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SUMMARY

Recent modeling of spike-timing-dependent plas-
ticity indicates that plasticity involves as a third
factor a local dendritic potential, besides pre- and
postsynaptic firing times. We present a simple
compartmental neuron model together with a non-
Hebbian, biologically plausible learning rule for den-
dritic synapses where plasticity is modulated by
these three factors. In functional terms, the rule
seeks to minimize discrepancies between somatic
firings and a local dendritic potential. Such predic-
tion errors can arise in our model from stochastic
fluctuations as well as from synaptic input, which
directly targets the soma. Depending on the nature
of this direct input, our plasticity rule subserves su-
pervised or unsupervised learning. When a reward
signal modulates the learning rate, reinforcement
learning results. Hence a single plasticity rule sup-
ports diverse learning paradigms.

1. INTRODUCTION

In spike-timing-dependent plasticity (STDP) experiments, poten-

tiation is only observed when pre- and postsynaptic spike pairs

are induced with a sufficiently high frequency (Markram et al.,

1997). This, by itself, has long since indicated that neurons that

fire together do not unconditionally wire together. But a com-

prehensive phenomenological model of such non-Hebbian

effects has only recently been achieved by including voltage as

a third modulating factor for plasticity, in addition to the tradi-

tional pre-/posttimings (Clopath and Gerstner, 2010; Clopath

et al., 2010). In vivo, the modulating voltage is thought to corre-

spond to a local dendritic potential. But it can be estimated by

low-pass filtering the somatic potential, in the special case that

action potentials are elicited by somatic current injection, as in

the classical STDP experiments.

Theoretical studies on the function of STDP have mostly

assumed point neurons (Abbott and Nelson, 2000; Song et al.,

2000; Kempter et al., 2001; Gütig et al., 2003). But this seems

inadequate, if plasticity is modulated by a local dendritic voltage,

which in vivo may substantially differ from the somatic potential.

Here we present a compartmental neuronmodel and derive from

first principles a plasticity rule in which the voltage modulation of

synaptic plasticity has a functional interpretation. Remarkably,
plasticity becomes simpler for this more complex, but arguably

more realistic, model neuron, in that a single learning rule now

encompasses diverse learning paradigms.

In designing the compartmental model, our overarching

goal was simplicity, since we want to retain the key advantages

of point neuron models: amenability to analytical insight and

usability in large-scale simulations. As a consequence, our

model rides roughshod over many aspects of neuronal

morphology and dynamics. For instance, we collapse the

complex neuronal morphology into a single somatic and a single

dendritic compartment. Further, subthreshold voltage in our

model propagates from the dendrite to the soma but not vice

versa. However, simulation results indicate that the important

functional aspects of ourmodel and plasticity rule do not depend

crucially on these simplifying assumptions (Supplemental Infor-

mation available online).

A key aspect of voltage dependence is that in the subthreshold

regime the strength of the synaptic depression resulting from an

unpaired presynaptic input increases with voltage (Artola et al.,

1990; Clopath and Gerstner, 2010). This leads us to conceptu-

alize plasticity in dendritic synapses as driving a predictive

coding scheme that adapts the dendritic potential to match the

somatic activity. The likelihood of a somatic spike should in-

crease with increasing dendritic input; hence, when there is no

somatic spike in spite of high dendritic voltage, the synapses

that caused the elevated voltage get strongly depressed.

Conversely, a somatic spike that is unexpected due to a

relatively low value of the dendritic potential gives rise to poten-

tiation. Hence, we propose that plasticity is not driven by the

correlation between pre- and postsynaptic activity, as in Heb-

bian learning, but by the correlation of presynaptic activity with

a postsynaptic, somatodendritic prediction error.

Deviations between dendritic potential and somatic activity,

i.e., prediction errors, can result in our model from stochastic

fluctuations as well as from synaptic input that directly targets

the soma. Depending on the source of the direct input into the

soma, the proposed plasticity rule implements supervised or

unsupervised learning. The stochastic fluctuations lead to

exploratory somatic activity that can subserve reinforcement

learning. Indeed, when there is no direct synaptic input to the

soma, our plasticity rule becomes mathematically equivalent to

a rule previously derived in a point neuron model (Pfister et al.,

2006), which has since been widely used in reinforcement

learning (Di Castro et al., 2009; Urbanczik and Senn, 2009;

Frémaux et al., 2010). As a consequence, the proposed model

provides a unified plasticity rule for unsupervised, supervised,

and reinforcement learning.
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Figure 1. Learning in the Compartmental Neuron

(A) Sketch of the neuronal model and a typical dendritic input pattern. (B) Traces of key neuronal variables. During the entire run, the input spike pattern shown in

(A) is presented over and over again. Starting at t = 1 s, the nudging conductances gE and gI are active for 19 s, encodingUM (filled red curve, top row) as the target

time course for the somatic potential. This target time course is shown by the red dotted curve, at times when the nudging conductances are off. (C) Average

learning curves for the above task, based on n= 10 runs with a different input pattern and different initial dendritic weights for each run. KLðU;V�
wÞ assesses the

discrepancy between actual somatic firings and firings predicted by the dendritic potential. It is calculated by using a statistical measure (Kullback-Leibler

divergence, Supplemental Information, Equation S12) to compare the firing rates fðUÞ and fðV�
wÞ. The plot for KLðUM;UÞ) shows the discrepancy between target

firings (rate fðUMÞ) and actual firings. In the nudging phase, dendritic plasticity by decreasing KLðU;VwÞ also reduces KLðUM;UÞ. Hence KLðUM;UÞ stays small

when the nudging is inactivated at t = 20 s. Inset: the somatic spikes produced during the ten runs.
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2. RESULTS

We first describe our model and the plasticity rule in the context

of a simple supervised learning task, a mathematical derivation

of the rule as gradient procedure is given in Supplemental Infor-

mation, Section 2.1. In this first task, a single neuron learns to

associate a dendritic input with a somatic target response. For

learning, somatic activity is modulated by the target response

via somatic synapses and this leads to prediction errors. After

learning, the target response is produced solely from the

dendritic input even when the somatic synapses are silent. A

next simulation demonstrates how this learning principle sub-

serves the formation of associative memories in a recurrent

network: during learning, each memory pattern is delivered to

the network by the somatic synapses, and each neuron learns

to produce its component of the pattern from the dendritic syn-
522 Neuron 81, 521–528, February 5, 2014 ª2014 Elsevier Inc.
apses connecting the neuron to the other neurons in the network.

Unsupervised learning arises in our model when the somatic

synapses are driven by the learning network itself. For this, a

last simulation shows how our plasticity rule can lead to the

self-organization of a topographic mapping (Kohonen, 1982).

2.1. The Model in a Simple Supervised Learning Task
The model neuron that we consider here (Figure 1A) is made up

of a somatic and a single dendritic compartment, but it can be

extended to more than one dendritic compartment (Supple-

mental Information, Figure S1).

Somatic Compartment

Depending on value of the somatic potential U, the soma gener-

ates spikes probabilistically as in a Poisson process but with a

3 ms refractory period. In particular, its instantaneous firing

rate is a sigmoidal function fðUÞ of the somatic voltage. The



Neuron

Dendritic Prediction of Somatic Spiking
somatic compartment integrates input from the dendritic

compartment with inputs from proximal synapses (current

IsomU ). Hence, the potential U evolves as

_U= � gLU+gDðVw � UÞ+ IsomU (Equation 1)

where we have set the capacitance C to unity and omitted this

factor. Further, gL is the leak conductance, gD the coupling of

the dendrite to the soma, and Vw the dendritic voltage. The

subscript w in Vw refers to the vector of the synaptic strengths

in the dendrite. For the input from the synapses proximal to the

soma, we adopt the conductance-based formulation

IsomU ðtÞ=gEðtÞðEE � UÞ+gIðtÞðEI � UÞ: (Equation 2)

Here gE and gI are time-varying excitatory and inhibitory

conductances with reversal potentials EE and EI.

Importantly, the balance of excitation and inhibition defines an

effective reversal potential for which proximal synaptic input

does not generate any current. We call this reversal potential

the matching potential UM. By setting Equation 2 to zero it is

obtained as

UMðtÞ= gEðtÞEE +gIðtÞEI

gEðtÞ+gIðtÞ : (Equation 3)

Note that UM does indeed act as a reversal potential: a value

of U smaller than UM results in IsomU >0 but, conversely, the direct

synaptic input current is negative if the somatic voltage lies

above the matching potential. So the proximal synapses nudge

the somatic potential toward UM (Figure 1B for t between 1

and 1.2 s), and we will refer to gE and gI as the nudging

conductances.

Dendritic Prediction

Let us for a moment assume that the proximal nudging synapses

are silent (gE = gI = 0), as in Figure 1B for t<1 s. Then the time

course of the somatic voltage is determined just by the dendrite

and shall, in this case, be denoted by V�
w. One can easily calcu-

late V�
w by integrating Equation 1 under the condition IsomU = 0.

Here we shall assume a strong coupling gD of the soma to the

dendrite and then V�
w = ðgD=ðgD+gLÞÞVw holds to an excellent

approximation. So in the absence of proximal somatic input,

the somatic potential is in essence a slightly attenuated version

of the dendritic potential (Figure 1B for t between 0.8 and 1 s).

Despite the simple relationship to Vw, the value of V
�
w is important

conceptually because the soma would fire with rate fðV�
wÞ if

somatic synapses were always silent. We interpret the notional

rate fðV�
wÞ as the dendritic prediction of the actual somatic firing

ratefðUÞ and conceptualize learning in the dendritic synapses as

aiming to reduce the rate prediction error, that is the magnitude

of fðUÞ � fðV�
wÞ.

Rate prediction errors can arise from direct synaptic input

to the soma that nudges the somatic potential U away from

V�
w. Crucially, nudging must not always lead to such errors, since

no current flow arises from the nudging when the somatic po-

tential equals the matching potential UM. So if the dendritic

potential by itself follows a time course such that V�
w =UM, the

nudging has no effect. In this sense, the dendrite can predict

away the proximal synaptic input. Approximately, this is the

case in Figure 1B for t between 19.8 and 20 s.
When rate prediction errors do arise from the nudging, den-

dritic plasticity reducing these errors sets into motion a virtuous

cycle in which the somatic potential U serves as an intermediate

moving target. An adaptive change to Vw reducing the magni-

tude of fðUÞ � fðV�
wÞ moves Vw toward U. Since U lies in

between V�
w and the matching potential, the change also moves

V�
w closer to UM. However, the adaptive change in the dendrite

also influences the somatic potential and as a consequence U

moves toward UM. This change toU recreates a prediction error,

triggering further adaptive change until the dendrite in the end

catches up with the soma when both V�
w and U converge to

UM. Hence, while the intermediate target of the learning process

is U, the effective, final target is the matching potential UM.

Plasticity Rule

For minimizing it, dendritic synapses need to estimate the rate

prediction error fðUÞ � fðV�
wÞ. The predicted rate fðV�

wÞ is readily
obtained from the local dendritic potential Vw. The actual

somatic rate can be estimated based on the back propagation

of action potentials, since the somatic spike train SðtÞ provides
a noisy observation process for the underlying firing rate

fðUðtÞÞ. Statistically, fðUðtÞÞ is the expectation of SðtÞ, when

the spike train SðtÞ is given as a sum of d-functions centered at

somatic spike times. So a noisy estimate of the rate prediction

error is provided by SðtÞ � fðV�
wðtÞÞ, and we assume that it is

this estimate that drives synaptic plasticity. For a dendritic

synapse i with strength wi, we introduce the plasticity induction

variable PIi by

PIiðtÞ=
�
SðtÞ � f

�
V�
wðtÞ

��
h
�
V�
wðtÞ

� v

vwi

VwðtÞ: (Equation 4)

Here h is a positive weighting function, the choice of which we

discuss below. The exact form of the partial derivative term

ðv=vwiÞVw depends on the model for the dendritic compartment.

Here, we adopt a simple spike response model, in which the

dendritic voltage is given as a weighted sum of the spike

response functions for the afferents (Equation 8, Experimental

Procedures). The weight of each afferent is the synaptic strength

wi and its spike response functions PSPiðtÞ is determined solely

by the presynaptic spike timings. Then the derivative is just

ðv=vwiÞVw =PSPiðtÞ. So, as in the phenomenological model

(Clopath and Gerstner, 2010; Clopath et al., 2010), plasticity

induction is determined by three factors: pre-/posttiming and

the dendritic potential.

Note that one can regard the difference SðtÞ � fðV�
wðtÞÞ in

Equation 4 as the instantaneous prediction error. Since SðtÞ
records the actual spiking of the neuron, this error is never

zero; the neuron cannot produce, say, half a spike. But averaged

over many trials, SðtÞ � fðV�
wðtÞ converges to the rate prediction

error fðUÞ � fðV�
wÞ, which can be zero. So even if plasticity is

induced in every trial, the changes can cancel and then only

negligible net synaptic change results. However, such trial-by-

trial fluctuations can potentially be reinforced by a reward signal,

and this provides the hook for using the rule in reinforcement

learning. It is this scenario, which motivated our choice of the

weight function h in Equation 4, namely hðxÞ= ðd=dxÞ ln fðxÞ.
For silent nudging conductances, the above choice makes our

plasticity model mathematically equivalent to a previously

derived reinforcement learning rule (Pfister et al., 2006). For
Neuron 81, 521–528, February 5, 2014 ª2014 Elsevier Inc. 523



Figure 2. Memory Formation in a Network with Recurrent Somatodendritic Connections

The 100 ms scale bar refers to all panels. (A) Excitatory nudging conductances for the four patterns. When a neuron is nudged, the excitation is balanced by an

inhibitory conductance of gI = 3. For no nudging, gE =gI = 0. (B and C) Response to brief nudging: before learning (B) and after 500 s of learning (simulated

biological time) (C). Neurons and times for which nudging occurs are marked by the red shading. For visibility, only every fourth neuron is shown. A statistical

evaluation of recall performance is given in Supplemental Information, Section 3.3.
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just supervised learning, there would be considerable leeway in

choosing h, and one might even just omit this term (Supple-

mental Information, Equations S4 and S7).

In the model, induced plasticity is low-pass filtered with a

time constant tD before being consolidated into persistent

synaptic change

tD _Di =PIiðtÞ � Di

_wi = hDi:
(Equation 5)

Here h is the learning rate. For one thing, the low-pass filtering

dampens the fluctuations arising from the noisy estimation of

the rate prediction error. More importantly, it provides a time

lag, making it possible to use the rule with a delayed reward

signal in reinforcement learning by assuming that the learning

rate h is proportional to an external reward signal. In this case,

the mathematical equivalence of our model to the previous

work on reinforcement learning is strict (Pfister et al., 2006; Fré-

maux et al., 2010); hence, we will only consider supervised and

unsupervised learning in the rest of the paper.

Returning to supervised learning, Figure 1C shows the learning

curves for the simple scenario considered in Figure 1B. The

curves highlight that the plasticity rule moves the somatic

potential toward the matching potential by reducing the somato-

dendritic prediction error resulting from the nudging. We empha-

size that dendritic synapses are oblivious of whether or not the

soma is being nudged and get updated throughout the entire

session (Equations 4 and 5). But, whenever the nudging conduc-

tances are silent, the updates are random and the net change in

the neuronal response stays negligible.

For nudging, inhibition and excitation play an opposing but

symmetric role in our model. Although, in terms of conductance

injected into the soma, excitatory nudging is weaker than in-

hibition, simply because excitatory conductance leads to strong

current flow due to its high reversal potential. The broadly sym-

metric role is nevertheless at variance with findings on the prev-

alence of somatic inhibition in principal cells (Somogyi et al.,

1998). In Supplemental Information, we show how the model
524 Neuron 81, 521–528, February 5, 2014 ª2014 Elsevier Inc.
can be adapted to take into account a high baseline level of

somatic inhibition (Figure S2).

2.2. Associative Memory
As amore involved learning task, we consider memory formation

in a network of 500 compartmental neurons. Recurrent connec-

tions relay the spikes of each neuron to the dendritic compart-

ment of other neurons (50% random connectivity), and dendritic

synapses follow the above plasticity rule. The four patterns that

we trained with are shown in Figure 2A; two of the patterns use a

rate code, the other two use a phase code. For the phase code

patterns, pattern neurons have firing rate profiles with identical

period but shifted phases. Similar patterns arise in the phase

coding of path information observed in hippocampal place cells

of rodents (O’Keefe and Recce, 1993; Huxter et al., 2003).

Patterns were imprinted on the network by randomly selecting

one of the four patterns during learning and then nudging the

pattern neurons for an average duration of 500 ms. Thereafter,

the procedure was repeated with a next pattern. As a recall

paradigm for the patterns, we consider the brief nudging of the

pattern neurons. Before learning, the network responds to the

recall nudgings by weak and brief activity (Figure 2B). After

learning, the patterns are represented by sustained activity

states and the nudging triggers transitions between the states

(Figure 2C).

In Figure 2, some neurons are not part of any pattern and are

thus never nudged. Similarly to echo state networks (Jaeger and

Haas, 2004), such ‘‘hidden’’ neurons may enhance the represen-

tational capabilities of the network. Here, however, dendritic

synapses are plastic in all neurons. So there is no biophysical

difference between ‘‘hidden’’ and ‘‘visible’’ neurons and a

neuron’s role in the network is assigned ad hoc during learning

depending on whether it happens to get nudged.

2.3. Self-Organized Topographic Mappings
Till now we have not considered the source of the direct somatic

input. Taking this into account becomes crucial, however,



Figure 3. Learning a Topographic Mapping

(A) Sketch of a one-dimensional network analogous to the two-dimensional topographic network that we used. The color coding of the connections is: cyan,

plastic; magenta, excitatory; yellow, inhibitory. (B) Sample of the excitatory somatosomatic connectivity in the network that we actually used. Dots mark the

neurons with lateral input from neuron ð12; 10Þ and neuron ð29; 26Þ. (C) Poisson firing rates of the input neurons to the network, the six stimuli form three color-

coded clusters. (D) Network response before learning (top row), after 700 s of simulated biological learning time (middle row), and after 1,600 s of learning (bottom

row). Mean firing rates recorded during a 1 s presentation of each stimulus are shown. The left column records the responses to the first input stimulus in each of

the clusters; the middle column is for the second stimuli. For the right column, stimuli 2; 4; 6 were presented as in the middle column. However, just during the 1 s

activity recording, all somatosomatic interactionwas turned off to show the stimulus response in the absence of nudging. Firing rates in (B) and (C) are color coded

as indicated by the legend. In (C), responses to different stimuli are overlayed by additively combining their color codes. More simulation details are given in

Supplemental Information, Section 3.4.
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whenever the network itself generates the nudging. Then the

supervised learning in effect turns into an unsupervised learning

procedure since the network computes its own teaching signal.

As an example, we modeled the learning of a two-dimensional

topographic mapping by our plasticity rule. A sketch of a one-

dimensional network, analogous to the one we used, is shown

in Figure 3A. Weak short-range somatosomatic connections

provide excitatory nudging and this is balanced by a weak

long-range inhibitory nudging that is mediated by a pool of in-

hibitory interneurons. To promote stimulus selectivity, the inter-

neurons have facilitating afferents (see Zucker and Regehr,

2002; Supplemental Information, Section 3.4). The network

that we simulated had 40340 compartmental and 20320 inhib-

itory neurons. A sample of the actual excitatory somatosomatic

connectivity is shown in Figure 3B.
The dendrites of the compartmental neurons are connected to

an input layer presenting on each trial one of the stimuli shown

in Figure 3C. The six rate-coded stimuli have no manifest

topographical organization, but the stimulus set does have

some structure. It is made up of three clusters (color coded),

with strong within but weak between cluster correlations. Map-

ping these stimuli topographically yields activity patterns that

are similar to the spatially clustered object representations

observed in inferotemporal cortex (Tanaka, 2003).

Recordings of stimuli responses in the compartmental neu-

rons are shown in Figure 3D. Activity is initially disorganized

but learning leads to a spatial organization in which the different

clusters in the input aremapped to different areas in the network.

Importantly, topographic organization emerges from learning

and not from the recurrent network dynamics. This is highlighted
Neuron 81, 521–528, February 5, 2014 ª2014 Elsevier Inc. 525
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by the right column in Figure 3D, in which all nudging was turned

off during activity recording in order to obtain the feedforward

response of the network. Comparing to the middle column

shows that the stimulus response is hardly influenced by the

recurrences except for a small, globally inhibitory influence

before learning.

A similar network using point neurons and strong recurrent

connections was presented for this task by Michler et al.

(2009). There even before learning, due to the strong recur-

rences, network activity shows substantial topographic organi-

zation that is then further enhanced by assuming an appropriate

plasticity rule for the feedforward connections: potentiation uses

a Hebbian mechanism and this is balanced by depression imple-

mented as a multiplicative synaptic scaling, modulated by the

postsynaptic firing frequency. In contrast, when plasticity is

driven by a prediction error, there is no need to assume that

plasticity is tailored to the unsupervised learning task. In our

case, the balance of synaptic potentiation and depression

results from, and reflects, the balance of excitation and inhibition

in the somatosomatic connectivity. In essence, the unsupervised

learning algorithm is not specified by the plasticity rule but by the

architecture of the network.

3. DISCUSSION

Our model of self-organized feature maps (Figure 3) shows that,

by shaping plasticity, even weak synaptic input can have a

profound long-term effect on processing. This provides an angle

on longstanding discussions on the relative importance of fast

feedforward versus slower recurrent processing in the brain

(Lamme and Roelfsema, 2000; Ganguli and Latham, 2009). In

vision, for instance, Riesenhuber and Poggio (2000) have argued

that the observed fast reaction times (Stanford et al., 2010) are

suggestive of a processing that is predominantly feedforward.

This, however, seems at odds with the massive recurrent

connectivity in visual cortex. Our simulation with weak but

persistent nudging highlights the possibility that some of the

recurrence could subserve the learning of appropriate feedfor-

ward mappings, even if the recurrent connections only margin-

ally affect the instantaneous stimulus response.

Supervised learning depends on the distinction between a

target value and an actually produced value. Modeling this with

point neurons is awkward because of the difficulty of fitting

two values into a single point. Since the seminal work of Hopfield

(1982) on associative memory, one has typically assumed that

time multiplexing provides a solution and distinguished a

learning phase from a retrieval phase. During learning, the

neuronal output is ‘‘clamped’’ to the target without being

affected by the adapting afferents for which Hebbian plasticity

is turned on. During retrieval, the neuronal output is driven by

the adapted afferents, but plasticity is now turned off to keep

the neuron from learning any mistakes it might make. Recently

a more subtle version of time multiplexing has been suggested,

in which the target value is delivered to the neuron with a

precisely timed delay after the actual value has been produced

(D’Souza et al., 2010).

With two compartments, supervised learning is much simpler.

The nudging of the somatic compartment provides information
526 Neuron 81, 521–528, February 5, 2014 ª2014 Elsevier Inc.
on the target value, whereas the dendrite produces the actual

value. When learning is driven by the somatodendritic rate pre-

diction error, net plasticity induction decreases by learning and

becomes zero as soon as the nudging stops. Further, after

arriving at the target defined by the matching potential, nudging

can be turned on or off without affecting the somatic potential

since the conductance-based somatic input becomes ineffec-

tive once its postsynaptic reversal potential is reproduced by

appropriately learned dendritic input. In effect, successful

learning explains away the teacher and there is thus no need

for a temporally precise control of plasticity that distinguishes

between learning and retrieval phases. A key requirement for

this, at the level of the dendritic synapses, is the modulation of

plasticity by dendritic voltage. Currently, evidence for such a

modulation is circumstantial (Artola et al., 1990; Clopath and

Gerstner, 2010). It would be desirable to have more proximal

data, obtained by patching the dendrite in the vicinity of the syn-

apse being investigated in order to control the local voltage.

While average plasticity induction is zero in the absence of rate

prediction errors, plasticity is nevertheless induced all of the time

in our model, driven by instantaneous prediction errors that have

zero average over many trials. So when there is no need for

learning, there is no plasticity induction on average, and it seems

hard to imagine a better way of reconciling the stability of learned

associations with ongoing synaptic plasticity. But even if this

may be the best solution to the stability-plasticity dilemma, it is

not a perfect solution. A close inspection of Figure 1C shows a

small deterioration in performance during the 4s of learning after

t = 20 when the nudging stopped. This arises because in the

absence of nudging, ongoing plasticity causes the synaptic

strength to evolve as in a randomwalk. In Supplemental Informa-

tion (Figure S5), we show that such synaptic diffusion can go on

for 10 to 20 s without causing dramatic changes to the learned

neuronal behavior. Further, in a network of densely connected

neurons, changes on the single neuron level will tend to cancel.

Also, no plasticity at all is induced by our rule when there is no

activity. While these two mechanisms can lead to learned asso-

ciations persisting quite a bit longer, it is hard to imagine them re-

sulting in persistence on the order of days. Hence, even in our

model, some explicit control of plasticity is needed to guarantee

the stability of learned associations. This chimes in with the

experimental findings that so-called long-term potentiation or

depression is not tantamount to lasting potentiation or depres-

sion (Pastalkova et al., 2006; Frey and Frey, 2008). Instead,

newly induced changes to synaptic strength are labile for a

time frame of hours and whether they become persistent can

even depend on seemingly unrelated behavioral events (Ballarini

et al., 2009). Such memory consolidation mechanisms are sug-

gestive of the temporally coarse-grained control of plasticity

needed for the persistence of learned associations in our model.
EXPERIMENTAL PROCEDURES

Full simulation details are given in the Supplemental Information (Section 3).

Here the complete description of the model neuron is presented, starting

with the dendritic compartment.

In the dendrite, we adopt for simplicity a synaptic model that is not conduc-

tance based. Instead, presynaptic input directly and immediately leads to
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current injection into the dendritic compartment. So presynaptic spike trains,

Xdnd
i , jointly give rise to a dendritic input current Idnd evolving as

ts _I
dnd

= � Idnd +
X
i

wi

X
s˛Xdnd

i

dðt � sÞ (Equation 6)

where we think of each spike train Xdnd
i as the set of the presynaptic spike

times in afferent i. The synaptic strength for this afferent is wi, and we use

ts = 3 for the synaptic time constant. Here, and throughout the Experimental

Procedures, we measure time in milliseconds.

The dendritic potential Vw is obtained by low-pass filtering the input current

using:

tL _Vw = � Vw + Idnd (Equation 7)

with tL = 10 for the leak time constant. Equation 7 can be solved analytically,

resulting in the spike response form of Vw. Then the dendritic voltage is

obtained as

VwðtÞ=
X
i

wiPSPiðtÞ where PSPiðtÞ=
X

s˛Xdnd
i

kðt � sÞ

(Equation 8)

with the response kernel kðtÞ= ð1=ðtL � tsÞÞQðtÞðe�t=tL � e�t=ts Þ. We empha-

size that this is a highly stylized model of a dendritic compartment. In partic-

ular, Equation 7 does not allow for any current flow from soma to dendrite.

In the Supplemental Information, we show that this restriction can be relaxed

(Figures S3 and S4)

The presynaptic term in our learning rule (Equation 4) is the partial derivative

ðv=vwiÞVwðtÞ. From (Equation 8) this results in ðv=vwiÞVwðtÞ=PSPiðtÞ, the sum

of the response kernel k over presynaptic spike times. It is this simple form that

made us choose the spike response model for the dendrite, instead of using a

more realistic conductance-based formulation. While calculating the partial

derivative with respect to a synaptic strength in a conductance-based model

is straightforward, the derivative depends on the total amount of conductance

in the dendrite because a high level of conductance, in effect, increases the

leak. We are not aware of any experimental results regarding such a nonlocal

modulation of the presynaptic term. In a conductance-based model, one can

probably get away with using an approximate gradient based on a standard

response kernel for the purpose of simulations. But this by itself would make

it difficult to make contact with any mathematical theory.

As mentioned in the Results (Equation 1), the somatic potential evolves as

_UðtÞ= � gLUðtÞ+gDðVwðtÞ � UðtÞÞ+ IsomU ðtÞ
where we use gL = 1=tL = 0:1 for the leak conductance and gD = 2 for

the coupling of the dendrite to the soma. Note that for both Vw and U

the resting potential is 0. The somatic current is given by IsomU ðtÞ=
gEðtÞðEE � UðtÞÞ+gIðtÞðEI � UðtÞÞ, with EE = 4:667 and EI = � 1=3. Below, we

will choose a soft spiking threshold of w= 1. If one takes our unitless resting

potential of 0 to correspond to �70 mV, and our unitless threshold of 1 to

correspond to�55mV, the above choices for EE and EI correspond to reversal

potentials of 0 mV (excitation) and �75 mV (inhibition).

When explicitly modeling how the nudging conductances gE and gI arise

from the firing of other neurons synapsing onto the soma, we assume that a

presynaptic spike leads to an instantaneous increase in conductance followed

by an exponential decay. For the total excitatory and inhibitory conductance in

the soma, this results in

_gE = � gE=ts +
X
j

wE
j

X
s˛XE

j

dðt � sÞ

_gI = � gI=ts +
X
k

wI
k

X
s˛XI

k

dðt � sÞ: (Equation 9)

Here wE
j is the strength of the j-th excitatory synapse proximal to the soma

and XE
j its presynaptic input spike train. For inhibition, the homologous role is

played by wI
k and XI

k .
In the mathematical analysis (Supplemental Information, Section 2.1), we

assume Poisson spiking for the soma with an instantaneous rate fðUðtÞÞ,
i.e., the probability of generating a spike in the time interval ½t; t + dt� is

fðUðtÞÞdt in the limit of small dt. For biological realism, we modified this slightly

in the simulations presented here, by assuming a 3 ms absolute refractory

period after each spike, during which the soma cannot generate further spikes.

For the rate function f, we use a sigmoidal of the form

fðUÞ= fmax

1+ kebðw�UÞ: (Equation 10)

with fmax = 0:15, k =0:5, b= 5 and, as mentioned above, w= 1. The choice of

fmax means that the maximal firing rate is 0.15 kHz. Note that this maximal

rate is attained only for an infinite value of U, maximal firing rates in our simu-

lations are considerably lower. Assuming a sigmoidal for fðUÞ is not an essen-

tial part of our model, in principle any rate function that increases with U could

be used (Supplemental Information, Section 2.1).

Taking the definition of Vw into account (Equation 8), the equation for plas-

ticity induction (Equation 4) becomes

PIiðtÞ=
�
SðtÞ � f

�
V�
wðtÞ

��
h
�
V�
wðtÞ

�
PSPiðtÞ (Equation 11)

with hðxÞ= ðd=dxÞ ln fðxÞ. Equation 11 depends on the dendritic potential but

we do not explicitly model the back propagation of somatic action potentials

into the dendrite. Hence our theory is incapable of describing any voltage

dependence of plasticity induction while an action potential is ongoing. We

take this into account by not using Equation 11 during the refractory period

immediately after a spike. In this period, the soma will not spike whatever

the dendrite does, so we simply set PIiðtÞ= 0 during this period. In practical

terms, given the typical firing rates in our simulations, we expect the effects

of refractoriness to be minor. For instance, in Figure 1 the mean value of

our performance measure KLðUM;UÞ immediately after learning is

0:0037 ±0:0003. This value changes to 0:0031 ±0:0003 when the simulation

is rerun with no refractoriness.

As mentioned in the main text, PIðtÞ is low-pass filtered before inducing

synaptic change using: tD _Di =PIiðtÞ � Di and _wi = hDi . In the simulations,

tD = 100. The learning rate h is different for the different tasks (Supplemental

Information, Section 3).
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1 Variations on the model

While arguably an improvement over point neurons, our compartmental model
still gives a highly stylized account of biological reality. One issue is that few
neuronal morphologies are well described in terms of a somatic compartment
and a single dendritic compartment. Hence in the next subsection we show how
the model can be adapted when there is more than one dendritic compartment.

A second issue arises from the fact that synaptic input directly targeting the
soma has often been found to be largely inhibitory. In a limited sense, the sim-
ulations in the main text are in line with this because in terms of conductance
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strength the inhibitory nudging is always considerably stronger than the exci-
tatory nudging. This reflects the fact that the gap between reversal potential
and spiking threshold is much bigger for excitation than for inhibition. Hence
for physiological values of the somatic potential, excitatory conductance is
more powerful than inhibitory conductance.

Our model can however be adapted to the case where there is an even larger
discrepancy between somatic excitation and inhibition. This is shown in Sec-
tion 1.2 where the dendritic prediction is modified to take into account a
baseline of somatic inhibition.

A further issue is our assumption that subthreshold current flows from the
dendrite to the soma, but not in the reverse direction. Partial justification for
this is provided by passive cable theory, since the theory posits that it is the
ratio of the surface areas of the two compartments which determines the ratio
between the coupling constant gD for current flow from dendrite to soma and
the coupling constant gS for the reverse flow. For many neuronal morphologies
the dendritic surface is much larger than that of the soma, suggesting that
gD/gS can be large. But large is not infinite, as was the case in main text, and
hence we present simulation results for our model with a nonzero value of gS.
Finally we show how the plasticity rule can even be adapted to the case that
gD is not large.

1.1 Two dendritic compartments

We assume two dendritic compartments with local potentials V (1)
w and V (2)

w .
Each compartment integrates its presynaptic input just like the single com-
partment in the main text. To aggregate the two dendritic compartments in
the soma, we replace Eq. (1) in the main text by

U̇ = −gLU + gD(V
(1)
w − U) + gD(V

(2)
w − U) + IsomU

Each compartment now makes its own prediction V (i)∗
w for the somatic poten-

tial and we set V (i)∗
w = 2gD

2gD+gL
V (i)
w . The plasticity rule for a synapse in dendritic

compartment i now uses V (i)∗
w as the modulation factor instead of V ∗w (Eq. 4

and 11, main text). Our choice for the dendritic predictions means that in
addition to assuming that there is no nudging, each compartment assumes
that its prediction of the somatic potential is the same as the prediction of
the other compartment. While this assumption is incorrect before learning,
we expect the voltage discrepancies between the compartments to decrease
through learning since their overall influence on the soma is determined by
the mean (or, more generally, a convex combination) of their local dendritic
potentials.
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Fig. S1. Learning with two dendritic compartments. The learning scenario and the in-
formation shown is entirely analogous to Fig. 1 in the main text. In (b) we introduce as a
purely descriptive quantity the mean Vw of V (1)

w and V
(2)
w , and we use V ∗w = 2gD

2gD+gL
Vw in

(c).

Simulation results for the same task as in Fig. 1 of the main text are shown
in Fig. S1. For the wiring, we assumed that the first 60% of the input neu-
rons project to the first dendritic compartment and that the remaining input
neurons project to the second dendritic compartment. Despite the asymmetry,
the predictions of the two dendritic compartments converge during learning as
shown by the KL(V (1)∗

w , V (2)∗
w ) curve in Panel S1c. Compared to the case of a

single dendritic compartment, learning is slower since the dendritic predictions
are less reliable. So we increased learning time by a factor of 2. To account for
the fact that there a two dendritic compartments, the coupling constant gD
was decreased from its value of gD = 2 in the main text to gD = 1. Since each
of the two dendritic compartments now has roughly half as many inputs, we
doubled the initial values for the strength of the dendritic synapses. All other
parameters are the same as in the corresponding simulation in the main text.
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Fig. S2. Learning with a somatic baseline inhibition gbase
I = 2. The learning scenario

and the information shown is entirely analogous to Fig. 1 in the main text. The calculation
of the matching potential UM is based on the expression in the main text (Eq. 3) with the
following modification: Instead of using gI for the inhibitory conductance, one has to use
gnudge
I = gI − gbase

I .

1.2 Somatic baseline inhibition

Here we assume that the soma always receives inhibitory somatic input. To
take this into account we consider the conductance gI to be made up of two
components gbase

I and gnudge
I , so that gI = gbase

I + gnudge
I . A non-zero value of

gbase
I corresponds to a constant baseline of inhibition in the soma which should
not drive plasticity in the dendrite. Plasticity, however, should arise when the
somatic voltage is nudged due to non-zero values of gnudge

I and gE.

From Eqs. (1,2) in the main text, we obtain that in the absence of nudging
(gnudge

I = gE = 0) the somatic potential evolves as

U̇ = −gLU + gD(Vw − U) + gbase

I (EI − U) .

It is now this equation which has to be used for computing the dendritic
prediction V ∗w of the somatic potential. We again assume that gD is much larger
than the leak conductance gL, but not necessarily larger than the baseline
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Fig. S3. Learning in the presence of subthreshold flow from soma to dendrite. The learning
scenario and the information shown is entirely analogous to Fig. 1 in the main text.

inhibition gbase
I . Then to an excellent approximation

V ∗w =
gDVw + gbase

I EI

gD + gbase
I + gL

and it is this expression which has to be used for V ∗w in the plasticity rule (Eq.
4 and 11, main text) instead of the original V ∗w = gDVw

gD+gI
. The rescaling of the

dendritic prediction is the only change in the model in order to accommodate
a prevalence of somatic inhibition.

The simulation results in Fig. S2 highlight the strong depolarization in the
dendrite now needed to counteract the somatic inhibition. Learning perfor-
mance, however, is similar to the case without baseline inhibition. Due to
the increased inhibition, we chose larger initial synaptic strengths in the den-
drite, picking them from a Gaussian distribution with a mean and a standard
deviation of 1/2. We also increased the learning rate to η = 0.1. All other
parameters are the same as in the simulation for Fig. 1 in the main text.
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Fig. S4. Learning with a symmetrical coupling of soma and dendrite. The learning scenario
and the information shown is entirely analogous to Fig. 1 in the main text.

1.3 Subthreshold flow from soma to dendrite

To account for the passive propagation from the soma to the dendrite we
change Eq. (7) in Methods to

V̇w = −Vw/τL + gS(U − Vw) + Idnd/τL

with gS = 0.2. As the plot in the left column of Fig. S3b shows, nudging the
soma now has a significant effect on the dendritic potential. The remaining
results in Fig. S3 show that this slows down but does not disrupt learning.
Aside of the above change to the equation for Vw and the increase in learning
time, all simulation details are the same as for Fig. 1 in the main text.

1.4 Symmetrical coupling of soma and dendrite

Here we assume gD = gS = 0.2. The small value of gD means that propagation
from the dendrite to the soma results not only in increased attenuation of Vw
but also in a noticeable time lag. Hence in this section we no longer use the
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attenuation approximation V ∗w ≈ gDVw
gD+gI

but obtain V ∗w by low pass filtering Vw.
So V ∗w is the solution of

U̇ = −gLU + gD(f − U) (S1)

for f(t) = Vw(t). Similarly, we need to take the lag into account for the
presynaptic term, so we let PSP∗i be the solution of (S1) for f(t) = PSPi(t).
The modified plasticity rule then reads

PIi(t) =
(
S(t)− φ(V ∗w(t))

)
h
(
V ∗w(t)

)
PSP∗i (t) .

The results with this rule in Fig. S4 show that learning is not disrupted by
the symmetrical coupling, even if it is a bit slower than for Fig. 1 in the main
text. The learning rate was η = 0.15 and a mean value of 0.3 was used for
initializing the dendritic weights. All other simulation parameters where as in
the preceding subsection.

2 Mathematical Analysis

In this section we return to the basic model considered in the main text, but
assume for simplicity that there is no refractory period, i.e. somatic spiking is
an inhomogeneous Poisson process with rate φ(U(t)).

2.1 The plasticity rule as a gradient ascent procedure

We first combine the two equations defining the somatic potential (Eq. 1&2,
main text) into the single equation

U̇ = −gtotU + gDVw + gEEE + gIEI with gtot = gL + gD + gE + gI . (S2)

We now consider the limit that the coupling gD of the soma to dendrite is
strong. In particular we assume that gD is much larger than gL, but make no
assumption about the magnitude of gD relative to the nudging conductances
gE and gI. Expanding the solution of (S2) in powers of 1/gD we obtain

U = (1− λ)UM + λV ∗w +O( 1
gD
) with λ = gD+gL

gtot
. (S3)

So to leading order the somatic potential is a convex combination of the
matching potential (UM, Eq. 3 main text) and the dendritic prediction V ∗w =
gD

gD+gL
Vw. Note that the mixing factor λ will usually be time varying, when the

nudging conductances and thus gtot depend on time.
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We now introduce the class of objective functions on which we want to do
gradient ascent, namely

cλ(u, v) =
∫ v

0
dν h(ν)

(
φ
(
(1− λ)u+ λν

)
− φ(ν)

)
. (S4)

In the context of our model, λ is going to be the above mixing factor, φ the
firing rate and h the weight function introduced in Eq. (4) of the main text.
But for the moment just assume that 0 < λ < 1, that φ is monotonically
increasing and that h is positive. For the partial derivative with respect to v
of the cost function (S4 we have

∂
∂v
cλ(u, v) = h(v)

(
φ
(
(1− λ)u+ λv

)
− φ(v)

)
(S5)

and this derivative is positive for v < u but negative for v > u. Hence cλ(u, v)
as function of v has a single maximum at v = u and is thus a suitable objective
function for the purpose of achieving v = u by gradient ascent in v.

In terms of cλ(u, v) the instantaneous cost function for our plasticity rule is

c(gE, gI;V
∗
w) = cλ(UM, V

∗
w) (S6)

with λ given by Eq. (S3) and UM given in the main text (Eq. 3). In view of
(S5) the partial derivative with respect to the strength of the i-th synapse is

∂
∂wi

c(gE, gI;V
∗
w) = h(V ∗w)

(
φ
(
(1− λ)UM + λV ∗w

)
− φ(V ∗w)

)
∂
∂wi

V ∗w .

Using (S3) this can be rewritten as

∂
∂wi

c(gE, gI;V
∗
w) =

(
φ (U)− φ(V ∗w)

)
h(V ∗w)

∂
∂wi

Vw +O( 1
gD
) (S7)

Upto the 1
gD

correction, the above right hand side is equal to the expectation
value of our plasticity rule (Eq. 4, main text). Hence the proposed plasticity
rule implements a stochastic gradient ascent procedure on the temporal aver-
age of (S6), driving the weight vector w towards a value satisfying V ∗w = UM.

2.2 Mean field analysis of unsupervised learning

Considering a network of N compartmental neurons with somato-somatic
connection matrices A (excitation) and B (inhibition), we derive a self-
consistency relation for the vector RM of the neuronal firing rates after learn-
ing. Our starting point is the equation for the matching potential in a single
neuron (3, main text), which for convenience we state in the vector form

UM(t) =
gE(t)EE + gI(t)EI

gE(t) + gI(t)
. (S8)
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Here UM,gE and gI denote the vectors of matching potential, excitatory
nudging and inhibitory nudging for the N neurons. The division in (S8) is
component-wise.

If N and/or the firing rates are large enough, we can neglect the temporal
fluctuations due to the Poisson spiking. Then the rate vector RM determines
all of the quantities in the above equation. In particular

RM =φ(UM)

gE =αARM

gI =α BRM

where the scaling factor α accounts for the synaptic release kernel. For simplic-
ity, we have assumed the kernel to be the same for excitation and inhibition.
Plugging this into Eq. (S8) yields the desired self-consistency relation:

RM = φ

(
(EE A + EI B )RM

( A + B )RM

)
. (S9)

In general this equation will have many solutions. For instance, if A and
B have topographic structure and a specific vector RM satisfies (S9), a to-
pographically shifted copy of the vector will also satisfy the equation. One
important property of the learning dynamics can however be read of directly
from (S9), because the equation is invariant under common rescalings of A
and B , i.e under the transformation A → γ A , B → γ B . So the set of
possible outcomes of learning is determined only by the balance of somatic
excitation and inhibition but not by the absolute strength of the nudging.

3 Simulation Details

The differential equations were integrated using Euler’s method with a time
step of 0.2. Initial values of the weights of dendritic synapses were picked from
a Gaussian distribution with mean µ and standard deviation 2µ, the value of
µ being task dependent (see below).

3.1 KL divergence for firing rates

To evaluate learning performance (e.g. in Fig. 1c), we want to asses how close
spike trains produced by a neuron with somatic potential U(t) are to the
spike trains which would be produced if the potential where UM(t). Neglecting
refractoriness, we assume that the potentials give rise to Poisson spike trains

9
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Fig. S5. Evaluation of stability in the absence of nudging. The plot is analogous to Fig. 1c
of the main text. But the time frame for which the simulation was run after learning, with
ongoing plasticity in the absence of any direct synaptic input to the soma, was extended
from 4s in the main text to the 20s shown above.

with rates φ(U(t)) and, respectively, φ(UM(t)). In a short time bin of duration
δ the firing probabilities then are qδ and pδ for

q = φ(U(t)) and p = φ(UM(t)) . (S10)

The firings in the time bin are Bernoulli random variables and the textbook
definition for their KL-divergence yields:

kl(UM(t), U(t)) = pδ log pδ
qδ

+ (1− pδ) log 1−pδ
1−qδ .

Expanding for small δ this becomes

kl(UM(t), U(t)) =
(
p log p

q
+ q − p

)
δ +O(δ2) (S11)

Assuming the stimulus is presented from t = 0 to t = T , averaging over the
stimulus duration and using (S10,S11), we set:

KL(UM, U) =
1
T

∫ T

0
dt φ(UM(t)) log

φ(UM(t))
φ(U(t))

+ φ(U(t))− φ(UM(t)) . (S12)

The analogous formula is used for KL(U, V ∗w), when comparing the actual
somatic potential to the dendritic prediction V ∗w.

3.2 Details for Figure 1, main text

The dendritic input pattern shown in Fig. 1a is made up of 200 homogeneous
Poisson spike trains, each with a mean rate of 10 HZ. The mean value of a
dendritic weight was µ = 0.2 before learning, and a learning rate of η = 0.07
was used.
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We also evaluated in more detail the effects of the synaptic diffusion occurring
in the absence of nudging as a consequence of the stochastic nature of the
plasticity rule (Fig. S5). While the diffusion is detrimental, performance is still
much better than before learning even after 20s of plasticity in the absence of
nudging

3.3 Details for Figure 2, main text

Learning time was divided in epochs with a duration of 500±100ms (Gaussian
distribution). For each epoch one of the nudging patterns in Fig. 2a was picked
at random and applied during the entire epoch. Total learning time elapsed
between Fig. 2b and Fig. 2c was 500 s (simulated biological time). The mean
value of a dendritic weight was µ = 0.1 before learning, and a learning rate of
η = 0.01 was used.

We quantitatively evaluated network performance using a protocol similar to
the one shown in Fig. 2b and 2c. For each trial a randomly chosen pattern was
nudged for 50 ms, followed by a 100 ms period without any nudging before the
onset of the next trial. During the 100 ms without nudging we evaluated the
persistence of the pattern which had last been nudged by the average value of
KL(UM, U). The average is over the neurons making up the last pattern as well
as over the 100 ms duration. For each neuron and time point the appropriate
value of UM for this pattern, obtained from the gE values in Fig. 2a, was used in
computing KL(UM, U). Before learning, the average value of this discrepancy
measure was 0.065±0.001. During the 500 s of learning considered in the main
text this measure decreased five-fold to 0.013± 0.002.

3.4 Details for Figure 3, main text

The inhibitory neurons in the network were point neurons with a soma mod-
eled like the soma of the compartmental neurons (Eq. 1, main text; Eq. 10,
Methods), but for the fact that gD = 0 in the case of the inhibitory neurons.
Interaction between compartmental and inhibitory neurons was conductance
based and modeled just like the interaction between the somata of compart-
mental neurons (Eq. 9, Methods).

For the topographic connectivity both the 40×40 compartmental neurons and
the 20×20 were placed on square grids within the unit square. To compensate
for the relatively small number of neurons we are able to simulate, periodic
boundary conditions were used. For implementing these, we define the cyclic
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distance of two points p and q in the unit square as

dc(p, q) =
√
|p1 − q1|2c + |p2 − q2|2c

with |.|c defined as

|δ|c = min{mod(δ, 1), 1−mod(δ, 1) }.

The definition of |.|c reflects the fact that the maximal distance between two
points on the unit line is 0.5, if one thinks of the endpoints of the line as being
one and the same point.

Now, the wiring of the network is given by the following rules:

• If compartmental neuron a lies at distance dc from a second compartmental
neuron b, the probability of there being an excitatory connection from a
targeting the soma of b is p = e−10dc . For such a connection, the excitatory
synapse conveys conductance with strength wE = 0.06 .
• If compartmental neuron a lies at distance dc from inhibitory neuron i, the

probability of there being an excitatory connection from a targeting i is
p = e−8dc . These connections are facilitating, see Eqs. (S13,S14) below,
with a baseline conductance of wE

base = 0.008
• If inhibitory neuron i lies at distance dc from compartmental neuron b, the

probability of there being a inhibitory connection from i targeting the soma
of b is p = 3

3+(9dc)2
. For such a connection, the inhibitory synapse conveys

conductance with strength wI = 0.3 .
• All of the 100 input neurons project onto the dendrites of all of the com-

partmental neurons.

The above wiring implements long range inhibition because the distribution of
connections from inhibitory neurons to compartmental neurons is scale free.
Nevertheless, this distribution peaks at short distances, so there is also sub-
stantial local inhibition, competing with the short range excitation. If there
is local excitation only, all input patterns tend to get mapped to one and the
same area by learning. The reason is that once the lengths of the dendritic
weight vectors of the neurons in one area of the map start to increase, this
becomes self-reinforcing until all input patterns are mapped to this area. The
standard remedy for this is, to use an update rule which does not change
the length of a neurons weight vector (Ref. 15, main text). We did not adopt
this solution, since we are not aware of a mechanism which might coordinate
updates in all the synapses of a neuron so that total synaptic strength re-
mains unchanged. Instead, we found that introducing a competition between
short range excitation and inhibition, provides a remedy. In the conductance
based formulation, the effective strength of inhibition increases with increas-
ing somatic potential. This dampens the self-reinforcing growth of the weight
vectors in an area of the map giving other areas a chance to catch up.
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Robustness of map formation can be further improved by shifting the bal-
ance of excitatory and inhibitory nudging towards inhibition when there is
prolonged high activity in one area of the map. The reason is that the self-
reinforcing growth of weight vectors decreases the stimulus selectivity of a
neuron’s response, and neurons which fire in response to many of the stim-
uli will show prolonged times of high activity. Shifting the balance can be
achieved, for instance, by short term depression in the excitatory somato-
somatic connection. Other mechanisms could be short term facilitation in
synapses targeting the inhibitory neurons, or even a small after-depolarizing
current in these neurons.

For the simulations, we implemented facilitation in the afferents of the in-
hibitory neurons. So the actual conductance wE of a synapse targeting such a
neuron can be higher than its baseline value wE

base given above. It is obtained
as

wE = wE

base(1 + f) (S13)
where the facilitation variable f increases with the presynaptic firing rate. In
particular,

τf ḟ = −f + F
∑
s∈XE

δ(t− s) (S14)

Here τf is the time constant for facilitation (we used 200 ms), F determines the
facilitation strength (we used F = 40), and XE denotes the presynaptic spike
train of the synapse. The parameter choices mean that a sustained presynaptic
rate of 0.1 kHz leads to a value of f which is approximately 4, i.e to a roughly
five-fold increase in synaptic strength.

Learning time was divided into epochs of 100 ms. For each epoch one of the
six input patterns in Fig. 3b was chosen at random, and during the epoch the
input neurons emitted independent Poisson spike trains with mean frequencies
given by the chosen pattern. Total learning time elapsed between the top and
bottom row of Fig. 3c was 1600 s (simulated biological time). The mean value
of a dendritic weight was µ = 0.3 before learning, and a learning rate of
η = 0.015 was used.
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