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We introduce a new supervised learning rule for the tempotron task: the
binary classification of input spike trains by an integrate-and-fire neuron
that encodes its decision by firing or not firing. The rule is based on
the gradient of a cost function, is found to have enhanced performance,
and does not rely on a specific reset mechanism in the integrate-and-fire
neuron.

1 Introduction

The problem of learning spatiotemporal spike patterns in networks of
integrate-and-fire neurons has been intensively studied in the past few
years (Seung, 2003; Fiete & Seung, 2006; Florian, 2007). In contrast to these
general-purpose algorithms derived in the framework of stochastic rein-
forcement learning, a more specialized scenario involving only a single
spiking neuron, the tempotron, has recently been considered (Gütig &
Sompolinsky, 2006). Due to its specific reset mechanism, the tempotron
can emit at most one postsynaptic spike per observation period, and the
problem of learning a prescribed input-output behavior hence naturally
reduces to that of a binary classification (spike–no spike) of the incoming
presynaptic spike trains. A supervised learning rule for such classification
tasks was presented in Gütig and Sompolinsky (2006) and found to con-
verge much more quickly than general-purpose approaches such as Seung
(2003).

The scope of this note is to introduce a new learning rule for the tem-
potron task that implements gradient descent in an appropriate cost func-
tion, converges more quickly and reliably than the original tempotron rule,
and does not rely on a specific reset mechanism.

2 The Tempotron

We shall denote by w = (w j ) the N-dimensional weight vector of the tem-
potron and by X = {Xj } its input spike train, where each Xj is a finite set
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of the spike times in afferent j . The leaky integration of the postsynaptic
currents results in

vw(t, X) = urest + w · PSP(t, X), (2.1)

where urest is the resting potential and PSP(t, X) is the vector of postsynaptic
potentials with components

PSPj (t, X) =
∑
s∈Xj

ε(t − s).

The PSP kernel ε is assumed continuous with ε(t) = 0 for t < 0. If the
dependence on the input spike train is obvious, we shall abbreviate vw(t, X)
as vw(t).

The tempotron spikes as soon as vw(t) reaches a threshold value that may
be taken to equal zero by redefining urest. So fixing an observation period
0 ≤ t < T and assuming that there is a postsynaptic spike in this period, we
have for the spike time ts

w,

ts
w = min {t | vw(t, X) = 0, 0 ≤ t < T}.

If there is no spike, we set ts
w = T . The tempotron discards any input spike

arriving after its spike time (input shunting), so it sees only an effective
presynaptic spike train Zw with components

Zw, j = {
t ∈ Xj | 0 ≤ t ≤ ts

w

}
.

The resulting membrane potential uw is then obtained by plugging this
effective spike train into equation 2.1:

uw(t) = vw(t, Zw).

In the sequel, the focus is on cases where precise output spike timing is
not important, only whether the neuron spikes at all. We hence set yw = 1
if there is a postsynaptic spike: ts

w < T , and yw = −1 if ts
w = T . The target

behavior is encoded in a binary variable z = ±1, and the goal of learning
is to find a vector of synaptic strengths w such that yw = z for the given
input spike train X. Ultimately, of course, multiple associations should be
learned, that is, we wish to find a single vector w such that for P different
presynaptic spike trains Xµ (µ = 1, . . . , P) and associated targets zµ, the
neuron emits a spike just if zµ = 1. But the fact that multiple associations are
being learned is not made explicit in the notation, since we use the standard
procedure of applying a learning rule for a single stimulus-response pair
to multiple pairings: presenting the different pairs (Xµ, zµ) one by one (in a
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fixed or random order) and applying the single pair learning rule on each
presentation.

The shunting of the inputs by a postsynaptic spike leads to a soft re-
set of the membrane potential uw(t), and the learning rule suggested by
Gütig and Sompolinsky (2006) focuses exclusively on the time tm

w when the
maximal value of the membrane potential is achieved. Based on the vec-
tor PSP(tm

w , Zw) of postsynaptic potentials (PSPs) at this point in time, the
synaptic strengths are updated by w ← w + η�w at the end of the obser-
vation period, that is, at time T . Here η is a positive learning rate, and

�w = (z − yw)PSP
(
tm
w , Zw

)
. (2.2)

Gütig and Sompolinsky (2006) claim that this corresponds to gradient de-
scent in the cost function

cw = (z − yw)uw

(
tm
w

)

and invoke the chain rule to argue that the dependence of cw and uw on tm
w

is negligible due to the smooth reset.
The problem with this is that uw(tm

w ) is not a continuous function of
the synaptic strengths, let alone a differentiable one to which the chain
rule could be applied. Due to input shunting, uw depends on the effective
presynaptic spike train Zw, and since Zw can take on only a discrete set
of values for a given stimulus, it is a discontinuous function of w (if there
are presynaptic spikes in more than just a single afferent). As shown by
example in Figure 1, this can lead to a discontinuous increase of cw along
the trajectory arising from the learning rule 2.2 for a set of initial conditions
with nonvanishing measure.

In the example, the tempotron eventually converges to the desired state,
and, indeed, this will always happen when rule 2.2 is used to learn a single
stimulus-response pair. For the z = −1 case, when the goal is not to spike,
this can be seen by observing that a Lyapunov function of the dynamics
is Lw = ∫ T

0 vw(t) � (vw(t)) dt, where � is the Heaviside step function and
vw(t) = vw(t, X) is the leaky current integral (see equation 2.1). In fact, each
nonvanishing update by equation 2.2 decreases a synaptic weight and also
decreases at some instance the leaky current integral above threshold. Al-
though the tempotron update is hill descending for Lw, it does not descend
along the gradient of this Lyapunov function. But hill descent for a sin-
gle stimulus-response pair does not imply that the trajectory remains hill
descending for a combination of stimulus-response pairs even when con-
sidering the small learning rate limit. So the convergence argument does
not extend to the general case of learning multiple stimulus-response pairs.

It is nevertheless interesting that the Lyapunov function Lw is a functional
of the leaky current integral vw(t) and not of the more directly observable
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Figure 1: The tempotron update equation 2.2 leading to an upward jump in
the cost function. (a) Example cost function and trajectory (black line) of the
tempotron rule for a neuron with two afferents and synaptic strengths w1,w2.
We assume that the goal is not to emit an output spike (z = −1) but that there is
a presynaptic spike in the first afferent and, a little later, a further presynaptic
spike in the second afferent. In both afferents, initial synaptic strength (marked
by the filled black circle) is large enough for a single presynaptic spike to
elicit an output spike. But the spike in the first afferent arrives first, causes a
postsynaptic spike, and input shunting discards the second input spike. Hence,
the tempotron rule initially decreases w1 only, with a commensurate decrease
in cost. This continues up to the critical point where the membrane potential
just touches the threshold. As w1 decreases infinitesimally beyond this point,
the neuron ceases to fire from the first input; this shunts the input shunting, the
second input becomes visible, and the neuron fires anyway—but at a later point
in time, causing the sudden increase in cost. (b) Time course of the membrane
potential at the critical point in a. The first afferent receives a presynaptic spike
at t = 10 and the second one at t = 50. (Throughout this note, time is measured
in ms.) The thin black curve shows the membrane potential for w = (w1, w2)
where w2 = 12 and w1 ≈ 8.97, the critical value just sufficient for a postsynaptic
spike from the first input (details of the PSP kernel are given in appendix B). As
the neuron spikes, the second input is discarded, and the membrane potential
decays rapidly. The spike is caused by just touching the threshold 0, so we
have ts

w = tm
w , uw(tm

w ) = 0 and thus also cw = 0. Since the goal is not to spike, the
update changes the synaptic strengths to w∗ = (w1 − δ, w2), where the precise
value of δ > 0 depends on the learning rate. But this prevents the input at t = 10
from causing a postsynaptic spike even for an infinitesimally small δ, and the
input to the second afferent at t = 50 becomes apparent, yielding the membrane
potential shown by the gray line (for a small δ > 0). The value of w2 is large,
and so a postsynaptic spike is emitted despite the update. Now uw∗ (tm

w∗ ) > 0,
and the update has not only not prevented the postsynaptic spike but also has
led to an increase in cost from cw = 0 to cw∗ = uw∗ (tm

w∗ ).
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membrane potential uw(t). Since the shunting reset discards inputs, the
membrane potential encodes only incomplete information about the learn-
ing task, whereas any Lyapunov function provides a measure of how far
away we are from task fulfillment. So it seems unlikely that the tempotron
update has a Lyapunov function that is a functional of just uw(t).

3 Alternative Learning Rules for the Tempotron Task

It has been suggested that the above difficulties can be avoided by simply
applying equation 2.2 to the leaky current integral instead of the membrane
potential (H. Sompolinsky & R. Gütig, personal communication to W. Senn,
June 2007). So one would consider the time tM

w when vw(t) achieves a global
maximum and replace equation 2.2 by �w = (z − yw)PSP(tM

w , X), hoping
that this corresponds to gradient descent in Cw = (z − yw)vw(tM

w ). The prob-
lem with this is that Cw, while continuous, is not differentiable for values of
w where the leaky current integral has multiple global maxima. While such
kinks in the cost function sometimes are known not to cause problems (e.g.,
for the classical perceptron learning rule), the situation is different since the
trajectory may stick to the kink for extended periods of time. Consider the
case where for z = −1, there are two suprathreshold local maxima. While
generically just one of them will be the global one, this means that the mod-
ified update will consider the global maximum only, until the weight vector
has changed to the point where the two maxima are (nearly) equal. At this
point, the update will start to jump between the two maxima, not yielding
gradient descent when there is a jump, and this continues until the neuron
ceases to spike. Of course, decreasing the learning rate makes the trajectory
stick ever more closely to the kink.

If the neuron emits an erroneous output spike, the value of vw(t) must be
reduced below threshold at all points in time. Hence, for yw = 1, instead of
considering just a single time point, we suggest the following integral-based
cost function:

d (1)
w = γ (1 − z)

∫ T

0

√
vw(t) � (vw(t)) dt. (3.1)

Here, the positive parameter γ will allow us to balance the cost for yw = 1
with the cost for yw = −1. As above, � is the Heaviside step function re-
stricting the integration to suprathreshold values. Thus, as for the percep-
tron learning rule, the cost becomes zero at the decision boundary, that
is, when the switch from yw = 1 to yw = −1 occurs. Differentiating with
respect to w yields

−∇wd (1)
w = −1

2
γ (1 − z)

∫ T

0

� (vw(t))√
vw(t)

PSP(t, X) dt. (3.2)
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Note that no second term containing the derivative of the theta function
arises since the prefactor

√
vw(t) is zero for vw(t) = 0. At the decision bound-

ary, similar to the perceptron rule, the gradient is nonzero thanks to the di-
vergent 1/

√
vw(t) term but finite. The divergence requires a little attention

during simulations, and the computation of such integrals with fixed step
size methods is discussed in appendix A.

We next turn to the situation that the tempotron should spike (z = 1)
but does not (yw = −1). One option would be to use the tempotron update,
equation 2.2, for this case. But in combination with our integrative learning
rule for yw = 1, it seems somewhat artificial to base the update on the single
point in time when the membrane potential is maximal. Also, in a situation
where the global maximum is far from threshold and there is an additional
local maximum that is only slightly lower, it may be suboptimal to go just
for the global maximum. In this case, it seems preferable to use a weighting
function for PSP(t, X) based on a soft max of the membrane potential rather
than the hard max of equation 2.2. On the other hand, when the global
maximum is just below threshold, there is little need for taking a local
maximum into account.

These considerations lead us to suggest a soft max that adaptively be-
comes harder as the threshold is approached. Assuming yw = −1, we first
introduce the function

�w,r = 1
T

∫ T

0
(vw(t) − r )−2 dt, (3.3)

where r ≥ 0 is a regularization parameter and, in terms of this function,
define the contribution to the cost as

d (−1)
w,r = (1 + z)�−2/3

w,r .

The choice of exponents ensures that for r = 0, there is vanishing cost but
a finite gradient at the decision boundary. For r > 0, the value of d (−1)

w,r is
nonzero at the decision boundary, and a discontinuity arises since the cost
vanishes once the output is correct. The reason for nevertheless consider-
ing r > 0 becomes apparent on inspection of the explicit formula for the
gradient

−∇wd (1)
w,r = (1 + z)

4�w

3�
5/3
w

(3.4)

with

�w = 1
T

∫ T

0

PSP(t, X)
|vw(t) − r |3 dt. (3.5)

Here, due to the cubic term in the denominator, the weighting factors of
the postsynaptic potentials can have a large dynamic range in the case of
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r = 0. Since an extremely large range is biologically implausible, there is a
trade-off between realism and mathematical accuracy made explicit by the
parameter r .

In summary, the proposed update of the synaptic strengths is

w ← w − η∇wd (−1)
w for yw = −1

w ← w − η∇wd (1)
w,r for yw = 1,

(3.6)

and for r = 0, this amounts to gradient descent in the total cost function:

dw = 1
2

(1 − yw)d (−1)
w + 1

2
(1 + yw)d (1)

w,r .

4 Performance Comparison

We compared the performance of rule 3.6 to the original tempotron rule
2.2 when learning multiple stimulus-response relationships. The results are
summarized in Figures 2 and 3. A striking feature of both procedures, seen
in Figure 3, is the presence of very large fluctuations in the time needed
for learning. This may be due to the fact that in contrast to the perceptron,
the space of correct solutions is not convex for the tempotron learning task.
Although the fluctuations in learning time are still large, they are much
smaller for our gradient-based procedure, which learns more reliably than
the original tempotron rule.

Since the tempotron rule is itself heuristic, we have also simulated the
following spike-timing-based approximation: if there is no output spike, the
tempotron rule 2.2 is used, but in case of an output spike, the right-hand side
of equation 2.2 is replaced by (z − yw)PSP(ts

w, X); the postsynaptic potentials
at the time of spiking determine the update. Since the difference between
ts
w and tm

w is small, this yields a performance very similar to the original
tempotron rule as shown in Figure 2 (see the star). But the modified rule
does not rely on input shunting, since spike time is observable for any
model of an integrate-and-fire neuron.

5 Discussion

We have presented a new learning rule for the tempotron task that has two
advantages compared to the original proposal: it is based on the gradient
of a cost function, and we found enhanced performance (as compared to
the original tempotron learning rule).1 But how plausible are these rules as
biological models?

1The convergence of the original tempotron rule can be accelerated by including a
momentum term (Gütig & Sompolinsky, 2006), but this is also expected to be the case for
our rule.
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Figure 2: Tempotron learning (equation 2.2, filled squares) compared to our
gradient-based learning rule (equation 3.6, empty squares) for a neuron with
100 afferents on sets of 190 random stimulus-response pairs, as detailed in
appendix B. Learning time refers to the number of cycles through the set of
patterns needed for successful learning, with the median estimated based on
500 training sets. To balance the two contributions in the cost function of our
proposed rule, we used γ = 0.2. For this choice of γ , roughly the same number of
errors are committed on z = 1 patterns as on z = −1 patterns during learning.
The value r = 0.05urest was used for the regularization parameter. The point
marked by the star gives the result obtained when one modifies the tempotron
rule by using ts

w instead of tm
w in equation 2.2 if there is a postsynaptic spike.

Figure 3: Distribution of learning times for the tempotron rule (a) and the
proposed gradient procedure (b) for the problem considered in Figure 2. The
best learning rate from Figure 2 is used for each procedure. The scale of the x-
axis is logarithmic, and the right-most bar in each histogram shows the number
of trials for which successful learning was not observed within 1000 sweeps
through the training set. Note the number of trials where we did not observe
convergence of the tempotron rule.
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Locating the maximum of the membrane potential as required by the
original tempotron rule is a temporally global operation. To implement the
rule, each synapse would have to keep track of a state variable a represent-
ing the maximal value of uw encountered so far, and for remembering the
value its individual postsynaptic potential then had, a second variable b is
needed. Whenever the current membrane potential exceeds the value of a ,
a gating circuitry is required to update a and b with the current values.

Since this seems complex, Gütig and Sompolinsky (2006) introduced
a convolution-based rule as a biologically plausible approximation. They
suggest that each synapse j computes

ν j =
∫ T

0
uw(t) PSPj (t, Zw) dt. (5.1)

At time T , synapses are then updated by using a nonlinear operation on
the above integral,

wi ← wi + η (z − yw) �(ν j − ϑ),

where ϑ is an appropriately chosen threshold. Compared to the maximum-
based rule, storage capacity is now reduced by a factor of nearly two (Gütig
& Sompolinsky, 2006). Further, for a task where the number of patterns was
equal to the number of afferents, a roughly fivefold increase in learning
times was observed.

The patterns used to obtain these results had the rather special property
that there was exactly one input spike per afferent in each of the stimuli.
In this case, a large value of ν j means that the membrane potential was
high at the time of the single presynaptic spike in afferent j . Due to this
temporal correlation, the synapse has a strong influence on the spike–no
spike decision, and it makes sense that it is selected for modification via
the comparison of ν j to the threshold ϑ . But this reasoning no longer holds
when the number of presynaptic spikes per afferent fluctuates. Then the
value of ν j is just as much influenced by the number of input spikes as
by the temporal correlation and comparing to a fixed threshold is thus
inappropriate. Using an adjustable threshold results in a more complex
procedure since each synapse needs an additional state variable to count
the presynaptic spikes.

To implement our procedure, synapses must keep track of three state
variables to compute the integrals in equations 3.2, 3.3, and 3.5. The
integrals, equations 3.2 and 3.5, are convolutions similar to equation 5.1,
but the weighting factors are not functions of the membrane potential but
of the leaky current integral. While formally well defined, in the context of
input shunting, it is artificial to base learning on the leaky current integral,
since it is hard to argue that vw(t) is even an observable quantity if this
reset mechanism is used. But our procedure applies just as well to models
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that do not discard input spikes to reset the membrane potential (Herz,
Gollisch, Machens, & Jaeger, 2006). Then it is more natural to assume, as we
do, an integration of the postsynaptic current that ignores the reset. From
a biological perspective, this may even seem preferable to assuming input
shunting.

In our rule, the weights of the postsynaptic potentials are algebraic func-
tions of vw, and some evaluations of algebraic functions are also needed in
computing the update. In itself, this seems innocuous, since such computa-
tions can be easily implemented by chemical reaction systems. For instance,
assuming mass action kinetics, steady-state concentrations of reactants have
an algebraic relationship where the exponents are determined by the stoi-
chiometry of the reactions. However, the ideal weighting functions for our
rule have singularities. For the update occurring when the neuron does
not spike, equation 3.4, we have explicitly addressed this by introducing
a regularization parameter. We have not done this for the update result-
ing from an erroneous spike, equation 3.2, because there the singularity is
more notational than real since the integral itself stays finite. For instance,
the numerical procedure we describe in appendix A does not encounter a
singularity in this case.

To present numerical results, we had to choose specific weighting func-
tions, but this does not mean that these are the only possible, let alone
the best, choices. As an example, consider the case of an erroneous spike
where in the cost based on

∫ T
0 f (vw(t)) �(vw(t)) dt, we use the specific choice

f (x) = √
x. But the key point is that f have an infinite tangent at x = 0 so

that the gradient does not vanish at the decision boundary; f (x) = √
x is

just a function with this property that seemed convenient.
The class of possible weighting functions increases considerably if

one assumes that learning does not stop immediately when the neuron
finds the desired spike–no spike behavior but continues until this be-
havior is robustly achieved. For this, one would assume a margin pa-
rameter κ > 0, and if the goal is to spike, stop learning only once the
maximum of vw exceeds κ (and not just when it exceeds zero). Like-
wise, if the goal is not to spike, learning stops only when the maximum
of vw is smaller than −κ . In the latter case, one can then use the cost
L (κ)

w = γ (1 − z)
∫ T

0vw(t) �(vw(t) + κ) dt. This yields a simple expression for
the gradient, ∇w L (κ)

w = γ (1 − z)
∫ T

0 �(vw(t) + κ) PSP(t, X) dt. For the case that
the neuron does not spike when it should, using a margin makes it possible
to use a weighting function with a much milder divergence in equation 3.3.

Using a margin is attractive from a biological perspective because the
learned behavior then has some robustness against computational inac-
curacies. It is also mathematically appealing since, just as in case of the
perceptron (Anlauf & Biehl, 1989), one can then use a cost that is not just
itself a smooth function but also has a smooth gradient. In contrast to the
bias term in the perceptron, the resting potential in the tempotron is not
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adapted. Hence, introducing a margin reduces the storage capacity and
thus makes it difficult to compare performance to the original tempotron
rule. This is why we have not focused on using a margin here.

To us, the biologically most problematic aspect of the above learning
rules is that they are strictly episodic. In the original tempotron rule, the
neuron needs to be told when a stimulus presentation begins, both to re-
set the shunting and to initialize the calculation of the maximum. On one
hand, this implies an additional feedback signal to each synapse. On the
other hand, there are situations where determining stimulus duration (i.e.,
temporal segmentation) is itself an important aspect of the learning prob-
lem. In these cases, it is inconvenient if the plasticity rule assumes that the
segmentation problem has already been solved. While we have used an
episodic formulation too, our update for the case of an erroneous spike is
readily transformed into an online form. Instead of integrating over a fixed
time period in equation 3.2, one just low-pass-filters the integrand, thus
replacing the hard time window with a soft one. Unfortunately, this does
not work so well for the rule we use when there is no spike. The ratio of
two integrals is needed to compute the update, equation 3.4, and replacing
the integrations by low-pass filters would amount to using approximations
in a potentially highly nonlinear operation (division). Hence, deriving an
efficient online algorithm for the tempotron task remains an important open
problem.2

Appendix A: Numerical Integration Procedure

In calculating the update for the proposed learning rule, we encounter
integrals of the form

∫ T

0
φ( f (t))g(t) dt,

where f and g are well-behaved functions but φ has singular points. In
Euler’s method, the numeric integration would be based on the approxi-
mation

∫ τ

τ−�τ

φ( f (t))g(t) dt ≈ �τ g(τ )φ( f (τ )),

2In this context, it is interesting to compare our update to the one for increasing spiking
probability in an escape noise neuron (Pfister, Toyoizumi, Barber, & Gerstner, 2006) when
the neuron does not spike. The episodic update for this is Z−1∫ T

0 exp(βvw(t)) PSP(t, X) dt
with Z = 1, and since Z = 1, the update can easily be transformed to an online form. But
if we want to benefit from a properly normalized soft-max update as done in the rule
proposed here, we would have to set Z = ∫ T

0 exp(βvw(t)) dt, and then it is again difficult
to find an online version due to the divisive nonlinearity.
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where �τ is a fixed small step size. In this case, this is unsafe when f (τ )
is close to a singular point of φ. For efficiency, we do not want to adopt an
adaptive step size and hence use the following safer approximation based
on a linear interpolation of the well-behaved function f :

∫ τ

τ−�τ

φ( f (t))g(t) dt ≈ �τ g(τ )
∫ 1

0
φ((1 − s) f (τ − �τ ) + s f (τ )) ds.

This is possible since the integral on the right-hand side can be solved
analytically in all cases of interest to us.

As an example consider the update 3.2 where φ(x) = �(x)/
√

x. Assuming
that we encounter a singular point of φ in the interval (τ − �τ, τ ) because
f (τ − �τ ) = −a < 0 but f (τ ) = b > 0 the above formula yields

∫ τ

τ−�τ

φ( f (t))g(t) dt ≈ �τ g(τ )
2
√

b
a + b

.

Appendix B: Simulation Details

For t > 0, the PSP kernel we use is given by

ε(t) = 1
τm − τs

(e−t/τm − e−t/τs )

with τm = 15 and τs = 3 (time measured in ms). The value of the resting
potential is urest = −0.4.

The observation period in the simulations described in section 5 is T =
300, integrated with a step size of δt = 0.1. For each of the random stimuli
used, each afferent receives a random number of zero, one, two, or three
presynaptic spikes at randomly chosen times within the observation period.
Initially the weights were set to the constant value wi = 55/N, resulting in
an output spike for roughly half of the patterns prior to learning.
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