the cell’s maximal sensitivity. If after reaching
steady-state values, the postsynaptic frequency drops, say, by artificially
reducing the input from the dominant eye, P∞dis of the activated synapses is
slowly downregulated (see Figure 8a). The rate of the change in P∞dis and its
final value are shown in Figure 8b as a function of the new value of f sp

post.
The modulation threshold θM at which up- and downregulating forces neu-
tralize is implicitly driven by the running mean of the postsynaptic spike
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Figure 8: BCM rule. (a) After converging to the steady state for f sp
pre = 20 and

f sp
post = 30 Hz, an instantaneous jump of the postsynaptic frequency to 10 Hz

will downregulate P∞dis. Noisy lines represent the average over 50 trials (of the
algorithm in Table 1) while the smooth lines represent the mean-field solutions
(obtained by integrating the differential equations, A.1–A.8). (b) Starting at the
same steady state as in a, the vesicle discharge probability increases if the post-
synaptic spike frequency jumps above θM (= 30 Hz) and decreases if it jumps
below. The rate of the change is a nonmonotonic function of the new value
of f sp

post (solid line, calculated according to equation 3.2 and section A.4 with

f sp
pre = 20 Hz). The dashed curve shows the new value of P∞dis after reaching the

steady state and corresponds to the white curve in Figure 7b.

frequency. Keeping the spike frequencies fixed at the new value, the synap-
tic parameters will adapt such that f sp

post becomes a zero of φ and therefore

θM = f sp
post (cf. Section A.4 for an analytical treatment). At this point a slight

change in the postsynaptic average frequency will result in a corresponding
change of the vesicle discharge probability. A new presynaptic activation
pattern, say, generated by stimulating the unsutured eye, sharing the same
synapses will now have the chance for growing influence onto the postsy-
naptic cell, and the average postsynaptic activity would start to increase
again. A more detailed discussion of the learning rule’s selection and sta-
bilization properties to dominant input patterns is given in Kempter et al.
(1999b) and Abbott and Song (1999). Let us finally mention that it is pos-
sible to retrieve the rule of Artola-Bröcker-Singer (Artola & Singer, 1993),
which differs from the BCM rule by an additional threshold below which
no modification takes place. In our scheme this is achieved by setting both
thresholds Sθu and Sθd to positive values.

3.2.2 A Generalized Asymmetric Hebbian Rule. Different forms of Heb-
bian learning rules have been investigated that consider the product of pre-
and postsynaptic activities as the quantity determining the synaptic mod-



50 W. Senn, H. Markram, and M. Tsodyks

a

0

30

Time [s]   (lag=0.2)

H
z

0 5 10 15

0.5
P

di
s

∞
b

−0.5 0 0.5
0.15

0.2

0.25

0.3

0.35

P
di

s
∞

 s
s

phase lag

ω=1 Hz
ω=5 Hz
ω=20 Hz

Figure 9: (a) Sinusoidal modulation of f sp
pre (full line in the lower panel) and

f sp
post (dashed line in the lower panel) of ω = 1 Hz with presynaptic phase lag

of 0.2 induces upregulation of P∞dis (upper panel). The noisy line in the upper
panel represents the average time evolution of P∞dis over 100 trials (of the al-
gorithm in Table 1) and the dashed curve represents the mean-field solution
(of equations A.1–A.8). (b) Steady-state values of Pdis for sinusoidal modula-
tions of the pre- and postsynaptic frequencies versus presynaptic phase lag. The
modulation frequencies were ω = 1, 5, 20 Hz. Note that the curves represent
smoothed versions of the learning curves shown in Figure 6. For the 1 Hz mod-
ulation, the synaptic depression may advance the release activity with respect
to the presynaptic spike activity, and P∞dis may be upregulated even if this lags
the postsynaptic peak activity. The horizontal dashed line represents the steady
state without modulation. Same parameter values as in the caption of Figure 7.

ification (see, e.g., Brown & Chatterji, 1994, for a review). To prevent the
saturation of the synaptic strengths, mixtures of Hebbian and anti-Hebbian
rules are proposed by focusing on the covariance between pre- and post-
synaptic activities (Sejnowski, 1977) or by normalization of the synaptic
weight (Oja, 1982). The learning rule we consider belongs to the same class
of Hebbian mixtures, however, with a strong asymmetry in the temporal
correlations. This asymmetry makes the synapse sensitive to the phase lag
between modulations of the pre- and postsynaptic frequencies. If the post-
synaptic spike activity lags, the presynaptic release activity, P∞dis, is upreg-
ulated, and if the postsynaptic spike activity leads the presynaptic release
activity, P∞dis is downregulated. Figure 9a shows the change of P∞dis for a si-
nusoidal modulation of the pre- and postsynaptic spike frequencies of 1 Hz
and phase lag of 0.2. The steady state of P∞dis for different rates of modulation
and different lags is shown in Figure 9b. Two things are worth emphasiz-
ing. First, for slow modulation rates in the range of the vesicle recovery time
constant, the point of zero change appears at positive lag of the presynaptic
activity. This is rather counterintuitive since at positive lag, downregula-
tion would be expected. Second, the maximal changes appear at lags of
± 1

4 independent of frequency of modulation. This is true even if the pe-
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riod of the modulation is much larger than the time window of synaptic
adaptation.

To gain insight into these mechanisms, we constrain ourselves to the
simplifying assumption of an instantaneous recovery of the secondary mes-
senger (τS = 0). This assumption implies that the amount of activated sec-
ondary messenger Su and Sd is always proportional to the NMDA receptors
in the states Nu and Nd, respectively. On the other hand, if the pre- and post-
synaptic spikes are independent, these states are roughly proportional to the
running mean of the previous presynaptic release and postsynaptic spike
frequencies, respectively (which follows from integrating equations A.1 and
A.2). If we, moreover, neglect the thresholds for up- and downregulation
(Sθu = Sθd = 0), then formula 3.1 for the synaptic modification can be com-
prised by the generalized asymmetric Hebbian rule

dP∞dis

dt
≈ rP

u(1− P∞dis)〈 f rel
pre〉 f sp

post − rP
d P∞dis〈 f

sp
post〉 f rel

pre , (3.3)

where

〈 f 〉 = 1
τN

∫ ∞
0

f (t− t′)e−t′/τN
dt′

represents the running mean of f . Note that by the setting τS = 0, the
third-order nonlinearity in equation 3.1 is reduced to the usual correlations,
although with the presynaptic release instead of the presynaptic spike fre-
quency. The transformation of the presynaptic spike to the presynaptic re-
lease frequency itself is governed by the dynamics of the vesicle recovery
(cf. equations A.8 and A.9). If we assume an instantaneous vesicle recovery
(τ rec

v = 0), there is no activity-dependent depression, and the presynaptic re-
lease rate is proportional to the presynaptic spike rate. For “static” synapses,
f rel
pre can therefore be replaced by f sp

pre in equation 3.3.
Equation 3.3 provides an explanation of Figure 9. First, we observe that

averaging f over the past delays the averaged quantity 〈 f 〉. Second, we
note that the effect of the synaptic depression is to advance the release
rate f rel

pre compared to the spike rate f sp
pre (since the peak of the release rate

is depressed; see, e.g., Abbott, Varela, Sen, & Nelson, 1997). For lag zero
and a modulation frequency of ω = 1 Hz these two effects cancel, and
the factors in the Hebbian part of equation 3.3 are correlated, but not the
ones in the anti-Hebbian part. This explains the upregulation of Pdis even
at a small, positive lag of the presynaptic spike activity (see Figure 9b). For
higher modulation frequencies beyond the time constant of vesicle recovery,
however, the phase advance vanishes, and at zero lag, the Hebbian and anti-
Hebbian part in equation 3.3 cancel each other. The maximal upregulation
is reached for a presynaptic phase advance of 1

4 since due to the delaying
effect of averaging, this leads to correlated factors in the Hebbian part of
equation 3.3 and to uncorrelated factors in the anti-Hebbian part. Similarly,
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maximal downregulation of Pdis is obtained around a presynaptic phase lag
of − 1

4 , and this barely depends on the modulation frequency.

3.2.3 A Spike Correlation Rule. In the previous paragraph, we consid-
ered correlations between pre- and postsynaptic mean firing rates. Inde-
pendent of these correlations, the pre- and postsynaptic spike trains may
exhibit spike-by-spike correlations that affect the synaptic efficacy as well.
To quantify the influence of this microcorrelation, we introduce the notion
of (first-order) spike correlation between pre- and postsynaptic spike train.
This measure describes the temporal asymmetry with which on the average,
a presynaptic spike occurs between the last previous and the next following
postsynaptic spike. For a given presynaptic spike time tpre, we denote the
time of the previous postsynaptic spike by t<post and the time of the following
postsynaptic spike by t>post. The spike correlation cs is then defined by

cs := 1
4
(
〈tpre − t<post〉tpre − 〈t>post − tpre〉tpre

)
,

with normalization4 = 〈tpre−t<post〉tpre+〈t>post−tpre〉tpre . Due to the normaliza-
tion, cs is restricted to values between−1 and 1, and these boundary values
are reached if the presynaptic spikes all occur either instantaneously after or
before the postsynaptic ones, respectively. Hence, we characterize the pre-
and postsynaptic spike trains by three numbers, their (instantaneous) fre-
quencies and their spike correlation, f sp

pre, f sp
post, and cs. Although there is no

surprise that the sign of the synaptic change will correspond to the sign of
the correlation cs imposed to the spike trains, it is important on a formal level
to quantify the synaptic modification as a function of these three variables.
The computational power of rate-based neurons with transfer functions de-
pending on the presynaptic correlations was recently characterized (Maass,
1998), but learning algorithms for such networks have yet to be studied.

Let us now assume a scenario where the pre- and postsynaptic spike
trains each exhibit Poisson characteristics when considered by themselves,
but when compared to each other, they show some spike correlation cs ∈
[−1, 1]. Figure 10a depicts the change of P∞dis when after 2 seconds of Pois-
son stimulation, the spike correlation cs jumps from 0 to 1 (first pre-, then
post-) and from 0 to−1 (first post-, then pre-), respectively. Figure 10b shows
the steady state of P∞dis as a function of cs for fixed pre- and post-synaptic fre-
quencies. Reordering the left and right branches (inset of the figure) yields
an average modification similar to the one induced by the shift between the
periodic pre- and postsynaptic spike trains in Figure 6.

To explain the effect of the spike correlation, we again assume the sim-
plified setting of an instantaneous recovery of the secondary messenger
(τS = 0) and of vanishing thresholds Sθu and Sθd . The spike correlation im-
plicitly determines the distribution of the NMDA receptors over the states
Nrec, Nu, and Nd. If cs is negative, the transition Nrec → Nu induced by a
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Figure 10: (a) Upper panel: After reaching the steady state for a pre- and post-
synaptic Poisson spike train of 20 Hz (0–2 sec), the spike correlation cs was
switched from either 0 to 1 (inducing an increase of P∞dis) or 0 to −1 (inducing a
decrease of P∞dis). The noisy lines represent the average for 100 repetitions of the
experiment, and the smooth lines represent empirically corrected mean-field
calculations (cf. section A.5). Lower panel: After switching cs from 0 to 1, the
spikes of the postsynaptic neuron (lower trace) were elicited immediately after a
presynaptic spike (upper trace). (b) Change of P∞dis according to equation 3.4 for
f sp
pre = 20 Hz and f sp

post = 30 Hz versus the spike correlations cs. The inset shows
a reordering of the branches and essentially reflects the steady state of P∞dis as
a function of the (normalized and averaged) spike time differences tsp

pre − tsp
post.

Same parameter values as in the caption of Figure 7.

presynaptic release is less effective since with high probability, an imme-
diately preceding transition Nrec → Nd induced by a postsynaptic spike
reduced the state Nrec. Since Nu tunes through the postsynaptic frequency,
the upregulation of P∞dis, the net increase of P∞dis is reduced. In turn, a positive
cs unfavors the state Nd since a previously arrived presynaptic spike trig-
gered with probability Prel the transition Nrec → Nu and less is remaining
in the state Nrec to be moved to Nd. In this case the downregulation of P∞dis is
less effective. This reasoning can be expressed by adapting formula 3.3 to

dP∞dis

dt
≈ rP

u(1− P∞dis)〈 f rel
pre(1− rN

d [−cs]+)〉 f sp
post

− rP
d P∞dis〈 f

sp
post(1− rN

u [cs]+Prel)〉 f rel
pre . (3.4)

Note again that the presynaptic release frequency corresponds to the presy-
naptic spike frequency times the probability of vesicle release, f rel

pre = f sp
prePrel,

and that the latter itself depends on the dynamics of the presynaptic spike
frequency (see equation 2.1 and section A.2). Equations 3.3 and 3.4 represent
an asymmetric version of the traditional covariance rule based on mean fir-
ing rates (see, e.g., Sejnowski, 1977) with an account of correlations on the
level of spikes rather than only on the level of the frequencies.
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3.3 Full versus Simplified Model. One may ask whether the simplified
model explaining the mean-field properties in sections 3.2.2 and 3.2.3 above
is sufficient to reproduce the experimental results. As long as one is inter-
ested in modeling the temporal asymmetry of the synaptic modification,
this is indeed true, but it is difficult to fit the nonlinearities of the additional
experiments. To recapitulate, the simplified model is obtained by neglect-
ing the dynamics of the secondary messenger, formally by taking the limit
τS = 0 with rS = 1. (In this case, one may skip the steps post2 and rel2 in
the algorithm and directly use the quantities Nu,Nd for Su,Sd in the steps
post3 and rel3, respectively. Similarly, in the mean-field description, equa-
tion 3.1, one may identify S+u ,S+d with Nu,Nd, respectively (see section A.3).
In a rough simplification, the discharge probability is then upregulated at
each postsynaptic spike, depending on the running mean of the presynaptic
release rate, and downregulated at each presynaptic release, depending on
the running mean of the postsynaptic spike rate,

4Pdis ≈ 〈 f rel
pre〉 f sp

post − 〈 f sp
post〉 f rel

pre. (3.5)

This form of the algorithm would represent the minimal model to re-
produce the temporal asymmetries in the Figures 3, 6, and 10a, but also in
Figure 9b reflecting the phase-advance property of depressing synapses. If
the rule is applied to the strength of nondepressing synapses, it would prob-
ably also be sufficient to reproduce the experiments in other preparations,
which were confined to investigate the asymmetry of the learning window
at a fixed frequency of the pairing (Bell et al., 1997; Zhang et al., 1998; Bi
& Poo, 1998). In our case of depressing synapses, however, we did not to
succeed in matching at the same time the additional experiments 2 and 3
with their nonlinear increase as a function of the pairing frequency and the
nonmonotonic change as a function of the number of spikes. These two ex-
periments let us introduce the S-variable in the kinetic scheme as well as
the third-order nonlinearity given by the steps post3 and rel3 (which are
established by the delta function in Equation A.5).

First, two different time constants are needed to model: (1) the width of
the learning window, which is probably narrower than 50 ms, as seen in
Figures 3 and 6a, and (2) the cumulating effect of the spike pairing repeated
in steps of 100 ms, as shown by the steep increase at 10 Hz in Figure 4.
Experiment 3 also suggests that a time constant larger than 50 ms is involved
since a transient behavior is seen extending over the 500 ms of the first 10
to 15 spikes of 20 Hz (see Figure 5). The choice of two different secondary
messengers was guided by the simplicity of the resulting scheme, and we do
not make any statement about their nature. In fact, one could think of a single
type of secondary messenger, but in this case additional processes have to
be modeled to read out from this messenger whether and how much the
discharge probability should be up- or downregulated (Grzywacz & Burgi,
1998).
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Second, we introduced the third-order nonlinearity since in the presence
of synaptic depression, it was difficult to obtain a nonlinear increase of the
learning curve with respect to increasing frequencies (see Figure 4). The
reason is that increasing the pairing frequency is essentially balanced out
on the right-hand side of equation 3.5. If we consider the full scheme with
large τS (compared to 1/f ), however, equation 3.5 turns into

4Pdis ≈ 〈 f rel
pre〉N〈 f sp

post〉S f sp
post − 〈 f sp

post〉N〈 f rel
pre〉S f rel

pre, (3.6)

where 〈.〉N and 〈.〉S denote the running mean with time constants τN and τS,
respectively (cf. equation 3.3 and section A.3). Now f sp

post arises in the square
in the first term, which gives the steep increase with the pairing frequency.
Importantly, f rel

pre, which arises in the square in the second term, remains in
the order of 1 Hz due to the synaptic depression (cf. section A.2). Although
this reasoning deals with Poisson rates, the problem that the synaptic change
is largely indifferent to increasing frequencies if we wouldn’t introduce fur-
ther nonlinearities is also seen in experiment 2. At medium frequencies, in a
train of five paired spikes, one of the first and often the last presynaptic spike
only triggers a release. In this case, the postsynaptic spikes in the middle
of the train are placed symmetrically after and before a presynaptic release,
and no clear dominance for upregulation is shown. For higher frequencies,
the duration of the 5-spike train is markedly below the vesicle recovery time
constant, and maximally one release can be triggered. Due to the stochastic
nature, this release may arise in response to the second presynaptic spike,
and by the preceded postsynaptic event downregulation is favored. More-
over, since in this case the first postsynaptic spike depleted the common
pool (Nrec), the same release event will be much less effective in inducing
an upregulation via immediately following postsynaptic spike.

4 Discussion

4.1 Summary. We presented an algorithm that allows the prediction of
the change in the temporal dynamics of synaptic transmission by depress-
ing synapses induced by arbitrary trains of pre- and postsynaptic action
potentials. The algorithm is based on the importance of precise relative tim-
ing of the pre- and postsynaptic action potentials and therefore constitutes
a novel form of learning algorithm. It reproduces the change in the synaptic
responses induced by the pairing: the asymmetry with respect to the spike-
time difference, the monotonic increase with respect to the frequency, and
the nonmonotonic dependency on the number of paired spikes.

When applying Poisson spike trains, an anti-Hebbian regime is followed
by a Hebbian regime during an increase of the postsynaptic frequency, pro-
vided the relative degree of upregulation (rP

u/rP
d ) is small enough. This fea-

ture, together with the slow adaptation of the borderline between the two
regimes, allows the rule to preserve the stability and the selectivity to new
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patterns as described by the BCM theory. When modulating the pre- and
postsynaptic spike frequencies, the synaptic dynamics may dominate the
temporal asymmetry of the learning rule, and, surprisingly, upregulation
of the discharge probability may occur even if the presynaptic peak activity
lags the postsynaptic peak activity. Finally, quantifying the spike correlation
within two arbitrary spike trains permits specifying the learning rule as a
function of the instantaneous pre- and postsynaptic frequencies and their
instantaneous spike correlation. Such a formulation fits into the recently
proposed framework of generalized neural networks, which are processing
average firing rate together with average spike correlations (Maass, 1998).

4.2 Experimental Basis for the Model. The algorithm was constructed
under several experimental constraints:

1. Excitatory glutamatergic synapses between pyramidal neurons in the
neocortex are fast-depressing synapses, and the change that follows Heb-
bian pairing is equivalent to a change in the discharge probability Pdis
(Markram & Tsodyks, 1996). This change alters the temporal dynamics of
transmission (Tsodyks & Markram, 1997; Abbott et al., 1997).

2. The asymmetrical modification window with respect to relative timing
of pre- and postsynaptic action potentials, as reported by Markram et al.
(1997), was considered. In this window, up- and downregulation fall in a
window of around 100 ms after and before a postsynaptic action potential,
respectively.

3. Upregulation is dependent on NMDA receptors, and the backpropa-
gating action potential can cause rapid pulses of Ca2+ through the NMDA
receptor (Markram, Roth, & Helmchen, 1998; Spruston, Jonas, & Sakmann,
1995). The speed of these AP-evoked Ca2+ concentration pulses via NMDA
receptors is such that only an enzyme with very high forward binding rates
could capture this Ca2+, providing the ideal situation for a coincident de-
tector protein (Markram, Roth, & Helmchen, 1998). We therefore propose
that the amplitude of the upregulation follows a time course of the NMDA
current, which has a rise time constant of 10 to 20 ms and a decay time
constant of 100 to 300 ms (Jonas & Spruston, 1994). The time constant of
approximatively 60 ms for upregulation observed experimentally could be
due to a threshold effect.

4. The magnitude of the upregulation increases as a function of the fre-
quency of the pre- and postsynaptic action potentials in the train with an
onset between 5 and 10 Hz (Markram et al., 1997).

5. Surprisingly, the upregulation was not increased when more action
potentials were included in a train of a given frequency (data included in
this study). This is proposed to be due to the balanced effects of up- and
downregulation, which, after an initial transient, are reached for the given
train of action potentials.

6. Downregulation is also dependent on NMDA receptor activation and
on Ca2+ influx (HM, unpublished data). We therefore propose that the rise in
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Ca2+ concentration following a backpropagating action potential influences
the NMDA receptor in such a manner that it results in downregulation
when activated. Indeed, the dendritic Ca2+ transient has a similar time
course as that of downregulation (Markram, Helm, & Sakmann, 1995), and
intracellular Ca2+ has been shown to modify the kinetics of the NMDA
receptor (Mayer et al., 1987; Medina, Filippova, Bakhramov, & Bregestovski,
1996; Mayer, 1998; Antonov, Gmiro, & Johnson, 1998).

7. Ca2+ from different sources or modes of influx can activate different
processes due to differential binding as a function of forward and backward
rate constants (Markram, Roth, & Helmchen, 1998).

4.3 Comparison with Other Learning Rules. Asymmetric learning rules
based on mean firing rates or individual spike times were investigated in
different contexts. They were used for storing trajectories (Abbott, 1996),
modeling hippocampal place fields of rats wandering around in the Morris
water maze (Blum & Abbott, 1996; Gerstner & Abbott, 1997), and modeling
the temporal selectivity in the auditory pathway of barn owls (Gerstner,
Kempter, van Hemmen, & Wagner, 1996). Recent work investigates the sta-
bilization capabilities of asymmetric rules in keeping the cell’s sensitivity
(Kempter et al., 1999b; Abbott & Song, 1999), similarly as it is achieved by
the described sliding-threshold property on the level of mean firing rates.
Neither of these works, however, take into account the synaptic dynamics.

Our algorithm comes closest to the version of the learning rule outlined
in Gerstner, Kempter, van Hemmen, and Wagner (1998, sec. 14.2.4), which
deals with the kinetics of four different components corresponding to our
Nu, Nd, Su, and Sd. In their description, no synaptic depression is taken into
account, and the rule refers to a change in the absolute synaptic strength.
Moreover, no common pool similar to Nrec is assumed, and Hebbian second-
order correlations are only considered. It is worth pointing out that the phys-
iologically motivated restriction to a common pool Nrec may help to sharpen
the distinction between positive and negative spike delays, even in the case
of a deterministic release without depression. Considering simultaneous
bursts of pre- and postsynaptic spikes of mixed temporal correlations, it
would typically be the first release-spike pair that, due to the depletion of
the common pool, dominates the synaptic modification. An immediately
following second pair with possible reversed temporal order will be much
less effective if this pool was just reduced and therefore will not be able to
annihilate the initiated modification.

In comparison to rules based on mean firing rates one may establish con-
nections to the BCM theory (Bienenstock et al., 1982) but also reproduce the
rule of Artola-Bröcker-Singer (Artola & Singer, 1993) by assuming nonvan-
ishing thresholds for the up- and downregulation. On the other hand, the
simplified form, equation 3.5, shows that our algorithm is distinct from the
covariance rule (Sejnowski, 1977), which in our situation would be of the
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form

4Pdis ≈ ( f rel
pre − 〈 f rel

pre〉) ( f sp
post − 〈 f sp

post〉),
and therefore would be symmetric with respect to the presynaptic release
and the postsynaptic spike frequencies. The power of our algorithm is not
only to cope with average firing frequencies and correlations but to offer a
general framework for dealing with any pre- and postsynaptic spike train
of any complexity and arbitrary correlations.

4.4 Predictions of the Model and Outlook. It is remarkable that simple
first-order kinetics with a cross-gating of the NMDA receptors can qualita-
tively explain the different spike-induced nonlinear synaptic modifications.
Several features of the model are tailored to explain the specific experimental
results and raise new hypotheses that can be experimentally tested. Among
these are the following:

1. Experiment 2 with a reversed relative timing would lead to a moderate
monotonic decrease of Pdis with respect to the paired spike frequency
(contrasting Figure 4).

2. Experiment 2 with 20 instead of 5 spikes in the paired spike trains
would lead to a nonmonotonic Pdis with respect to frequency (see
Figure 5).

3. The full learning curve for trains of 5 spikes versus the time difference
of the train onsets would exhibit a maximal upregulation and maximal
downregulation at −50 ms and 100 ms, respectively (see Figure 6b).

4. Applying pre- and postsynaptic Poisson spike trains would lead to a
monotonic increase of the steady-state Pdis with respect to the post-
synaptic frequency and to only a small decrease with respect to the
presynaptic frequency (see Figure 7b).

5. A step change in the frequency of the postsynaptic Poisson spike train
after a period of steady-state Poisson stimulations would lead to a
decrease or increase in Pitdis depending on the sign of the step change
(see Figure 8b).

6. Modulating sinusoidally the frequencies of pre- and postsynaptic
Poisson spike trains of lag 0 would lead to an increase in Pdis if the
modulation frequency is in the range of 1 Hz but would not show any
change if the modulation rate is faster than 5 Hz (see Figure 7).

7. A single presynaptic release followed by a burst of postsynaptic spikes
would lead to a superlinear increase of Pdis with respect to the burst
frequency before eventually saturating.

The last experiment appears to be of particular interest in the light of
recently observed Ca2+-triggered bursts in cortical pyramidal cells follow-
ing coincident apical and somatic stimulations (Larkum, Zhu, & Sakmann,
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1999). The threshold phenomenon according to which virtually no potenti-
ation is seen for a 1 Hz pairing suggests that these bursts are functionally
relevant in the existing form of synaptic modifications. It also suggests that
an incidentally occurring tight pairing would not be able to change the
synaptic memory. Finally, more natural stimulation protocols, including
bursts and Poisson trains, would help to specify the activity dependencies
of the learning window, which is partially expressed in the data. It would
also clarify the question to what extent the same synapse is able to encode
individual spike timings while still being sensitive to pre- and postsynaptic
average frequencies.

To describe further long-term potentiation and long-term depression ex-
periments, one may want to include effects of the postsynaptic membrane
potential or the local Ca2+ concentration onto the NMDA receptor dynam-
ics or the secondary messenger activation. Although we have not examined
this, it could easily be achieved by endowing the different rate constants
appearing in the scheme with a voltage- or Ca2+-dependent dynamics in-
stead of instantaneously activating them through delta functions of fixed
weights.

Beside the characteristics of strong synaptic depression, a large hetero-
geneity of different synaptic dynamics including facilitation was found
between neocortical pyramidal cells (Markram, Pikus, Gupta, & Tsodyks,
1998), suggesting that other parameters governing the temporal response
could be subject to specific learning rules (Markram, Wang, & Tsodyks,
1998). One could speculate that due to additional computation such as
the integration of a third coincident signal provided by growth factors
or neuromodulators (e.g., synaptic growth or unmasking of postsynap-
tic receptors; Liao & Malinow, 1995) is required for the induction of real
synaptic strengthening or to gate changes in the recovery time constant.
Specifying these conditions remains an important challenge for a future
research.

Appendix

A.1 Differential Equations Determining the Kinetic Scheme. For fur-
ther analysis we give a formulation of the kinetic scheme (see Figure 2) in
terms of differential equations. Let us denote by trel

pre the time of a presynaptic

release and by tsp
post the time of a postsynaptic spike. A presynaptic release

at trel
pre will saturate a fraction rN

u of the recovered NMDA receptors. A post-

synaptic spike at tsp
post will block the fraction rN

d of Nrec. The entire dynamics
of the NMDA receptors is:

dNu

dt
= −Nu

τN
u
+ rN

u Nrec δ(t− trel
pre), (A.1)
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dNd

dt
= −Nd

τN
d

+ rN
d Nrec δ(t− tsp

post), (A.2)

Nrec = 1−Nd −Nu,

where the delta function δ(. . .) expresses that the quantities Nu and Nd have
to be augmented at the times of a presynaptic release and a postsynaptic
spike by rN

u Nrec and rN
d Nrec, respectively.

The differential equations for the secondary messengers are:

dSu

dt
= −Su

τS
u
+ rSNu(1− Su) δ(t− tsp

post), (A.3)

dSd

dt
= −Sd

τS
d

+ rSNd(1− Sd) δ(t− trel
pre). (A.4)

The time constants τS
u and τS

d encompass a diffusion process and are in the
range of 300 ms. The limit probability is upregulated at a postsynaptic spike
if Su exceeds some threshold Sθu and downregulated at a presynaptic release
if Sd exceeds some threshold Sθd . According to the kinetic scheme, we have

dP∞dis

dt
= rP

u(1− P∞dis)[S
+
u − Sθu]+ δ(t− tsp

post)

− rP
d P∞dis[S

+
d − Sθd]+ δ(t− trel

pre), (A.5)

where S+u and S+d are the values of Su and Sd immediately after a post- and
presynaptic spike,

S+u = rSNu (1− Su)+ Su, S+d = rSNd (1− Sd)+ Sd. (A.6)

Taking the expectation values in equation A.5 leads to equation 3.1. While
the changes in P∞dis occur instantaneously, the discharge probability Pdis
slowly approaches the limit probability according to the equation

dPdis

dt
= P∞dis − Pdis

τP
M

, with τP
M ≈ 10 min. (A.7)

A.2 Equations Determining the Probability of Release. A synapse is
assumed to have a single site of release from which, according to the uni-
vesicular hypothesis, a single vesicle discharges with probability Pdis at the
arrival of a presynaptic spike. Instantaneously after discharge, the site of
release is empty, and it is assumed to be reoccupied by a new vesicle in a
Poisson process with time constant τ rec

v ≈ 800 ms. The probability Pv that
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a vesicle is at the site of release is therefore governed by the differential
equation,

dPv

dt
= 1− Pv

τ rec
v
− PdisPv δ(t− tsp

pre), (A.8)

where tsp
pre is the time a presynaptic spike arrives. This equation states that

at the time of a presynaptic spike, Pv is reset with probability Pdis from its
actual state back to 0. The probability Pn+1

v of encountering a vesicle ready
for release at arrival of the (n+ 1)th spike is now calculated by

Pn+1
v = Pn

v(1− Pdis) e−
4n
τ + (1− e−

4n
τ ), τ = τ rec

v ,

where4n = tsp,n+1
pre −tsp,n

pre is the time elapsed between the two spikes and Pn
v is

the probability that a vesicle was ready at the previous spike. Since the prob-
ability of release for a presynaptic spike is Prel = PdisPv, we get formula 2.1.
The instantaneous release frequency is calculated from the presynaptic spike
frequency according to

f rel
pre = Prel f sp

pre = Pdis Pv f sp
pre . (A.9)

For presynaptic Poisson spike trains of rate f sp
pre, one can calculate from

equation A.8 the steady-state release probability by

Pss
rel = PdisPss

v =
Pdis

1+ Pdis f sp
pre τ

rec
v

.

The release frequency at steady state is then given by f rel
pre = Pss

rel f sp
pre. Note

that due to the memory in the recovery process, the release train is not
Poissonnian anymore.

A.3 Steady-State Equations for Poisson Spike Trains. We deduce the
steady state of the limit probability of vesicle discharge, P∞ss

dis , for pre- and
postsynaptic Poisson spike trains with fixed rates f sp

pre and f sp
post. Since the

time constant τP
M for modification is large, we may assume that Pdis remains

constant even during the steady-state stimulation. In the following, we cal-
culate the steady-state value of P∞dis toward which Pdis converges after the
stimulation according to equation 4.7.

First, we consider the steady states of the NMDA receptors and the sec-
ondary messengers. Replacing the delta functions in equations A.1 through
A.4 with the corresponding rates f rel

pre and f sp
post, we obtain the following ex-

pectation value in the steady state:

Nss
u =

ρN
u f rel

pre

1+ ρN
u f rel

pre + ρN
d f sp

post

, ρN
u = rN

u τ
N
u , (A.10)
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Nss
d =

ρN
d f sp

post

1+ ρN
u f rel

pre + ρN
d f sp

post

, ρN
d = rN

d τ
N
d , (A.11)

Sss
u =

ρS
u f sp

post Nss
u

1+ ρS
u f sp

post Nss
u

, ρS
u = rSτS

u , (A.12)

Sss
d =

ρS
d f rel

pre Nss
d

1+ ρS
d f rel

pre Nss
d

, ρS
d = rSτS

d . (A.13)

Note that due to the shared pool Nrec, the variables Nx and Sx (x = u, d) are
not independent, and that, strictly speaking, we are not allowed to average
the product in equations A.3 and A.4 individually. However, as long as one
of the frequencies f sp

post and f rel
pre is small compared to the time constants τN

x

and τS
x , one of the variables Nx and Sx always has time to relax toward its

mean between the jumps of the other. Indeed, for τ rec
v ≈ 1, the release rate

will be less than ≈ 1 Hz, while the time constants in consideration are all
smaller than≈ 0.5 second and formulas A.12 and A.13 turn out to be a good
approximation (cf. Figure 7a). Also, the error we are handling by treating
f rel
pre as a Poisson rate seems to be marginal. By a similar reasoning we may

average the individual factors in equation A.5 to obtain

0 = rP
u(1− P∞

ss
dis ) [S+u − Sθu]+

ss
f sp
post − rP

d P∞
ss

dis [S+u − Sθu]+
ss

f rel
pre , (A.14)

where the superscript ss denotes the expectation value of the corresponding
quantity in the steady state. If the variation of Sx is small, the quantity
[S+x − Sθx]+ss

can be approximated by [S+ss
x − Sθx]+, and in case of vanishing

thresholds Sθx = 0, it is equal to

S+
ss

x = rS Nss
x (1− Sss

x )+ Sss
x , x ∈ {u, d}. (A.15)

In this case one obtains from equation A.14 the expectation value of P∞dis in
the steady state,

P∞
ss

dis =
1

1+ rP
d f rel

pre S+
ss

d

rP
u f

sp
post S+

ss
u

, (A.16)

which in general is a good approximation if S+x is above the threshold Sθx
most of the time.

It is elusive to study the transition from the full model to the reduced
model, which considers only the cross-gating of the NMDA receptors with-
out secondary messengers. From equation A.5 we get at steady state with
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vanishing thresholds

dP∞dis

dt
= rP

u(1− P∞
ss

dis )S
+ss
u f sp

pos − rP
d P∞

ss
dis S+

ss
d f rel

pre. (A.17)

Linearizing Nss
x and Sss

x (see equations A.10–A.13) around zero frequen-
cies (thereby neglecting saturation effects) and inserting into equation A.15
yields

S+
ss

u ≈ ρ̃N
u f rel

pre(1− ρ̃S
uτ

S
u f sp

pos f rel
pre)+ ρ̃S

uτ
S
u f sp

pos f rel
pre (A.18)

S+
ss

d ≈ ρ̃N
d f rel

pre(1− ρ̃S
d τ

S
d f rel

pre f sp
post)+ ρ̃S

d τ
S
d f rel

pre f sp
post, (A.19)

with appropriate constants ρ̃X
x . If τS

u f sp
pos and τS

d f rel
pre are small, the second and

third terms in equations A.18 and A.19 vanishes, and the synaptic change
is dominated by the second-order correlations,

dP∞dis

dt
≈ r̃P

u(1− P∞
ss

dis ) f rel
pre f sp

pos − r̃P
d P∞

ss
dis f sp

post f rel
pre.

This is true if in particular τS = 0 (and the secondary messengers therefore
act only by a constant factor). If, on the other hand, τS

u f sp
pos and τS

d f rel
pre are

large, the secondary messengers are closer to saturation (Sss
x ≈ 1), the sec-

ond term in equations A.18 and A.19 is now dominating, and a third-order
correlation enters in equation A.17. This reasoning also motivates the short
forms (see equations 3.5 and 3.6) of the learning rule for the nonsteady-state
situation and the cases τS = 0 and τS > 1/f , respectively.

A.4 Deduction of the BCM Properties. To show the connection to the
BCM theory (Bienenstock et al., 1982) we assume Sθd = 0 and consider our
learning rule, equation 3.1. Inserting the parameters into equation A.5 shows
that the time constant of P∞dis is of an order slower than that of Su and Sd
(see Figures 7a and 8a). In the limit of slow adapation of P∞dis, we may thus
replace the quantities S+u and S+d by their steady-state values. Writing the
learning rule in the form 3.2, we obtain

φ( f sp
post) = (1− P∞dis) [S+

ss
u − Sθu]+

f sp
post

f rel
pre
− rP

d

rP
u

P∞dis S+
ss

d . (A.20)

We have to show that this function satisfies the requirements of the BCM
learning curves. The first requirement φ(0) = 0 is readily checked since
S+

ss
d vanishes for f sp

post = 0 according to equations A.11 and A.13. We have

φ′(0) < 0 since for small f sp
post, the second term in equation A.20 will dominate

for rP
d > 0. This is true since the first term is bound from above by ( f sp

post)
2,
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and the second term is bound from below by f sp
post. Since for large f sp

post, it is
the first term in equation A.20, which dominates, we get a second zero ofφ at

θM =
rP

d

rP
u

P∞dis

(1− P∞dis)

S+
ss

d

[S+ss
u − Sθu]+

f rel
pre (A.21)

with φ′(θM) ≥ 0. The modification threshold is implicitly driven by the
postsynaptic spike rate f sp

post, which changes S+ss
u and S+

ss
d via equations A.10

through A.13, and this in turn changes P∞dis via learning rule 3.2. The conver-
gence of P∞dis for fixed frequencies ensures that eventually the right-hand side
of equation 3.2 vanishes, and this, by definition, happens when θM = f sp

post.

For example, if f sp
post grows over θM, we have φ( f sp

post) > 0 and the learning
rule pushes P∞dis up. Due to the factor P∞dis/(1−P∞dis), however, the threshold
θM increases as well. Since the speed of θM is nonlinear in P∞dis, this factor

dominates the (saturating) changes in S+ss
u and S+

ss
d . The threshold θM will

therefore eventually catch up and overtake f sp
post, and we get φ( f sp

post) < 0.
According to the learning rule, P∞dis now starts to decrease again. Hence,
equation A.21 incorporates the sliding threshold property with respect to
f sp
post, and this keeps the synapse sensitive to its environment.

A.5 Change of P∞dis for Nonzero Spike Correlations. We first quantify
the effect of the spike correlation onto the distribution of the up- and down-
regulating quantities Nu and Nd in their steady states. Recall that for a spike
correlation of, say, cs = 1, each postsynaptic spike follows instantaneously
after a presynaptic spike. For a positive spike correlation cs ∈ [0, 1], the
effective postsynaptic frequency is reduced by the fraction rN

u [cs]+Pss
rel, and

we must replace f sp
post by (1− rN

u [cs]+Pss
rel) f sp

post in the formulas A.10 and A.11,
giving the average values of Nu and Nd, respectively. Similarly, for a neg-
ative spike correlation cs ∈ [−1, 0], the presynaptic release frequency f rel

pre

must be replaced by (1 − rN
d [−cs]+) f rel

pre in the same two formulas, and the
steady states Nss

u and Nss
u become functions of cs. Next, in formulas A.12,

A.13, and A.15, the quantities Nss
u and Nss

u have to be replaced by their
average values immediately after a pre- or postsynaptic spike, that is, by
Nss+

u = Nss
u + rN

u [cs]+ Pss
rel Nss

rec and Nss+
d = Nss

d + rN
d [−cs]+Nss

rec, respectively.
(Since due to the memory in the vesicle recovery process the presynaptic
release train is not Poissonian, we would not be allowed to replace the delta
function by the release rate to calculate the mean-field behavior. If in addi-
tion there is a nonvanishing correlation between the pre- and postsynaptic
spike trains, this “simplification” indeed cannot be neglected anymore. We
were urged to correct the mean-field plots in Figure 10 empirically by a
factor of 1.3 in front of cs.) If we now put Sθu = Sθd = 0 we get from equa-
tion A.14 the steady state of P∞dis as a function of the spike correlation cs (see
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Figure 10b). The mean-field evolution of P∞dis for a given spike correlation
cs ∈ [−1, 1] is obtained by the analog replacements (while dropping the
upper index ss) in formulas A.1 through A.4 and A.6.
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