
Abstract. Spike-timing-dependent plasticity (STDP)
strengthens synapses that are activated immediately
before a postsynaptic spike, and weakens those that
are activated after a spike. To prevent an uncontrolled
growth of the synaptic strengths, weakening must
dominate strengthening for uncorrelated spike times.
However, this weight-normalization property would
preclude Hebbian potentiation when the pre- and
postsynaptic neurons are strongly active without specific
spike-time correlations. We show that nonlinear STDP
as inherent in the data of Markram et al. [(1997) Science
275:213–215] can preserve the benefits of both weight
normalization and Hebbian plasticity, and hence can
account for learning based on spike-time correlations
and on mean firing rates. As examples we consider the
moving-threshold property of the Bienenstock–Cooper–
Munro rule, the development of direction-selective
simple cells by changing short-term synaptic depression,
and the joint adaptation of axonal and dendritic delays.
Without threshold nonlinearity at low frequencies, the
development of direction selectivity does not stabilize in
a natural stimulation environment. Without synaptic
unreliability there is no causal development of axonal
and dendritic delays.

1 Introduction

One of the remarkable features of sensory systems is
their capability to adapt to the characteristics of the
environment. Why, for instance, do we prefer to see
moving objects with a specific velocity bandwidth? The
answer is, in most cases such preferences are governed
by the statistics of the natural scenes. To biophysically
realize the match between input statistics and feature-
extraction capabilities, the nervous system may operate

at different levels and time scales, from genetically
guided development to activity-dependent fine tuning of
neuronal connections. Spike-timing-dependent synaptic
plasticity (STDP) is a possible candidate to explain
activity-dependent changes in the adult primary visual
cortex (area V1) which are expressed on timescales of
minutes (Yao and Dan 2001; Fu et al. 2002), but may
also play an important role in the developing cortex
(Hubel and Wiesel 1962; Katz and Shatz 1996). The
main characteristics of STDP are that the synaptic
strength is upregulated if the presynaptic spike precedes
the postsynaptic spike within 5–50 ms, and downregu-
lated if it follows the postsynaptic spike within a similar
time range (Markram et al. 1997; Bi and Poo 1998;
Feldman 2000). In the present review we highlight four
different features of our learning rule which go beyond
the standard properties of models of STDP: the inherent
nonlinearity, the learning threshold, the relation to
short-term depression, and the synaptic unreliability. We
will also see that the statistics of the stimulus distribu-
tion is not always the dominant factor in the develop-
ment of the synaptic structure. While this is true for the
development of delay lines where the temporal structure
of the stimuli is mapped onto the transmission delays of
the neurons, the specific velocities of moving stimuli are
not necessarily encoded in the synaptic structure of
direction-selective simple cells. Rather, the velocity
selectivity of these cells strongly depends on the
parameters of the synaptic learning rule. Before going
into the details of these phenomena we briefly comment
on the four additional features of the learning rule.

1.1 Nonlinear synaptic plasticity

An important requirement of STDP is that long-term
depression (LTD) dominates long-term potentiation
(LTP), thereby preventing an uncontrolled increase of
the postsynaptic activity through normalization of the
synaptic weights (Kempter et al. 1999; Song et al. 2000).
When the pre- and postsynaptic spike times are not
correlated, this normalization property implies that LTP
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is wiped out by LTD, and that the net LTD becomes
more dominant with increasing pre- and postsynaptic
frequencies. Unfortunately, this is just the opposite of
the Hebb rule, according to which it is the net LTP that
should increase with the pre- and postsynaptic frequen-
cies. Hence, additional nonlinearities are required if
STDP should be relevant for both encoding information
represented in a spike correlation code and a mean rate
code without spike correlations (Amit 1997; Shadlen and
Newsome 1998). For instance, storing spatial patterns in
an associative memory requires that LTP dominates at
elevated pre- and postsynaptic activities, while only
elevated presynaptic activity should induce LTD (see,
e.g., Fusi et al. 2000). Similarly, the development of
orientation columns based on a mean rate code, as
described in the original Bienenstock–Cooper–Munro
(BCM) rule, can only be explained if synapses are
strengthened at elevated pre- and postsynaptic frequen-
cies. Recent in vivo experiments which include the
postsynaptic depolarization as a further key variable in
the induction of synaptic plasticity show that STDP may
be consistent with these requirements (Sjöström et al.
2001). To realize the two main features – synaptic
normalization (achieved through the dominance of LTD
at high pre- and postsynaptic frequencies) and classical
Hebbian potentiation (achieved through the dominance
of LTP at lower, but still elevated frequencies) – the rule
for the synaptic modification must qualitatively change
as a function of the pre- and postsynaptic activities. The
algorithm designed to reproduce the data of Markram
et al. (1997) exhibits nonlinearities which in fact imply
such a qualitative change.

1.2 Learning thresholds

Another nonlinearity, again shared by the cited algo-
rithm, is the threshold for the induction of synaptic
modifications. Repetitive pairing of pre- and postsy-
naptic spikes with 10-ms delay only induced LTP if the
pairing frequency was above 5 Hz (cf. Sjöström et al.
2001). Such a threshold property is important to
protect acquired synaptic structures against random
uncorrelated activity. For instance, direction selectivity
(DS) of simple cells in the area V1 can only develop in
a natural input scenario – with stimuli moving with
equal probability in different directions – if STDP is
endowed with a learning threshold. As we show,
without such a threshold any acquired change will be
canceled if by chance subsequent stimuli move in the
opposite directions. A learning threshold must also be
present in the adult brain if natural stimulation should
not always change the orientation selectivity of cells.
Repetitive strong stimulations with orientationally
biased stimuli can overcome this threshold and induce
shifts in the orientation selectivity of V1 cells (Yao and
Dan 2001). The importance of learning thresholds is
well known for the formation of Hebbian ensembles
with multiple patterns and realistic noise levels (Fusi
et al. 1999).

1.3 Modification of short-term depression

The development model for the direction-selective
simple cells we consider is based on synaptic short-term
depression (Chance et al. 1998) and its activity-depen-
dent modification. This exploits the fact that the
response of depressing synapses are phase advanced
with respect to that of nondepressing synapses. STDP
acting on both the synaptic strength and the degree of
short-term depression (Markram and Tsodyks 1996)
may induce the appropriate spatial displacement of
depressing and nondepressing synapses from which DS
emerges. Our analysis reveals that the time constant of
synaptic depression (�200 ms) and the time window for
STDP (�40 ms) both lead to a maximal DS for stimuli
with temporal frequencies of 0.5–16 Hz. This agrees well
with recordings from simple cells in V1 (Saul and
Humphrey 1992). In contrast to our expectations,
however, the development of this frequency band is
independent of the distribution of the stimulus frequen-
cies. One may speculate that the synaptic parameters
(i.e., the 200-ms and 40-ms values) are tuned by another
mechanism to allow simple cells to extract motion in the
behaviorally relevant velocity bandwidth.

1.4 Synaptic unreliability

Unreliable synapses play a role in development similar
to that of random mutations in evolution. Transmission
failures allow the specifical reward of connections which
successfully contributed to the postsynaptic firing, while
excluding synapses from this reward which were not
active and hence did not contribute. As an example we
consider the development of the receptive field (RF) of a
cell in V1. Such cells have a wide subthreshold
integration field where stimuli generate slow depolariza-
tion, and a narrow discharge field where stimuli may
evoke postsynaptic spikes (Bringuier et al. 1999). This
receptive field structure may correspond to the anatom-
ical finding that lateral input from distal V1 cells tend to
project on the apical dendritic tree of layer V pyramidal
cells, while feedforward and nearby connections project
closer to the soma (Nieuwenhuys 1994). How can such
an arrangement develop in an activity-dependent man-
ner? The answer is STDP and synaptic unreliability. The
synaptic position along the dendritic tree is intimately
related to the latency of the corresponding synaptic
response. Assuming a specific spatiotemporal statistics
of sensory input patterns, we show that STDP and
unreliable transmission leads to an appropriate selection
of axonal delays and dendritic latencies, with the
observed synaptic distribution along the dendritic tree.

2 Nonlinear spike-timing-dependent plasticity

2.1 Model of short-term depression and its modification

We designed an algorithm for synaptic modifications
based on in vitro recordings from pairs of interconnected

345



layer V pyramidal cells in somatosensory cortex of
young rats. The recordings include (i) the classical STDP
experiments from Markram et al. (1997), and (ii) an
additional experiment expressing intrinsic nonlinearities
of STDP (Senn et al. 1997, 2001b). The algorithm is
based on a stochastic synaptic model with short-term
depression caused by vesicle depletion. The dynamic
variable is given by the probability of a vesicle being
recovered, Pv. Given a recovered vesicle, a presynaptic
spike will discharge this vesicle with probability Pdis. The
total vesicle release probability takes into account the
probability for vesicle recovery and its discharge,
Prel ¼ PvPdis. Once a vesicle is discharged, Pv is set to 0,
from where it stochastically recovers to 1 with a time
constant srec of 150–800 ms. This is a probabilistic
version of the synaptic depression model in Tsodyks and
Markram (1997), with the discharge probability (Pdis)
corresponding to the use of synaptic efficacy (USE). High
Pdis (close to 1) implies a strong transient response to an
increase in the presynaptic firing rate followed by strong
depression, while low Pdis (close to 0) implies a weak
response, but also weak depression.
According to the findings on synaptic redistributions

(Markram and Tsodyks 1996) we were assuming that it
is Pdis which is subject to long-term modification.
However, other experiments do only report modifica-
tions of the absolute synaptic strength. In fact, if G
represents the absolute synaptic strength, the postsy-
naptic current evoked by presynaptic test impulses,
given at 1 Hz for instance, has an amplitude propor-
tional to the product GPdis. This is because the vesicles
recover between the interspike intervals, Pv � 1, and we
get Prel � Pdis. Isolated test impulses therefore cannot
distinguish between a modification of the absolute syn-
aptic strength and a modification of the discharge
probability. Although the present algorithm is formu-
lated in terms of a modifications of Pdis, we will assume
in the following applications that also the absolute
synaptic strength G is subject to the same modifications.
To account for the nonlinearities present in the ex-

perimental data we constructed the following scheme:
Postsynaptic NMDA receptors (NMDARs) can make
transitions from a recovered state either into an upre-
gulating state triggered by neurotransmitter release (via
binding of glutamate), or into a downregulating state
triggered by a postsynaptic spike (via removing of the
Mg2þ block), from where they recover with a time
constant sN in the range of several tens of milliseconds.
The fraction of receptors in the respective states are
denoted by Nrec, Nup, and Ndn. Up- and downregulating
secondary messengers, Sup and Sdn, with a slower decay
time constant sS , are activated proportionally to the
amount of Nup and Ndn, whenever there is a postsynaptic
spike or a presynaptic release, respectively. In terms of
kinetic schemes the cross-gating of the NMDARs and
the activation of the secondary messengers reads

Ndn sN

1�post
 ��! Nrec sN

1�rel
�! �Nup; and

�SSup sS

Nup �post
 ��! Sup; �SSdn sS

Ndn �rel�! � Sdn ;

where Sup ð¼ 1� SupÞ and Sdn ð¼ 1� SdnÞ are the up-
and downregulating secondary messengers in the recov-
ered state. The labels ‘x�post’ and ‘x�rel’ indicate that the
transitions take place at the time of a postsynaptic spike
and a presynaptic release, respectively, and that the
fraction x of the available source is moved to the new
state. As a third event, following a postsynaptic spike,
Pdis is upregulated proportionally to ½Sup �Hup�þ, the
amount of upregulating secondary messenger above a
certain threshold. Similarly, following a presynaptic
release, Pdis is downregulated proportionally to
½Sdn �Hdn�þ. By introducing multiplicative saturation
which restricts Pdis to the unit interval, one obtains

sP
dPdis
dt
¼ð1� PdisÞ

X

tpost

½Sup �Hup�þ

� Pdis
X

trel

½Sdn �Hdn�þ ; ð1Þ

where sP is a slow learning time constant (of the order of
minutes, see Senn et al. 2001b).
The rationale behind this scheme is that a running

mean of the presynaptic activity is stored in Nup, and
that the postsynaptic activity, via Sup, reads out this
stored presynaptic activity and upregulates the synaptic
parameter. Similarly, the postsynaptic activity is stored
in Ndn, and the presynaptic activity, via Sdn, reads out
the stored postsynaptic activity and downregulates the
synaptic parameter. The sequence of three events – the
modification of NMDARs, the activation of secondary
messenger, and the change of Pdis with each presynaptic
release or postsynaptic spike – result in an algorithm
that is of third order in the pre- and postsynaptic spike
frequencies (see Eq. 2 below).

2.2 Experimental basis of the nonlinear STDP algorithm

The algorithm in Sect. 2.1 was designed to reproduce the
following three experiments (see also Markram et al.
1997; Senn et al. 2001b):

1. Pre- and postsynaptic spike trains of 10 Hz, paired
with 10 ms lag (five spikes per train, repeated ten
times every 4 s), induced a slow, long-lasting increase
of Pdis by 20% in the pre–post case and a decrease by
20% in the post–pre case. A lag of 100 ms did not
induce any change. This is the standard property of
STDP also shared by other experiments and algo-
rithms (Gerstner et al. 1996; Kempter et al. 1999;
Kistler and van Hemmen 2000; Song et al. 2000), and
is modeled by the cross-gating of NMDARs.

2. Paired pre- and postsynaptic spike trains with a delay
of 2 ms of the postsynaptic train (five spikes per train,
repeated ten times every 4 s) induced a change in Pdis
which monotonically increases up to 150% with a
pairing frequency of 2–40 Hz. This frequency depen-
dence of LTP naturally arises in the algorithm from
the memory effect of the NMDA states and the ac-
cumulated secondary messenger. The crucial nonlin-
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earity is the ‘learning threshold’ around 5 Hz (Fig. 1a,
b), and it is implemented by the thresholds applied to
the secondary messengers (although the experiment
can only tell about an LTP threshold, we assumed a
similar threshold for LTD). Standard models of
STDP would predict a linear increase with the num-
ber of spike pairs and therefore fail to reproduce this
experiment.

3. Pre- and postsynaptic spike trains, paired at 20 Hz
with a delay of 2 ms of the postsynaptic train (re-
peated ten times every 4 s), did not show a monotonic
increase of the change in Pdis as the number of spikes
in the paired trains increased from 2 to 20. Rather, the
induced change remained independent, or even de-
creased with the number of paired spikes (Senn et al.
2001b). It is this result, together with the effect of
synaptic depression and the frequency dependence of
LTP, which justifies the third-order algorithm.

When applying the algorithm to a stimulation pro-
tocol with 50 spikes paired at 0.1 Hz and a 5-ms lag,
only 2% LTP and 4% LTD (Senn et al. 2001b) were
obtained. This is a consequence of the threshold

nonlinearity revealed by experiment 2, and contrasts
with the strong LTP obtained by extracellular stimula-
tion of inputs to L2/3 pyramidal cells at the same low
pairing frequency (Feldman 2000). As shown by Sjös-
tröm et al. (2001), the discrepancy might arise from the
fact that the size of the postsynaptic response should be
above 2.3 mV (at least for L5 pyramidal neurons in V1
of young rats) to reliably induce LTP. The saturation of
LTP with the number of paired spikes in a 20-Hz train
(experiment 3) could be explained by an effective time
constant of the LTP integrator of roughly 50ms. The
fact that LTP actually slightly decreases with the num-
ber of paired APs (experiment 3) but not with frequency
(experiment 2), however, reveals that STDP is highly
nonlinear: On the one hand, there is a long internal LTD
time constant which leads to an annihilation of LTP by
LTD after many pre–post spike pairs (experiment 3). On
the other hand, the threshold nonlinearity around 5Hz
suggests that there is an even longer internal time con-
stant for LTP, and this seems to contradict the in-
creasing dominance of LTD. Moreover, in the presence
of synaptic depression and the long LTD time constant,
it is difficult to explain the strong frequency-dependent

Fig. 1. Nonlinear spike-timing-dependent plasticity (STDP): learning
threshold and activity-dependent time window. a, b The modification
of the probability of vesicle discharge, DPdis, monotonically increases
with the pairing frequency, showing a threshold nonlinearity (the
‘learning threshold’) around 5 Hz. Experimental data reproduced
from Markram et al. (1997) (a), and the corresponding simulation
results (b). c, d STDP may reproduce the Bienenstock–Cooper–
Munro (BCM) rule for uncorrelated pre- and postsynaptic Poisson
spike trains by means of an activity-dependent effective time window.
c A step decrease of the postsynaptic firing rate from 30 to 10Hz
(lower panel) brings Pdis down from 0:38 to 0:2 (upper panel, with

additional variables described in the text). d The final value of Pdis,
with a presynaptic spike frequency fixed at 20 Hz, monotonically
increases with the postsynaptic spike frequency (dashed line, right
ordinate, with the circles representing the steady-state values of Pdis in
c). For postsynaptic frequencies below 30 Hz LTD dominates, for
frequencies above 30 Hz LTP dominates, as indicated by the temporal
derivative of Pdis (solid line, left ordinate). With a fixed time window
for STDP, either LTP or LTD would dominate over the whole range
of postsynaptic frequencies, depending on whether the integral over
the time window is positive or negative. Adapted from Senn et al.
(2001b)
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increase of LTP (experiment 2). The third-order scheme
with the postsynaptic spike being twice engaged in the
induction of LTP is one way to satisfy these opposing
requirements. This third-order nonlinearity also implies
that both features – classical Hebbian plasticity based on
mean firing rates and weight normalization based on
spike (anti)correlations – may be inherent in STDP.

2.3 STDP for spike triples

The cross-gating of the NMDARs implies further
nonlinearities for the coincidence detection of the pre-
and postsynaptic events. As shown by recent experi-
ments on L2/3 connections in cortical slices of rats, the
modification induced by successive pre- and postsynap-
tic spike pairs is not equal to the sum of the modifica-
tions induced by the individual spike pairs (Froemke
and Dan 2002). A triple of post–pre–post spikes with a
(extracellularly evoked) presynaptic spike, symmetrically
surrounded by a postsynaptic spike 20 ms before and 20
ms after, for instance, favors the modification induced
by the first post–pre spike pair, and hence leads to LTD.
In turn, in a pre–post–pre spike triple, LTD induced by
the second post–pre pair is suppressed and LTP caused
by the first pre–post spike pair is dominant (Fig. 2a).
Such suppression effects can originate from different
mechanisms, such as a reduced dendritic calcium influx
for the second postsynaptic spike, and synaptic depres-
sion, respectively. But it is also a natural consequence of
the NMDAR cross-gating alone since both the pre- and
postsynaptic events are competitively acting on the
recovered NMDARs. A pre–post spike pair following a

postsynaptic spike is less effective in triggering LTP
because of the reduced Nup state, while a post–pre pair
following a presynaptic release is less effective in
triggering LTD because of the reduced Ndn state
(Fig. 2a).
There is a slight qualitative difference between our

model and the one proposed by Froemke and Dan
(2002). In the present case the effect of the second spike
pair, the pre–post pair within the post–pre–post triple,
say, is reduced because of the first post–pre interval. In
the Froemke and Dan model it is reduced because of the
post–post interval: The LTD reduction factor in their
case decreases with the time of the second postsynaptic
spike. The contribution of LTP, which also decreases
with the second postsynaptic spike time, can therefore be
balanced out by the LTD triggered by the preceding
spike time interval. As a result, the region where LTP
occurs within the post–pre–post quadrant has a hori-
zontal part in the boundary (see Fig. 3b in Froemke and
Dan 2000), which does not arise in the corresponding
region of our model (see the lower right ‘LTP’ triangle in
Fig. 2a). Unfortunately, the existing experimental data
does not allow to argue either for or against one of the
two alternative models.

2.4 STDP for Poisson spike trains

We now consider a scenario where the pre- and
postsynaptic neurons are firing with Poisson frequencies
fpre and fpost, respectively. Taking the means and
neglecting the cross-gating of the NMDAR, (1) roughly
translates to

Fig. 2. Encoding spike timings and mean firing rates with nonlinear
STDP. a Change of Pdis as a function of one postsynaptic spike and
two presynaptic releases (above the main diagonal, with
Dti ¼ t0post � tirel, i ¼ 1; 2), and of one presynaptic release and two
postsynaptic spikes (below the main diagonal, with Dti ¼ tipost � t0rel,
i ¼ 1; 2). The key observation is that in the pre–post–pre case LTP is
in general dominant (top left), even if the post–pre interval is shorter
than the previous pre–post interval (as indicated by the sketch
showing the pre- and postsynaptic spike timings), while LTD is in
general dominant in the post–pre–post case (bottom right), even when
the pre–post interval is shorter than the previous post–pre interval
(inset sketch). Synaptic depression will further favor LTP in the pre–
post–pre case. The simulations of (1) qualitatively reproduce the

results of Froemke and Dan (2002) (for details see text). Parameter
values: sN ¼ 30 ms, sS � sN , and Hup ¼ Hdn ¼ 0 (justified by the
extracellular stimulations). b Change of Pdis as a function of the
synaptic release rate and the postsynaptic firing rate according to (2).
As required by the Hebbian theory, LTP dominates for large pre- and
postsynaptic frequencies, and LTD dominates for large pre- but small
postsynaptic frequencies. In the case of synaptic depression the release
rate is a saturating function of the presynaptic firing rate, as indicated
in the text. The dashed vertical line corresponds to the trace of dPdis=dt
shown in Fig. 1d. The slope of the separation line between LTP and
LTD (dotted line) is given by ratio qdnPdis=qupð1� PdisÞ (¼ 4 in the
present case). We set Hup ¼ Hdn ¼ 10
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dPdis
dt
�qupð1� PdisÞfpost½frelfpost �Hup�þ

� qdnPdisfrel½fpostfrel �Hdn�þ ; ð2Þ

where qup=dn determines the speed of LTP and LTD,
respectively, and frel is the rate of neurotransmitter
release given by the product of Prel times the presynaptic
firing rate fpre. In the present case of synaptic depression,
the average release probability is itself a function of the
presynaptic firing rate, and one gets frel ¼ Pdisfpre=
ð1þ srecPdisfpreÞ. The NMDAR cross-gating would
reduce the LTP and LTD terms both by the same factor
of the form 1=ð1þ frel þ fpostÞ (see Senn et al. 2001b).
Equation (2) is a of third order in the rates, with the

postsynaptic firing rate entering with a square in the
LTP term, but not in the LTD term. As a consequence,
LTD dominates at small fpost, while at higher fpost it is
LTP which eventually dominates, as required by the
Hebbian theory (Figs. 1d and 2b). Similarly, since the
frel enters with a square in the second term, LTD may
overcome LTP at high presynaptic frequencies (and
weak synaptic depression). The imbalance towards LTD
may be even enhanced if the postsynaptic frequency is
small (Fig. 2b). This is exactly what is needed if the
separation between two uncorrelated Hebbian ensem-
bles should increase. The dominance of LTD over LTP
at high presynaptic frequencies is also required for the
synaptic weight normalization mechanism. Such a nor-
malization will particularly affect those synapses which
show both high presynaptic frequency and a high Pdis,
and therefore those which are most responsible for the
postsynaptic response.
To fully account for the Hebbian theory it is impor-

tant that – over an intermediate range of pre- and
postsynaptic frequencies – the synaptic modification is an
increasing function of both these frequencies. Although

according to the simplified rule (2) the synaptic change is
monotonically decreasing with frel (and hence with fpre),
this can be different when taking the threshold non-
linearity in the LTD term into account: if the presynaptic
activity remains below the LTD threshold (Hdn), only the
LTP term remains which is in fact monotonically
increasing with the pre- and postsynaptic rate (Fig. 2b).
Hence, by carefully choosing the parameters in the
presented algorithm, it is possible to encode activity
patterns represented in a mean rate code (patterns based
on spike correlations), and make use of the normaliza-
tion property. To intuitively understand these multiple
properties it may be helpful to interpret the third-order
rule (2) as a second-order rule for a STDP with activity-
and weight-dependent time windows. For a simplified
model of STDP which directly incorporates higher order
nonlinearities see Abarbanel et al. (2002).
As an example for coding with mean firing rates we

show that the algorithm reproduces the main charac-
teristics of the BCM rule originally developed to explain
ocular deprivation experiments (Bienenstock et al.1982).
Neglecting the thresholds in (2), we obtain for stationary
Poisson frequencies

Pdis �
1

1þ qdnfrel
qupfpost

: ð3Þ

This formula shows that Pdis is in fact monotonically
increasing with fpost (see Fig. 1d, solid line). When
starting from any value of fpost (30Hz in Fig. 1c, d) and
step-like increasing or decreasing fpost, the value of Pdis
will tend with a slow time constant (sP ) to a new
equilibrium point. In the case of an upward jump it is
LTP, and in case of a downward jump it is LTD which
dominates (Fig. 1d). Since the same situation holds for
the new equilibrium, the separation between LTP and

Fig. 3a,b. Developmental model for direction selectivity. aAn initially
nondirectional simple cell (SC) in V1 with symmetrical receptive field
is composed of depressing synapses in the center d and nondepressing
in the surround (nd). The dashed curve and the two flanking curves
represent the effective synaptic strength (defined by the synaptic
density times the synaptic strength) of the depressing and nonde-
pressing synapses, respectively. When driven by moving gratings with
randomly chosen directions and velocities (snapshot of stimulus
shown on top), STDP applied to the strength (G) of the depressing

synapses breaks the symmetry and shifts the effective synaptic strength
to one side (in this case to the left, lines before and after; based on the
analytical calculations in Senn and Buchs 2002). b Rate of
neurotransmitter release of a depressing synapse in response to a 1-
Hz-modulated presynaptic firing rate (top trace) before (lower line)
and after (dashed line) random stimulations. The temporal phase
advance of the release rate develops because STDP also modifies Pdis
and therefore changes the degree of short-term depression
(srec ¼ 0:5 s; Pdis before: 0:05, after: 0:5)
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LTD now moves to the new value of fpost. This is the
moving-threshold property of the BCM rule. Note that
with only second-order terms in (2) no dependence of
Pdis on the pre- and postsynaptic mean frequencies is
obtained in steady-state conditions. A similar curve for
the synaptic modification in response to random spike
timings, as shown here for dPdis=dt, is experimentally
obtained by Sjöström et al. (2001). For an application of
the synaptic modifications based on (3) to perceptual
learning, see Adini et al. (2002).

3 Learning thresholds and direction selectivity

The development of direction selective cells in V1 through
STDP is an example where spike correlations play
the dominant factor in the synaptic modification. The
example also assigns a functional role to the threshold
nonlinearity observed in the STDP data (Fig. 1).

3.1 Model of direction selectivity

We consider a feedforward model with a single simple
cell in V1 and with depressing thalamocortical afferents
in the RF center, flanked by nondepressing synapses in
the RF surround (Fig. 3a; see also Buchs and Senn 2001,
2002; Senn and Buchs 2002). The effective synaptic
strength is given by the product of the synaptic density
(of Gaussian shape) times the absolute synaptic strength
G. Such a fixed synaptic density turned out to be
important in stabilizing the development of DS. We
chose a randomized, directionally unbiased stimulation
scenario with drifting four-cycle gratings. The grating
velocities were sampled from a Gaussian distribution
with mean zero and standard deviation 6�, and the
spatial wavelength matched the RF width (Fig. 3a).
STDP was applied to both the absolute synaptic
strength (G) and the degree of short-term depression
(Pdis). Since nondirectional simple cells do not show any
temporal distortions of the subthreshold membrane
potential in response to a stationary grating (Jagadeesh
et al. 1993), we chose the initial parameters such that the
effect of synaptic depression vanished (Pdis ¼ 0:05; see
Fig. 3b).

3.2 Emergence of direction selectivity
in an unbiased input scenario

A large-scale simulation, with roughly 5000 independent
stochastic release sites at depressing or nondepressing
thalamocortical synapses, shows that the scenario de-
scribed above leads to DS resembling to that of simple
cells in V1 (Fig. 4a, b; Buchs and Senn). The basic
mechanism underlying DS is that the response of the
depressing afferents in the (spatially asymmetric) RF
center is slightly advanced compared to the response in
the nondepressing RF surround (cf.Fig. 3). With a
leftwards shift of the RF center, for instance, the simple
cell becomes selective to motion from left to right,

because the responses from the two synaptic populations
slightly overlap in time (Fig. 4c, d). Note that due to the
spatial distribution of the depressing synapses, the
temporal phase advance of the current from the whole
population is much smaller than the phase advance of an
individual synapse (as shown in Fig. 3b). Nevertheless,
the direction indices of the model cell are in a realistic
regime (up to 0:9).
In the course of the stimulations the symmetry of the

RF is broken, although the directions of motion of the
stimuli are equally distributed. This is because of a
positive-feedback loop according to which a first right-
wards-moving grating, say, shifts the RF slightly to the
left, and this in turn enhances the response to a grating
moving in the same direction. On the other hand, the
response to the opposite direction is reduced and
therefore too weak to neutralize the initial RF shift.
Beside modifying the synaptic strength, STDP enhances
Pdis from an initial value of 0:05 to roughly 0:5, causing
synaptic depression with the required phase advance of
the synaptic response (Fig. 3b). Although this modifi-
cation is again asymmetric, the parameters of the
learning rule are tuned such that, starting with the small
initial values, Pdis always increases.
The threshold nonlinearity in the STDP is essential

for the robust development of DS. Without such learn-
ing thresholds (Hup ¼ Hdn ¼ 0 in a slightly adapted
implementation of STDP; see Buchs and Senn 2002),
any acquired DS is abolished by a few gratings moving
in sequence in a temporarily nonpreferred direction
(Fig. 5b). A robust, self-organizing development of DS
also requires the dominance of LTD over LTP. Such a
dominance causes a decrease of the simple-cell response
during repeated stimulations until it is too small to in-
duce further synaptic modifications. Due to the sym-
metry breaking of the RF, the response to one of the
stimulus directions decreases strongly and eventually
saturates at a low average response level (Fig. 5a). This
average response to the nonpreferred direction may even
be below the learning thresholds around 5 Hz (lower
curve in Fig. 5a). As a consequence, gratings moving in
the nonpreferred directions are not able to induce any
synaptic changes, not even after many repetitions. Only
if the presynaptic activity would also drop, and the
balance between LTP and LTD therefore shift in favor
of LTP (see Eq. 3), would the selectivity to the new
direction again develop. This is due to the moving-
threshold property which, in the case of monocular de-
privation experiments, leads to LTP at the nondeprived,
originally nondominating eye (Hubel and Wiesel 1962).

3.3 Frequency tuning of simple cells, STDP,
and synaptic depression

How can a narrow time window for STDP of roughly 40
ms explain the development of DS at such low frequen-
cies as 1–4 Hz (Fig. 4a)? One part of the explanation is
that the simple cell itself represents a band-pass filter with
largest response at these frequencies. Another part is that
a time window of width a induces the largest RF shift if

350



the temporal frequency of the stimulus is roughly
x ¼ 1=ð2paÞ. With a ¼ 40 ms this gives a frequency of
x � 4 Hz. A last part explaining the specific frequency
bandwidth is that the short-term synaptic depression
produces a phase advance which is maximal for a
temporal frequency of x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Pdisfpresrec

p
=ð2psrecÞ.

For Pdis ¼ 0:5, srec ¼ 0:5 s, and a presynaptic mean firing
rate fpre ¼ 40spikes/s, for instance, we obtain a maximal
phase advance at x � 1 Hz, which again is in the range
of observed best frequencies (Senn and Buchs 2002). If
the cell were exposed to a statistics of gratings with
doubled frequencies, a similar preference would develop.
Hence, rather than the environment, it is the specific
parameters of the system that determine the best
frequency bandwidth of the emerging DS.

4 Synaptic unreliability as a delay selection mechanism

STDP may also guide the development of axonal delays
(see, e.g., Gerstner et al. 1996). It is not clear, however,
how STDP can control the joint development of axonal

and dendritic delays. The goal is to select delay lines with
total axonal and dendritic delays that match the typical
spike time difference between the pre- and postsynaptic
cells. Since STDP is based on the local time difference
between the synaptic transmission and the backpropa-
gated action potential, the time window for LTP has to
match the total forward and backward dendritic delay.
Only then will synapses be strengthened which support
the firing of the postsynaptic cell. However, STDP may
also strengthen synapses which exhibit the same pre-
ferred local time difference, but do not contribute to the
firing of the postsynaptic cell because they were
activated too early or too late. To prevent the strength-
ening of these ‘blind passengers’ an additional selection
mechanism is required. Synaptic unreliability is a
possible mechanism which allows STDP to pick out
only those synapses which also take part in the
postsynaptic firing.
As an example we consider foveal RFs of V1 cells in

the cat. Such cells respond to stimuli within a diameter
of �2�. The subthreshold spatial integration field
extends over an area of �10� and integrates lateral

Fig. 4a–d. STDP generates direction selectivity for realistic temporal
frequencies. a Response of the model simple cell to drifting gratings,
after exposure to the unbiased stimulation scenario, showing the mean
firing rate as a function of the temporal frequency for the preferred
(solid line) and nonpreferred (dashed line) directions. Before the
stimulation the two curves coincided. Circles correspond to the
example shown in c and d. The optimal direction selectivity around
2 Hz results from three quantities, all being maximal around the same
frequency: (i) the simple-cell response, (ii) the spatial phase advance
induced by STDP (with a time window of 40 ms), and (iii) the
temporal phase advance produced by synaptic depression (using a

recovery time constant srec ¼ 0:5 s), cf.Fig. 3. b An example of a
temporal frequency tuning curve of a V1 cell (from Saul and
Humphrey 1992). c, d Voltage train (lower trace), together with the
total synaptic currents from the depressing and nondepressing
synapses (upper two traces) in response to a 4-Hz grating moving in
the preferred direction c and the nonpreferred direction d. The current
from the depressing synapses (trace with noisy downward peaks) is
slightly advanced for the preferred compared to the nonpreferred
direction due to the summation of the spatial and temporal phase
shifts. Adapted from Buchs and Senn (2002)
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synaptic input over a cortical patch of �1 cm. With an
apparent speed for the horizontal propagation of 0.05–
0.6 m/s the far-lateral inputs can be delayed with respect
to the direct forward input from 20 to 200 ms (Bringuier
et al. 1999). Is there a way for the postsynaptic cell to
select a specific lateral delay within this range, say by
guiding the growth of delay lines during development?
In fact, STDP together with slow unbiased delay fluc-
tuations can shift the average horizontal delay until the
lateral synaptic input coincides with the expected for-
ward input. An appropriate alignment of lateral and
feedforward delay lines could explain DS for high-speed
motions of 50–600 deg/s which run longitudinal to the
preferred orientation (cf. also Chavane et al. 2000).
There may also be considerable dendritic latency which,
when measured from the centroid of the dendritic
potential to the centroid of the forward-propagated
somatic potential, can take values up to 40 ms (Agmon-
Snir and Segev 1993). We formally show that in such a
situation STDP may guide developmental shifts in the
axonal and dendritic delays.

4.1 Shift of axonal delays at fixed spike correlations

Let us consider a single presynaptic cell (or a population
of cells) A projecting through different delay lines onto
neuron B, a layer V pyramidal cell, say. To explain the
mechanism of axonal delay shifts we first assume a fixed
spike-time correlation which does not depend on the
timing of the input from A in B. Beside many
uncorrelated spikes, for some stimuli cell A is assumed
to fire before B, and these interspike intervals
Dt ¼ tA � tB are Gaussian distributed with mean
Dt ð< 0Þ and variance 12. Let us further assume that
the change of the synaptic strength G induced by a single
pair of pre- and postsynaptic spikes is

DG ¼ gGwaðDtsynÞ ; ð4Þ

where Dtsyn is the spike-time difference measured locally
at the synapse, waðDtÞ is the learning function shown in
the inset of Fig. 6a with maximum at Dtsyn ¼ �a, and g is
some small learning rate. The local spike-time difference,
Dtsyn, is a function of Dt and the difference d between the
axonal delay and the backward dendritic delay:

Dtsyn ¼ðtA þ DaxÞ � ðtB þ DbdenÞ

¼ðtA � tBÞ þ ðDax � DbdenÞ ¼ Dt þ d:

From (4) one may derive the synaptic modifications for
a whole population of delay lines characterized by
different values for d. Analysis of this population
equation shows that, assuming LTD dominating LTP,
the average delay difference d ¼ Dax � D

b

den changes
proportionally to the derivative of the learning function
wa convolved with a Gaussian of width 1:

d

dt
d � r2w0 ffiffiffiffiffiffiffiffiffi

a2þ12
p ðDt þ dÞ : ð5Þ

Here, w ffiffiffiffiffiffiffiffiffi
a2þ12
p is a stretched version of wa with maximum

at �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 12

p
instead of �a. The learning rate of the

average delay difference is roughly proportional to the
variance r2 of the final delay-line distribution (Senn et al.
2001a). According to (5), the dynamics of d has an
attracting fixed point determined by Dt þ d ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 12

p
. Neglecting the delay of the backpropagating

postsynaptic spike, Dbden ¼ 0, this fixed point condition
translates to tA þ Dax þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 12

p
¼ tB. STDP implicitly

changes the average axonal delay such that eventually
the synaptic signal from A arrives at the dendritic siteffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 12
p

before the postsynaptic spike. Delay lines are
strengthened if the delay fluctuations move the arrival
time of the synaptic signal closer to a ms before the
postsynaptic spike, and suppressed otherwise. This
suppression is caused by the additional spikes of B
which are uncorrelated to those of A.

Fig. 5a,b. STDP in a natural environment requires learning thresh-
olds. a Evolution of the simple-cell response to drifting (four-cycle)
gratings with velocities sampled from a normal distribution with mean
0 and standard deviation 6 deg/s (and spatial frequency fixed to 1
cycle/deg). Responses to rightwards/leftwards-drifting gratings are
plotted along the upward/downward ordinate, with darker dots
corresponding to faster stimuli. Since LTD dominates LTP, the
overall responses decay. The steady-state values of lines (defining the

average responses to the stimuli in the two directions) reveal the
development of stable direction selectivity to rightward-moving
stimuli. b Same as in a, but without imposing learning thresholds
for LTP and LTD. In this case, a few gratings moving in a
nonpreferred direction may abolish any previously acquired direction
selectivity, and no unique preference can develop. Adapted from
Buchs and Senn (2002)
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Since for the correlated spikes, in the average, the
response of A peaks in the soma of B at tA þ Dax þ D

f

den,
cell A can only contribute to the firing of B if roughly

D
f

den ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 12

p
. In other words, if STDP should adapt

the delay lines to support the firing of B, the average
forward dendritic delay must roughly be the square-root
sum of the learning window peak time, a, plus the jitter
of the pre- and postsynaptic spike-time difference, 1.
Note that Dfden is composed of the forward dendritic
propagation delay plus the rise time of the postsynaptic
somatic response triggered by A. For typical values of a
and Dfden (both in the range 5–20 ms) the above relation
is satisfied only if the jitter 1 is small. If 1 becomes larger,
d shrinks according to (5). Hence, the noisier the spike-
time difference from A to B is, the more that STDP will
shorten the delay lines.

4.2 Joint shift of axonal and dendritic delays

If the backward dendritic delay, Dbden, composed of the
backpropagation time of the postsynaptic spike includ-

ing the activation of additional processes involved in the
induction of the synaptic modification is taken into
account, STDP no longer selects a unique delay line. In
fact, the learning rule cannot distinguish between delay
lines with axonal and backward dendritic delays of the
form Dax þ � and Dbden þ �, because the argument
Dtsyn ¼ ðtA þ DaxÞ � ðtB þ DbdenÞ of the learning function
depends on the difference between these delays only. A
way to nevertheless choose between these delay lines is
to introduce unreliable synaptic transmissions, and to
modify the synaptic strength only if neurotransmitter is
actually released. A synapse which then actively sup-
ports the generation of the postsynaptic spike will have a
higher chance of being upregulated than a synapse
which does not.
This is seen in the following scenario where cell B

repeatedly receives subthreshold feedforward input from
the lateral geniculate nucleus (LGN) some 25–27 ms
after A fires. This input may cause a spontaneous spike
elicited within the same time interval, and that spike in
turn triggers STDP at the synapses from A. By these
modifications, the axonal delays from A to B slowly shift

Fig. 6a–d. STDP and synaptic unreliability organize dendritic input
locations. a The change of the synaptic strength (DG) depends on the
local time difference between the pre- and postsynaptic signals at the
synaptic site (Dtsyn), and the peak time of the learning window (�a,
cf.Eq. 4). It is determined by the firing time of A (tA) and B (tB), the
average axonal delay (Dax), and the average forward (Dfden) and
backward (Dbden) dendritic delays. b 25–27 ms after the firing of A, the
spontaneous spike rate of B is enhanced by additional subthreshold
input from the lateral geniculate nucleus (LGN, dashed horizontal
region). These spontaneous spikes ‘attract’ the input from A until it
peaks at the time of the LGN input and eventually triggers by itself a
spike in B. After this adaptation we have �Dtsyn � Dfden þ Dbden � a.

The different lines are, from bottom to top, tA þ Dax, tA þ Dax þ Dfden,
tA þ Dax þ Dfden þ Dbden, and tA þ Dax þ a. c The evolution of the
depolarization induced by the input from A, together with the spike
times of neuron B (dots) which are eventually triggered by A (clustered
dots around 70min). d Synaptic unreliability makes axonal and
(forward) dendritic delays unique (left patch, before stimulation; right
patch, after stimulation). If the transmission were deterministic,
synapses with the same Dtsyn (¼ tA þ Dax � tB � Dbden) would be
equally strengthened, irrespective of the time the signal peaks in B
(stripe between the two dashed lines). We set Dbden ¼ 1

3D
f
den. Adapted

from Senn et al. (2001a)
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until the input from A reliably drives B within the pre-
scribed interval (Fig. 6). The delay line with
tA þ Dax þ Dfden � tB is the ‘fittest’ in triggering postsy-
naptic spikes, and has the highest chance of being up-
regulated. Inappropriate delay lines with the same Dtsyn
but with transmission failures would not profit from the
‘correct’ spike timing. Rather, due to LTD dominating
LTP these delay lines will eventually be suppressed
(Fig. 6d). The unique selection of the axonal and den-
dritic delays depends on the peak time of the learning
function (a), and implicitly determines the optimal syn-
aptic position on the dendritic tree.

5 Discussion

We showed that the nonlinearities present in our
synaptic plasticity algorithm shares several interesting
features of STDP and rate-based Hebbian plasticity,
including the recent results on triple spike stimulations
(Froemke and Dan 2002) and several properties of the
BCM rule (bienenstock et al. 1982). Moreover, the
predictions of the algorithm when applying pre- and
postsynaptic Poisson firing rates are qualitatively
confirmed by recent experiments showing the domi-
nance of LTP over LTD at elevated postsynaptic
frequencies (Sjöström et al. 2001). The dependency of
the synaptic plasticity on the postsynaptic voltage
revealed by these experiments is similar to the depen-
dency on the model variable Nup: if, in analogy to
hyperpolarizing the postsynaptic neuron, Nup is reset to
zero between two successive pairs of spikes, LTP is
prevented due to the threshold nonlinearity. On the
other hand, similar to the effect of the postsynaptic
depolarization, a single pair of pre–post spikes would
trigger LTP if Nup would be artificially elevated. In fact,
Nup, which models the fraction of NMDARs relieved
from the Mg2þ block, is a monotonically increasing
function of the postsynaptic membrane potential. It
remains to be shown that LTP is induced by a high
presynaptic spike rate and strong, in-vivo-like sub-
threshold depolarizations, while LTD is induced if the
postsynaptic depolarization is only weak (see also Fusi
et al. 2000).
There is, however, an important difference between

the experimental results of Sjöström et al. (2001) and our
algorithm. While the in vitro experiments did only reveal
a threshold for LTP, such a LTD threshold is required
for a stable development of DS in an ever-changing
environment. Without LTD threshold, the activity in-
duced by stimuli moving in the nonpreferred direction
will destroy the synaptic structure required for DS. Our
analysis also showed that the time window of STDP
(�40 ms) supports the development of DS in a realistic
temporal frequency regime, and that metaplasticity
would be required to develop appropriate DS in an en-
vironment where the stimuli move faster. An important
feature in our DS model is that STDP not only changes
the synaptic strength, but also the time course of the
short-term depression. Again, the time constant of syn-
aptic depression (�200 ms) is tuned to support DS in a

realistic frequency bandwidth, and an adaptation of this
parameter would be needed to cope with other temporal
frequencies.
Selection in biology is often based on some source of

randomness. We showed that in the case of interneuro-
nal delay lines, the selection of the appropriate axonal
delay requires slow delay fluctuations, and the selection
of the appropriate dendritic delay requires unreliable
synaptic transmissions. Activity-dependent delay shifts
governed by STDP may play an important role in
shaping the subthreshold integration field of V1 cells
which integrate over horizontal cortical distances of
�1 cm with propagation delays up to 200 ms (Bringuier
et al. 1999). A similar organizational principle might be
at work at intercortical connections. The timing of these
connections could implicitly be adjusted through de-
layed ‘reward’ signals projecting from an upstream
cortical area back to a downstream area. This down-
stream area may then modify its response strength based
on the timing of the reward signal in much the same way
as the synaptic weight is modified by the timing of the
backpropagating action potential. Such a mechanism,
for instance, could support habit learning within the
basal ganglia thalamocortical feedback loop (Senn et al.
2001a).
The sensitivity of the synaptic plasticity to the timing

of individual pre- and postsynaptic spikes should not
obscure the fact that it is only the spike-time correla-
tion in a statistical sense which counts. In our DS
simulations, for instance, the spike-time variability of
an individual presynaptic spike train is larger than the
width of the learning window. DS only develops be-
cause of the large number of independent LGN affer-
ents. Asynchronous firing may even be necessary to
protect the postsynaptic cell against resonances in the
presynaptic spike times (Buchs and Senn 2002). Syn-
aptic unreliability, moreover, is required if axonal and
dendritic delays should consistently evolve. The view of
the statistical nature of the spike-time code was for-
mulated by von Neumann (1958), a contemporary of
Hebb, as follows: ‘‘It is therefore perfectly plausible
that certain (statistical) relationships between such
trains of pulses should also transmit information.
. . .instead of the precise system of markers where the
position – presence or absence – of every marker
counts decisively in determining the meaning of the
message, we have here a system of notations in which
the meaning is conveyed by the statistical properties of
the message.’’
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