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Population coding is widely regarded as an important

mechanism for achieving reliable behavioral responses despite

neuronal variability. However, standard reinforcement learning

slows down with increasing population size, as the global

reward signal becomes less and less related to the performance

of any single neuron. We found that learning speeds up with

increasing population size if, in addition to global reward,

feedback about the population response modulates

synaptic plasticity.

The role of neuronal populations in encoding sensory stimuli has been
intensively studied1,2. However, most models of reinforcement learning
with spiking neurons have focused on just single neurons or small
neuronal assemblies3–6. Furthermore, the following result indicates that
such models do not scale well with population size. Using spike
timing–dependent plasticity modulated by global reward in a large
network, 100 learning trials are required to achieve an 80% probability
of correctly associating a single stimulus with one of two responses, and
performance does not improve with more training7. Behavioral results,
in contrast, show that reinforcement learning can be reliable and fast.
Macaque monkeys correctly associate one of four complex visual scenes
with one of four target responses after an average of just 12 trials8.

Instead of simply broadcasting a global reward signal, as in rein-
forcement learning, procedures in artificial intelligence (for example,
the back-propagation algorithm) use an involved machinery to gen-
erate feedback signals that are tailored to each neuron9. We found that
there is a large middle ground between such biologically unrealistic
procedures and standard reinforcement. Here we present a learning
rule in which plasticity is modulated, not just by reward, but also by a
single additional feedback signal encoding the population activity.
Synapses receive the two signals via ambient neurotransmitter con-
centrations, leading to an on-line plasticity rule, where the learning of a
first stimulus occurs concurrently with the processing of the subse-
quent one. Learning now speeds up with increasing population size,
instead of deteriorating, as for standard reinforcement.

We studied a population ofN neurons learning a decision task on the
presynaptic inputs (Supplementary Fig. 1 online). Input patterns
consist of 50 spike trains (mean rate 6 Hz) of 500-ms duration. As a
result of randomized projections, each of the N postsynaptic neurons
receives input from roughly 40 of the 50 presynaptic spike trains.
Therefore, inputs vary from one neuron to the next, but are highly
correlated. Different neurons will produce different postsynaptic spike
trains and aggregating these responses into a population decision must

be matched to how neurons encode information. We assumed a scoring

function, c(Y n), that assigns a numerical value to the postsynaptic spike

train Yn evoked by the stimulus from neuron n. With this, aggregating

the responses amounts to adding the postsynaptic scores to obtain a

measure P of the population activity. In a pure rate code, for example,

c(Y n) is the number of spikes emitted by neuron n, P is the total number

of population spikes and the population decision might be reached by

comparing P to a threshold. Here we shall focus on the simple case of a

spike or no-spike code, in which c(Yn) just registers whether the neuron

fired in response to the stimulus. For notational convenience, we set

c(Yn) ¼ �1 if the neuron did not fire and c(Yn) ¼ 1 if it did. The

population decision (and thus the behavioral decision) is determined

by the majority of the neurons. It equals 1 if more than half of the

neurons fired in response to the stimulus and is �1 otherwise. In

formal terms, the population decision is the sign of P, the sum of the

spike or no-spike scores.
In reinforcement learning, stochastic neuronal processing enables a

population to explore different responses to a given stimulus. A
reward signal R provides environmental feedback on whether the
population decision was correct (R ¼ 1) or not (R ¼ �1). Plasticity
is driven by this global feedback signal and by a quantity com-
puted locally at each synapse, called eligibility trace. In our simulations,
we used the escape noise neuron5, a leaky integrate and fire neuron
with a stochastically fluctuating spike threshold. For this model, the
synaptic eligibility trace depended on the timing of the pre- and
postsynaptic spikes and on the somatic potential (Supplementary
Methods online).

We first considered a standard reinforcement learning rule, where
the strength, wi

n, of each synapse (i is the synapse index, n is the neuron
index) is changed by the equation

Dwn
i ¼ ZðR� 1ÞEn

i ðTÞ ð1Þ
Here, Ei

n(T) is the eligibility trace, evaluated at the time T when the
stimulus ends and the change occurs. The proportionality constant Z is
called the learning rate. As a result of the R� 1 term, no change occurs
when the population decision is correct (R ¼ 1). But for R ¼ �1, the
change encourages new responses by decreasing the probability that the
neurons reproduce the same postsynaptic spike trains on a further trial
with the same stimulus.

We determined the population performance (percentage of correct
decisions) achieved with this rule for different population sizes N
(Fig. 1a) and compared it with the performance of the individual
neurons. Although the population outperformed the average single
neuron, both performance measures deteriorated quickly with increas-
ing N. The reason is rather simple. From the perspective of the single
neuron, the global reward signal R is an unreliable performance
measure, as the neuron may be punished for a correct response just
because other neurons made a mistake and the odds of this happening
increase with population size.
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In human terms, standard reinforcement is analogous to having a
class of students take an exam and then only telling them whether the
majority of the class passed or failed, with the individual results being
kept secret. An obvious alternative is to train the neurons individually
and only use the population read-out to boost performance. For this,
we assumed an individual reward signal rn ¼ ±1, indicating whether
neuron n did the right thing and used

Dwn
i ¼ Zðrn � 1ÞEn

i ðTÞ ð2Þ

for the synaptic changes. Average single neuron performance was
therefore constant, but population performance improved with
increasing N up to 95 ± 1% (Fig. 1b). Although individual reward
works far better than global reward, the population boost does saturate
because the neurons will tend to make the same mistakes, as they are all
trying to learn the same thing.

To increase the population boost, we considered attenuating learning
once the population decision was reliable and correct. Reliability is
related to the population activity P, the sum of neuronal scores. If P is of
large magnitude (compared with

ffiffiffiffi

N
p

), the sign of P (that is, the
population decision) is unlikely to fluctuate as a result of noisy neural
processing. If the response is also correct, then there is little need for
further learning, even when some neurons responded incorrectly. We
therefore introduced the attenuation factor a and considered the
learning rule

Dwn
i ¼ Zaðrn � 1ÞEn

i ðTÞ ð3Þ

with a ¼ exp(�P2/N) if R ¼ 1. Otherwise, a ¼ 1 for a wrong
population decision. This rule no longer tries to force all neurons to
respond correctly to all stimuli. Hence, any given neuron can specialize
on a certain subset of the stimuli, leading to a division of labor. Now,

perfect performance is approached with increasing population size
(Fig. 1c). Equation (3) can be understood as a gradient descent rule
(Supplementary Methods).

It might seem that attenuated learning requires a biophysically
implausible number of feedback signals. However, just two feedback
signals, global reward and the population activity, are needed if each
neuron keeps a memory of its past activity. For example, if most
neurons in the population spiked erroneously (P4 0, R¼�1), then a
neuron, n, that stayed silent (c(Yn) ¼ �1) did the right thing. So its
individual reward is rn ¼ 1. More generally, the individual reward is

rn ¼ signðRP cðY nÞÞ ð4Þ
On the basis of this, we now present a fully on-line version of equation
(3), which explicitly models the delivery of the feedback. In contrast
with the above episodic rules, which pretend that synaptic changes are
instantly triggered by stimulus endings, the on-line version takes into
account the interaction between delays in feedback delivery and
ongoing neuronal activity.

Taking a cue from experimental work on the modulation of synaptic
plasticity10,11, we assumed that R and P are encoded by changes in
ambient neurotransmitter levels. For reward, plasticity is modulated by
a concentration variable, R̃, which is essentially a low pass–filtered
version of the instantaneous signal R. In the absence of reinforcement,
the concentration of the neurotransmitter signaling reward, for exam-
ple, dopamine, is maintained at a homeostatic level (R̃ ¼ 0), where a
baseline release rate is balanced by an exponential decay. Reinforcement
causes a transient change in the release rate, resulting in transient
deviations of the concentration from its homeostatic level (R̃ a 0;
Fig. 2a). Feedback about the population activity P is provided similarly,
via a second neurotransmitter with the concentration variable P̃. For P̃,
we also assumed that the change in release rate (and thus P̃ itself) is
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Figure 2 Mechanism and performance of the on-line rule. (a,b) Examples are

shown of on-line signals with synaptic read-out for a case in which, in the

trial ending at time T, most neurons fired, P 4 0 (which was the wrong

decision, R ¼ �1), and in which the example neuron n fired (c(Y n) ¼ 1 and

thus rn ¼ �1). (a) The concentration variables P̃ and R̃ track the changes in

neurotransmitter release rates, thus encoding P and R after the trial. In

particular, P̃ 4 0 and R̃ o 0 after time T, but their values start to decay

at T + 50 (when the release rates return to baseline). Because the example

neuron was active during the trial, its memory variable sn is still above the

threshold y between T and T + 80, correctly reflecting c(Yn) ¼ 1. After that,

sn falls below threshold, as the neuron fired early in the trial. Note that we

also allow a further spike in the subsequent trial, leading to the step increase in sn at T + 150. (b) The on-line approximation r̃ n to the individual reward rn is
correct initially, but changes when sn falls below threshold at around T + 80. (c) Learning curves for on-line attenuated learning (equation (6)). Performance on

the same task as in Figure 1 is shown in red. For comparison, the results obtained with equation (3) are shown in black. The performance of the on-line rule

when the 30 patterns no longer all had the same 500-ms duration but were of different lengths (randomly chosen between 300 and 700 ms) is shown in

yellow. The results when, in contrast with our standard assumption, the reward information itself only became available 100 ms after each trial ended are

shown in blue. Inset, distribution of postsynaptic spike times after learning on the basis of the responses of all neurons to all of the patterns. The x axis

denotes time elapsed from start of trial and dark red highlights the contributions from the patterns where the goal is to spike. Results in the panel are

for N ¼ 67.

Figure 1 Scaling properties of reinforcement learning. (a–c) With increasing

population size N, performance deteriorates when learning is determined by

just a global reward signal (a), but for individualized rewards, the population

performance improves (b,c). The black line indicates the performance of the

population read-out and the gray line indicates the average single neuron

performance. Performance (percentage of correct decisions) was evaluated

after a fixed number of learning steps; therefore, changes in performance

reflect the changes in the speed of learning. Learning on the basis of just a
global reward is shown in a (equation (1)). Learning with individual reward for

each neuron is shown in b (equation (2)). Attenuated learning with individual reward is shown in c (equation (3)). In all cases, 30 patterns had to be learned

with target responses that were equally split between the two output classes ±1. In each learning trial, a randomly selected pattern was presented, with the

number of trials being 5,000 (a) and 2,000 (b,c). Simulation details are given in Supplementary Methods.
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attenuated with increasing magnitude of P (SupplementaryMethods).
For the memory mechanism, enabling each neuron to determine its
score c(Yn), we assumed a calcium-like variable sn. When the neuron
does not fire, sn decays exponentially with a time constant tM of 500 ms.
It is updated to sn(t) ¼ 1 if there is a postsynaptic spike at time t.
Therefore, the value of sn is directly related to the time elapsed since the
last spike.

Now, synapses can read out an approximation r̃ n to the individual
reward signal rn in equation (4) using

~rn ¼ signð~R ~P ðsn � yÞÞ ð5Þ
For a good choice of the threshold y (and the time constant tM), the
value of r̃ n(t) is equal to r n immediately after the trial. But, as a result of
ongoing activity, r̃ n can change with time (Fig. 2b). To address this, we
introduced an effective learning rate, Z�, modulated by the magnitude
of the reward variable, and used a plasticity rule,

.
w n

i ¼ ~ZðtÞ~aðtÞð~rnðtÞ � 1ÞEn
i ðtÞ ð6Þ

with Z�(t) ¼ Z|R̃(t)|. The modulation of ~Z confines the update to a time
window because R̃ is already close to 0 some 100 ms after the end of
each trial. Thus, synapses can further use the momentary value Ei

n(t) of
the eligibility trace rather than memorizing Ei

n(T), the value that
the trace had at the end of the trial. Because we assumed that
P̃ is attenuated when the population majority is large, setting ã ¼ |P̃|
for a correct response (R̃ 4 0) and ã ¼ 1 for R̃ o 0 achieves the
attenuation of learning.

The performance of equation (6) was very similar to that of the
episodic version (Fig. 2c). After learning, postsynaptic spike timing
was distributed quite uniformly (Fig. 2c), showing that the entire
temporal extent of a stimulus is taken into account by the population
decision. The on-line procedure also performed well with stimuli of
variable lengths, although tM was no longer precisely matched to
stimulus duration (Fig. 2c). To check robustness further, we simulated
delayed reinforcement, assuming that the reward information itself
only becomes available 100 ms after each trial has ended (effectively

shifting the yellow curve in Fig. 2a to the right by 20% of stimulus
duration). Reward onset now occurred during the subsequent trial, but
perfect performance was approached nevertheless, albeit with a slow
down in learning (Fig. 2c). To focus on robustness, we used the same
parameter values for the three tasks in the on-line procedure.

As a specific neuronal model, we have used the escape noise neuron5,
but our approach could readily be adapted to other reinforcement
procedures3,4,6 at the single neuron level. Indeed, for episodic learning,
the neurons could even be tempotrons12. In absolute terms, population
performance will obviously depend on the specifics of the neuronal
model and plasticity rule, but with regard to the scaling of learning
performance with population size, we expect our findings to be generic.

Note: Supplementary information is available on the Nature Neuroscience website.
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