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Abstract Reinforcement learning in neural networks
requires a mechanism for exploring new network states in
response to a single, nonspecific reward signal. Existing mod-
els have introduced synaptic or neuronal noise to drive this
exploration. However, those types of noise tend to almost
average out—precluding or significantly hindering learning
—when coding in neuronal populations or by mean firing
rates is considered. Furthermore, careful tuning is required
to find the elusive balance between the often conflicting
demands of speed and reliability of learning. Here we show
that there is in fact no need to rely on intrinsic noise. Instead,
ongoing synaptic plasticity triggered by the naturally occur-
ring online sampling of a stimulus out of an entire stimulus
set produces enough fluctuations in the synaptic efficacies for
successful learning. By combining stimulus sampling with
reward attenuation, we demonstrate that a simple Hebbian-
like learning rule yields the performance that is very close
to that of primates on visuomotor association tasks. In con-
trast, learning rules based on intrinsic noise (node and weight
perturbation) are markedly slower. Furthermore, the perfor-
mance advantage of our approach persists for more complex
tasks and network architectures. We suggest that stimulus
sampling and reward attenuation are two key components of
a framework by which any single-cell supervised learning
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rule can be converted into a reinforcement learning rule for
networks without requiring any intrinsic noise source.
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1 Introduction

Reinforcement learning is a process whereby stimulus-
response behavior is adjusted to maximize a single reward
signal. This type of learning is involved in the acquisition of
associative memories, i.e., long-term associations between
a stimulus and a desired response. Associative learning has
been extensively studied in the rat and monkey in many brain
areas, such as the medial temporal lobe and the hippocam-
pus in particular (Cahusac et al. 1993; Wirth et al. 2003;
Suzuki 2007), motor regions of the frontal lobe (Mitz et al.
1991; Chen and Wise 1995a,b; Brasted and Wise 2004), pre-
frontal cortex (Asaad et al. 1998), and the striatum (Schultz
et al. 2003; Brasted and Wise 2004; Pasupathy and Miller
2005; Williams and Eskandar 2006), on a variety of tasks,
commonly including conditional motor associative learning
in which sensory stimuli have to be associated with correct
motor responses. Specifically, the existence of prominent
subpopulations of cells selectively altering their firing rates
during the course of learning in correlation with the behav-
ioral performance has been established (Suzuki 2007). Long-
term potentiation (LTP) and long-term depression (LTD) are
assumed to underlie this and other kinds of long-term learn-
ing at the level of individual synapses. However, mechanisms
that drive the synaptic plasticity in order to enable the fast
learning of random new associations, for which the hippo-
campus is critically important (Vargha-Khadem et al. 1997;
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Bayley and Squire 2002; Stark et al. 2002; Stark and Squire
2003), are unknown. Specifically, what are the mechanisms
allowing the neural network to find the synaptic efficacies
that lead to fast progress in learning? Are these mechanisms
synaptic, neuronal, network-level or extrinsic? Addressing
these questions directly in an experiment is problematic, thus
making a modeling approach desirable.

Making a useful interpretation of the global reward signal
at every synapse in a large network is, however, a difficult
modeling problem as well. Hence, trial and error is usu-
ally employed to explore the synaptic efficacies. In general,
any neural network model of reinforcement learning needs
a mechanism for generating altered responses and a mech-
anism to incorporate the external feedback. While external
feedback is typically assumed to be mediated by a global neu-
rotransmitter signal, especially dopamine, modulating syn-
aptic plasticity (Daw and Doya 2006; Wickens et al. 2007),
little is known about the mechanism generating the response
variability. Different noise sources underlying the response
exploration have been suggested, ranging from stochastic
neuronal activation (Barto and Jordan 1987; Williams 1992)
to noisy current injection at the soma (Xie and Seung 2004)
or the synapse (Doya and Sejnowski 1998; Fiete and Seung
2006), to stochastic neurotransmitter release (Seung 2003),
probabilistic winner-take-all strategy (Vasilaki et al. 2009),
and stochastic reward delivery (Montague et al. 1995).
Although the introduction of an explicit noise source in these
models simplifies the mathematical treatment, the inherent
stochasticity often leads to the excessive exploration of net-
work states and thus makes many more biologically plau-
sible learning rules slow (Werfel et al. 2005). Furthermore,
all noise-based learning rules suffer from the need to tune
the amount of noise applied carefully: too much noise yields
unreliable performance, and too little, no (or very slow)
exploration.

Stochastic synaptic or neuronal processing as a possi-
ble exploration mechanism becomes even more problematic
when the information is encoded in population firing rates
or mean firing rates, as is believed to be the case in higher
cortical areas (Aggelopoulos et al. 2005; Rolls et al. 2006).
In fact, spatial (e.g., in a multilayered network) or temporal
averaging flattens any independent noise which is originally
present at the level of the single spiking neuron or synapse.
Hence, the desired variability in the firing rates is severely
compromised. Therefore, unless the individual noise is cor-
related (which requires a corresponding neural architecture),
other exploration mechanisms must be considered in the con-
text of reinforcement learning based on mean population or
temporal firing rates.

Here we argue that online learning in a complex stimulus
environment solves the exploration problem by itself. Ongo-
ing synaptic plasticity triggered by the naturally occurring
online sampling of a stimulus out of an entire stimulus set

produces enough response variability to effectively explore
new network states. This implicit noise source (we call it
stimulus sampling) is self-regulating and does not require
additional tuning. While the most stochastic stimulus sam-
pling results if the order in which the stimuli are sampled
is random, it is sampling per se, rather than its random or
not order, that plays the main role in generating this implicit
noise. Stimulus sampling is assumed in this work to be out-
side of learner’s control, which is the case in many biologi-
cally important learning tasks, such as learning to distinguish
food from non-edible objects early in life.

The second key component of our approach is learning
from the difference between the reward signal and its
expected value (we call it reward attenuation). Reward
attenuation is biologically-inspired (Schultz 2002; Bayer and
Glimcher 2005; Daw and Doya 2006; Kobayashi and Okada
2007; Schönberg et al. 2007) and allows effective learning
by maximizing the exploration at the start of the learning
process and minimizing it in response to rewarded trials only
(Bayer and Glimcher 2005) at the end, so that no repeated
learning and unlearning of the same stimuli occur.

In order to explore the feasibility of stimulus sampling
combined with reward attenuation, we consider Hebbian rein-
forcement learning (HRL) as a simple, biologically plausible
generalization of perceptron Hebbian learning (Hebb 1949;
Rosenblatt 1958; the error-correcting nature of HRL is also
similar to that of the model by Rescorla and Wagner (1972))
to learning from both reward and punishment in multilayered
networks and/or with multiple output units. When learning
from punishment only, our learning rule can be considered
a form of the associative reward-penalty (ARP) algorithm
(Barto and Jordan 1987; Hertz et al. 1991; Williams 1992)
in the limit of small stochasticity in the response function
of the single neuron. Both HRL and ARP address the prob-
lem of spatial credit assignment among all synapses in a
multilayered network that is to implement stimulus-reward
associations. In contrast, the theory of temporal-difference
(TD) learning, while bearing some analogy to our approach
in the special case of reward delivery immediately following
network’s response to a stimulus (Montague et al. 1996), gen-
erally addresses the temporal credit assignment problem for
state-action sequences (Sutton and Barto 1981, 1998; Schultz
et al. 1997; McClure et al. 2003; Seymour et al. 2004; Doya
2008) without offering a simple neural network implementa-
tion. Furthermore, the focus of the previous research has not
been on comparing the effectiveness of different stochastic-
ity sources for the exploration purposes, which, rather than
the advantages of HRL as such, is the main emphasis of this
paper.

We first show that the fast performance of HRL is in excel-
lent correspondence to that of macaque monkeys on stimulus-
response association tasks (Chen and Wise 1995a; Wirth et al.
2003). In contrast, reinforcement learning rules based on
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node perturbation (NP) and weight perturbation (WP) are
too slow to explain the data: their intrinsic noise interferes
with stimulus sampling and both of those rules are not Heb-
bian. The superiority in convergence speed and reliability of
HRL becomes even more pronounced when more difficult
problems and networks with hidden layers are considered.
To prove that the high performance of HRL originates pre-
cisely from stimulus sampling, we compare batch learning
with our normal online learning: when synaptic updates are
only administered at the end of an epoch containing all stim-
uli, instead of after each stimulus presentation, learning fails.

Furthermore, we demonstrate that learning from mistakes
only is generally slower than combined learning from punish-
ment and reward, questioning earlier statements that learn-
ing from mistakes is the preferred strategy (Chialvo and Bak
1999). Learning in the case of rewarded events becomes nec-
essary if the number of output units is large, making rewarded
responses initially rare. Discarding the information provided
by these rare events, hence, leads to drastic deterioration in
performance.

Finally, we suggest that combining stimulus sampling with
reward attenuation represents a general framework by which
any supervised learning rule for a single neuron can be turned
into the corresponding reinforcement learning rule for the
whole network independent of the modalities involved.

2 Results

2.1 Comparison to primates’ performance

We first studied how well our model’s performance corre-
sponds to that of primates on visuomotor association tasks
(Chen and Wise 1995a; Wirth et al. 2003). Following foveal
fixation at the center of a computer screen, the monkey was
shown a complex natural (Wirth et al. 2003) or artificial
(Chen and Wise 1995a) scene superimposed with four sac-
cade targets at the top, bottom, and the sides of the screen
(Fig. 1a). The goal was to learn the correct associations of
each scene with one of the four saccade targets (randomly
chosen for each scene and fixed throughout the experiment).
All scenes were equally likely to appear and were presented
in randomized order. Randomly intermixed with one to four
novel scenes, the monkey was also shown two to four very
familiar stimuli whose associations it had learned previously.

In order to match the experimental protocol, we used a
simple network with two binary outputs representing the four
possible saccade responses (Fig. 1b). The input layer coding
for natural scenes in the experiments consisted of a large
number of binary neurons. Simulated stimuli were random
and thus fulfilled the experimental requirement that the nat-
ural scenes be very different. Eight associations were gen-
erated randomly, the network was allowed to learn four of

those first, starting from a random synaptic configuration,
and then had to learn the full set starting with the synaptic
weights achieved at the end of the first learning phase.

In Fig. 1c, the performance (instantaneous reward aver-
aged over 1000 independent learning sessions) on this learn-
ing task of three representative learning rules (cf. Sect. 4),
Hebbian reinforcement learning (HRL), node perturbation
(NP) and weight perturbation (WP), is shown. For each rule,
the synaptic efficacy change is proportional to the presynap-
tic signal and attenuated reward (cf. Sect. 2.3). The other key
factor to which the change is proportional varies among the
three rules. For HRL, this factor is equal to the difference
between the postsynaptic signal and the excitation/inhibition
balance point of 0.5; for NP, the difference is the noise signal
applied to the postsynaptic neuron, whereas for WP, the dif-
ference is the noise applied to the synapse. The performance
of HRL is in excellent correspondence to that of the mon-
key: both the monkey and HRL require approximately 11–12
presentations per novel stimulus until the full set of stimu-
lus-response associations is reproduced correctly (Fig. 1d).
In contrast, NP and WP are too slow to capture the monkey’s
performance; NP, which was the faster of the two, produced
the median learning time of approximately 28 trials per new
association.

An interesting additional experimental observation was
that during learning the monkey made almost no mistakes
on the familiar associations (2% reported by Chen and Wise
(1995a)). To test the models in that respect, we computed the
mean percentage of errors on the familiar associations and
found the values of 2.4% for HRL, 4.7% for NP, and 11.8%
for WP. Hence, HRL is closest to the data. The high percent-
ages of errors on previously learned associations for NP and
WP are due to the very nature of these learning rules which
require a fair amount of intrinsic noise for faster initial con-
vergence. However, at a later stage of learning this amount
of intrinsic noise combined with the non-Hebbian character
of NP and WP results in more re-learning of the previously
learned stimuli than in the case of the HRL, which is Hebbian
and not intrinsic noise-based. Lowering the amount of noise
does result in less re-learning (data not shown), but the per-
formance suffers significantly.

2.2 Stimulus sampling is essential for learning

We next demonstrate that the use of stimulus sampling
induces effective noise that is critical to the sufficient explo-
ration of the synaptic weight space and, hence, to successful
learning. To isolate the effect of the ongoing synaptic mod-
ifications we contrast our usual online learning with batch
learning for the HRL rule on the same monkey problem as
in Fig. 1. In the batch learning scenario, the computed syn-
aptic weight changes are not applied instantaneously after
each stimulus presentation (as they are in online learning),
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Fig. 1 Our model’s performance is in good correspondence to the
monkey data by Chen and Wise (1995a) and Wirth et al. (2003). a
A possible natural scene used by Wirth et al. (2003) is shown (Chen
and Wise (1995a) used complex artificial visual stimuli); superimposed
are the fixation spot and four saccade targets. The task is to classify cor-
rectly (make a saccade to the correct target for the monkey) four novel
stimuli having learned the correct responses to another four. b Model
network structure: two binary output neurons code for the four possible
targets; all synaptic weights are analog, bounded and subject to global
inhibition (Sect. 4.1). The number of afferents n equals 1000. c Instanta-
neous performance curves (with each half of an error bar indicating one
standard error of the mean) are shown, for our HRL rule (red), node per-
turbation (NP, blue) and weight perturbation (WP, green) learning rules.
A point on a performance curve is the percentage of correct responses

on the corresponding trial averaged over 1000 random, independently
learned input–output associations and random initial synaptic weights.
Parameter values leading to the fastest convergence were used for each
model. d Histogram of learning times for HRL. The performance is
in excellent correspondence to that of the monkey: HRL produces the
median learning time (number of trials per new stimulus until all stimuli
have been learned, indicated by the thin red bar at the top) of 12 and the
mean of all learning times less than two magnitudes of the median of
11.7 ± 0.16 versus 10.6 ± 3.4 and 12 ± 1 for the monkey reported by
Chen and Wise (1995a) and Wirth et al. (2003), respectively. Both NP
and WP are too slow to capture the monkey’s performance. The results
do not vary by more than 10% with n decreasing to 100 or increasing
beyond 1000

but are accumulated instead and applied after each epoch of
P trials, where P is the number of different associations to
be learned (P = 8 in our case). In what follows, we contrast
random-order batch learning, in which stimuli are presented
in a random order, with fixed-order batch learning in which
the stimuli are always presented in the same order. The order
of stimuli presentation within a batch, however, is not impor-
tant as long as all the stimuli appear exactly once; due to the
nature of the batch synaptic update, the results would be
exactly the same.

In fixed-order batch learning, the noise induced by stimu-
lus sampling is suppressed entirely. The comparison of batch
and online learning shows that the performance of fixed-order
batch is very poor indeed, just slightly above the chance
level (the cyan curve in Fig. 2a vs. the red curve). When
applied to the same network state, fixed-order batch learning

always results in the same synaptic modifications; thus, the
exploration becomes too limited. In contrast, random-order
batch learning retains some noise since stimuli presented
between the updates are not always exactly the same even
though, on average, each stimulus is presented once per
update. Due to the remaining stochasticity, random-order
batch is significantly better but still far worse than the online
HRL with random stimulus sampling (cf. golden and red
curves, respectively, in Fig. 2a) since the amount of effective
noise is greatly reduced in the former case. This decrease
in noise also accounts for the widening of the histogram of
learning times in the case of random-order batch, while for
online stimulus sampling learning is reliably fast (Fig. 2b).
We conclude that even in the case of learning only eight
associations, the exploration of synaptic efficacies induced
by the random order of stimulus presentation is sufficient to

123



Biol Cybern (2009) 100:319–330 323

0 100 200 300 400 500
0.25

0.4

0.6

0.8

1

Trial

P
er

fo
rm

an
ce

HRL

Random−order batch

Fixed−order batch

Online vs. batch learning

0 50 100 150
0

0.2

0.4

0.6

Learning time

F
ra

ct
io

n 
of

 e
po

ch
s

HRL

Random−order

batch

0 100 200 300 400 5000.5

0.6

0.7

0.8

0.9

1

Trial

P
er

fo
rm

an
ce

HRL

Punishment only

Non−attenuated reward

Attenuated reward effects

0 50 100 150
0

0.2

0.4

0.6

Learning time

F
ra

ct
io

n 
of

 e
po

ch
s

HRL

Punishment only

a

c

b

d

Fig. 2 Stimulus sampling and attenuated reward are essential for
learning. a The online learning performance curve of HRL (red, the
same as in Fig. 1) and the batch learning curves for random (golden)
and fixed (cyan) stimulus presentation order, also for HRL. For the
fixed-order batch learning no noise is effectively generated, resulting in
extremely limited exploration and the performance is just slightly above
the chance level. Random-order batch, however, allows for restricted
exploration which eventually leads to learning of the task, albeit signif-
icantly slower than for the online HRL. b Corresponding distributions of
learning times for HRL and random-order batch are shown in the same

colors as in a. c Learning from mistakes only (black curve) is poor as
compared to learning from reward and mistakes (red curve, same as in
a) for the case of multiple output units (e.g., for the monkey association
task). In both cases online learning with reward attenuation was used.
Unattenuated online learning from reward and punishment destabilizes
the learning process as it progresses (magenta). d Corresponding distri-
butions of learning times for HRL and learning from punishment only
are shown in the same colors as in c. Optimum parameters were used
for each curve/histogram and the monkey task was the same as in Fig. 1

efficiently explore the synaptic state space, resulting in fast
and robust learning.

2.3 Reward attenuation is necessary for achieving
the maximum reward

Different forms of combining the reward signal with synap-
tic modifications are possible. In HRL these modifications
are Hebbian and attenuated on rewarded trials (cf. Bayer and
Glimcher 2005 and Sect. 4.2) so that the further the learn-
ing process progresses (i.e., the closer the average reward
approaches 1), the smaller the synaptic changes are. On the
other hand, on non-rewarded trials anti-Hebbian modifica-
tions are applied without any attenuation based on the reward
history (cf. Bayer and Glimcher 2005). Both the synaptic
changes in the case of reward and their attenuation are

essential. To reveal the benefits of these two ingredients we
again consider the previously described monkey problem.

When only the anti-Hebbian component on non-rewarded
trials was applied, learning slowed down considerably (the
red curve in Fig. 2c vs. the black curve). Note that this form
of learning from mistakes corresponds to applying the classi-
cal perceptron error correction rule (Rosenblatt 1958; Hertz
et al. 1991) to each output neuron in the network. However,
in contrast to the single output neuron situation, the Hebbian
component becomes important in the presence of multiple
output units. The more output units there are in the network,
the more significant role the Hebbian component would play
and the worse the perceptron rule would perform: the chance
of producing a correct response out of the many possibili-
ties is poor at the initial stage of learning because the initial
synaptic weights are random. The information provided by
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rare rewarded trials is therefore very valuable, necessitating
learning from reward in general.

At the late stage of learning, on the other hand, the atten-
uation of synaptic changes on rewarded trials becomes
important. If the synaptic changes do not attenuate with
increasing average reward, the performance saturates early
(Fig. 2b, magenta curve). This arises because strengthening
the synaptic efficacies as strongly as during the early learning
stage leads to interference among the representations of the
already learned stimuli. Thus, learning does not stabilize as
the same stimuli are learned and unlearned repeatedly. The
histogram of learning times confirms that without reward
attenuation there are always some associations that are not
learned correctly. Reward attenuation also takes into account
that, once the performance is good, an error is much more
informative for further improvement than success.

2.4 Challenging problem in a network without hidden
layers

To further explore the benefits of the stimulus sampling
approach, we studied the performance of our model on dif-
ficult problems. First, we considered a challenging task in
the network without hidden layers, similar to that depicted in
Fig. 1b, but with 100 inputs and a single output neuron. The
problem was to correctly classify 130 random stimuli into 2
randomly chosen, equiprobable classes. This problem is dif-
ficult since the number of stimuli exceeds that of the inputs
(Hertz et al. 1991). The results are presented in Fig. 3a and b
using the same colors and line styles as in Fig. 1. For optimum
parameters, HRL is almost six times faster than NP with the
median convergence times of 85 and 483, respectively.

WP does not converge at all beyond the chance level within
3000 presentations of each stimulus. Apparently, the noise
level for this problem has to be very low in order to avoid the
undesirable interplay among synaptic efficacy changes for
different stimuli. However, such small noise levels necessar-
ily result in exceedingly long learning times. This also applies
to the observed fraction of non-convergent learning sessions
for NP, which exceeds 10% (Fig. 3b). HRL, on the other
hand, does not suffer from this problem as it does not rely
on any internal noise source. In fact, the percentage of non-
convergent learning sessions for HRL is negligible (Fig. 3b).

To explain the superior performance of HRL as compared
to NP, we consider three representative synaptic time courses
during a single learning session (Fig. 3c). Both learning rules
are characterized by an initial learning phase during which
synaptic efficacies tend to approach the non-biased value of
0.5, at which a synaptic efficacy is equidistant from both
synaptic strength limits and is balanced by the global inhi-
bition (Senn and Fusi 2005). This initial phase is followed
by a second phase in which the exploration continues in
order for the network to garner the maximum reward. In the

second phase the asymptotic values are approached. For HRL
the asymptotic values are approached at a nearly constant
speed (disregarding the jitter) and reached within finite time.
But for NP the second phase is significantly delayed com-
pared to HRL: explicit noise causes jitter and less reliable
performance. Furthermore, as for any gradient procedure
with a smooth cost function, the convergence of NP slows
down as learning progresses (the attractor is approached) and
the asymptotic value is not reached in finite time. In other
words, smaller and smaller noise would be required to pre-
vent repeated learning and unlearning of the same stimuli as
learning progresses with NP. The reward within the single
learning session reflects the strong jitter in the case of NP
whereas in the case of HRL the jitter decreases and eventu-
ally vanishes (Fig. 3d).

2.5 Stimulus sampling retains the performance advantage
in networks with hidden layers

Reinforcement learning is particularly difficult for networks
with more than one output unit or with hidden layers as a use-
ful interpretation of the single reward signal becomes highly
nontrivial. To demonstrate the advantages of stimulus sam-
pling in the latter case, we considered neural networks with
one (Fig. 4a1–c1), two (Fig. 4a2–c2), or three (Fig. 4a3–c3)
hidden layers. The task was to correctly classify 20 random
stimuli into 2 random classes, with each network possessing
5 inputs, 5 neurons in each hidden layer, and 1 output unit
(Fig. 4c1–c3).

This problem cannot be solved without hidden layers as
the number of stimuli exceeds the number of input neurons
fourfold, which is well beyond the learning capacity of a
single perceptron with five inputs (Hertz et al. 1991, also
explicitly illustrated by the cyan curve in Fig. 4a1). With one
hidden layer and a total of 25 synapses learning becomes
possible, with approximately 0.8 stimuli to be stored per syn-
apse. HRL required the median learning time of 232 presenta-
tions per stimulus (Fig. 4b1). When additional hidden layers
were added, HRL’s performance did not deteriorate by more
than one-eigth (median learning times of 260 and 253 for
two and three hidden layers, respectively, cf. Fig. 4b1–b3),
although the synaptic state space significantly increased in
dimensionality.

NP and WP were also able to learn the task in all three
network configurations, but with, at best, threefold latency
(for NP with one hidden layer) compared to HRL. Inter-
estingly, the strong performance advantage that NP demon-
strated compared to WP on problems without hidden layers
(Figs. 1, 3) does not extend to networks with at least one hid-
den layer (Fig. 4b1–b3). The previously more targeted explo-
ration in the case of NP with the efficacies of all presynaptic
synapses onto a single neuron changed in concert is appar-
ently not more effective than the completely independent
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Fig. 3 HRL with stimulus sampling significantly outperforms NP and
WP on a challenging two-class problem in a network with 100 input neu-
rons and 1 output neuron. The task is to classify 130 random stimuli into
those two random classes. a Learning curves for optimum parameters
for HRL (red) and NP (blue), averaged across 1000 learning sessions.
WP does not converge at all beyond the chance level. b Histograms of
learning times. HRL is almost six times faster than the NP. Addition-
ally, in more than 10% of all cases, NP does not converge (rightmost
blue bar in b), whereas for HRL the fraction of non-convergent cases
is negligible. The quantities shown are the same as those in Fig. 1.
The median convergence times are 85 for HRL, and 483 for NP (red
and blue small squares, respectively). c Synaptic weight time courses
of three representative synapses (with initially strong, intermediate and

low synaptic efficacies, respectively) for HRL (red) and NP (blue) show
how the synaptic modifications for HRL stop in finite time once the max-
imum reward (d) has been garnered, as opposed to the slow asymptotic
convergence for NP to a close neighborhood of 0.5. The network was
initialized in the same state for both HRL and NP, and the sequence of
stimulus presentations was the same during learning. d Instantaneous
reward time courses corresponding to the synaptic time courses in panel
c show a uniform decrease in jitter amplitude for HRL as learning pro-
gresses until it eventually vanishes when all the associations have been
learned correctly (red). In contrast, the jitter amplitude remains virtu-
ally constant for NP throughout the whole learning period (blue) and
the maximum reward is never gained

exploration of synaptic weights in networks with hidden
layers.

Besides the longer learning time, the percentage of
nonconvergent sessions for NP and WP was between 20 and
30%, rendering NP and WP essentially unusable for bio-
logical applications in this case. Note here that all the three
learning rules were optimized for fastest median learning
times. Smaller percentages of nonconvergent sessions could
be achieved with NP and WP (data not shown), but at the
expense of significant increases in the learning times (say,
by a factor of 2). In contrast, HRL demonstrated the noncon-
vergent percentage of well below 10% without any additional
tuning.

3 Discussion

In this study, we have shown that successful reinforcement
learning in a neural network does not necessarily need to
rely on an explicit noise source as has been assumed previ-
ously. We propose stimulus sampling as an alternative to the
ongoing controversy on the adequate noise source in rein-
forcement learning rules (Seung 2003; Werfel et al. 2005;
Fiete and Seung 2006). Stimulus sampling, based on the nat-
urally occurring online sampling of a stimulus out of an entire
stimulus set, provides enough fluctuations in the synaptic
efficacies for the effective exploration of suitable stimulus-
response associations. We applied stimulus sampling in the
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Fig. 4 HRL outperforms NP
and WP in a network with
hidden layers. The task is to
classify 20 random stimuli into
2 random classes, with 5 input
units and one, two, and three
hidden layers, respectively
(c1–c3). The problem genuinely
requires hidden layers as
revealed by the early saturation
of learning with the perceptron
(cyan curve in a1). HRL learns
at least three times faster than
NP and WP, with the learning
times that are essentially
independent of the number of
layers (cf. red curves in a1–a3
and histograms in b1–b3).
Median convergence time for
HRL (red), NP (blue) and WP
(green) are, respectively, 232,
714 and 801 for one hidden
layer (b1); 260, 896 and 788 for
two hidden layers (b2); 253, 947
and 917 for three hidden layers
(b3). Parameters resulting in the
fastest learning were used in all
cases
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context of a Hebbian reinforcement learning rule, a simplest
form of Hebbian plasticity which incorporates correlation-
based LTP and anti-correlation-based LTD, modulated by
an attenuating reward signal that dynamically decreases the
amplitude of synaptic modifications on rewarded trials as
learning progresses. We have shown that fast reinforcement
learning in case of multiple output neurons requires synaptic
modifications to be induced by rewarded trials, restricting the
previously suggested learning from mistakes only (Chialvo
and Bak 1999) to specific network architectures. Learning
from reward is especially important during the initial learn-
ing phase when rewarded network states are rare and thus
very informative. As learning continues, on the other hand,
the amplitude of Hebbian learning modifications induced by
reward must necessarily be attenuated to prevent undesirable
interference in responses to different stimuli and achieve high
performance.

We have found that the effectively stochastic presentation
of stimuli due to the sampling for both simple and more
complex networks and learning tasks results in the explo-
ration levels that make HRL always superior to two well-
established learning rules, node perturbation and weight
perturbation, which are based on intrinsic neuronal and syn-
aptic noise, respectively. The degree of exploration induced
by stimulus sampling is automatically matched to the size
and diversity of the stimulus set to be learned, and thus
scales with the complexity of the learning task. For example,
adult animals consciously attempt to improve their survival
chances by seeking food and avoiding predators. Thus, they
typically explore only a part of the entire stimulus space,
which decreases the amount of the effective noise induced
by stimulus sampling, but since the complexity of the learn-
ing problem is also reduced, less noise is necessary for the
exploration. Similarly, adding temporal correlations by fixing
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the order in which stimuli are presented, for instance, does
not substantially hamper the learning performance as long
as the synaptic updates are performed online and the stim-
ulus set is not too small, guaranteeing sufficient exploration
(learning curves are almost identical to those for HRL in all
figures if stimuli are presented in the same order as for the
fixed-order batch). In contrast, intrinsic noise sources can-
not endow such self-regulating properties on the exploration
process.

By investigating the evolution of jitter in the individual
synaptic efficacy and reward curves during learning, we have
demonstrated that stimulus sampling does in fact dynami-
cally regulate the exploration as opposed to the noise-based
learning rules, which maintain a constant level of jitter
throughout the learning process. This accounts for the sig-
nificantly faster and more reliable learning using HRL, as
compared to NP and WP, on the visuomotor association
task motivated by the monkey data (Chen and Wise 1995a;
Wirth et al. 2003). In fact, only HRL corresponds very well to
the learning speed of the animals. The superior performance
of HRL persists for more challenging problems close to the
learning capacity, and for problems involving feedforward
networks with multiple layers of neurons. The fast perfor-
mance of HRL could imply that stimulus sampling, unlike
intrinsic noise, is especially relevant for the flexible fast learn-
ing of new associations that has been shown to be critically
dependent on the intact medial temporal lobe and hippocam-
pus (Vargha-Khadem et al. 1997; Bayley and Squire 2002;
Stark et al. 2002; Stark and Squire 2003).

We have demonstrated that stimulus sampling represents a
viable concept for learning stimulus-reward associations in a
complex neuronal network by means of a single binary rein-
forcement signal, even with the simple HRL. Are there noise-
based rules that could, unlike NP and WP, compete with it
and, in particular, reproduce the primate’s performance? One
commonly used family of stochastic learning rules is associa-
tive reward-penalty (Barto and Jordan 1987; Hertz et al. 1991;
Williams 1992). However, it has been shown previously that
it can only compete with HRL if the intrinsic noise level is
low (Vasilaki et al. 2009), in which case ARP approaches
our HRL rule in the deterministic limit of learning from mis-
takes only. But we have shown that learning from mistakes
only is already suboptimal in the case of only two output
units (Fig. 2c, d) and would become exponentially worse as
the number of outputs increases. This is not in contradic-
tion to the results of Mazzoni et al. (1991) who had found
that ARP could match the performance of back-propagation
(Rumelhart et al. 1996), a theoretically attractive but biolog-
ically unrealistic supervised learning rule, on a coordinate
transformation task. Mazzoni et al. (1991) used only two out-
put units and a non-binary reward signal directly indicating
the amount of error in the outputs and thus accelerating the
performance.

Single−cell supervised learning

Reinforcement learning in a network

Stimulus sampling Reward attenuation

Fig. 5 Suggested modality-independent framework to extend any type
of synaptic plasticity suitable for single-neuron supervised learning to
reinforcement learning in a network. Stochastic stimulus sampling and
reward attenuation are two key components, with the former replacing
putative intrinsic exploration mechanisms, and the latter dynamically
decreasing the sampling-induced exploration as the performance level
increases

Importantly, stimulus sampling also applies to coding
schemes in higher cortical areas that are based on population
or temporal mean firing rates (Aggelopoulos et al. 2005;
Rolls et al. 2006). As noisy synaptic transmission or noisy
spike generation would average out for these rate-based
codes (unless the noise is correlated) and would thus not
be useful for the exploration, stochastic stimulus sampling
becomes an even more valuable option that deserves further
consideration.

The simplicity of the HRL rule makes our conclusions
on stimulus sampling and reward attenuation very general.
In particular, they may be applicable to general modality-
independent associative learning in the hippocampus
(Eichenbaum et al. 1999; Eichenbaum 1999; Buckmaster
et al. 2004), as well as to more detailed models of synap-
tic plasticity. Our construction of a reinforcement learning
rule out of classical Hebbian plasticity suggests that a simi-
lar framework making universal use of a few basic synaptic
plasticity mechanisms could exist in the biological reality.
These mechanisms could underly learning within the super-
vised scenario, where the postsynaptic activity is dominated
by some ‘teacher input’, but also within the reinforcement
learning scenario, where only a global reward signal is avail-
able. We suggest that whatever the specific biological imple-
mentation of a single-cell supervised learning rule might be,
it can be combined with stimulus sampling and reward attenu-
ation to generate a corresponding reward-based learning rule
for reinforcement learning within a large network (Fig. 5).

4 Methods

4.1 Network architecture

In this first study, we consider feedforward neural networks
depicted in Figs. 1 and 4, with n input neurons, m output
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neurons, and, for Fig. 4, one, two, or three hidden layers
with nh = 5 neurons in each. All neurons are threshold units
with binary (0 or 1) output activities yi for neuron i . In a
biological context, the activity of 1 could indicate that the
neuron has generated an action potential and has released a
neurotransmitter within some integration time period (com-
mon to all neurons in the same layer), while 0 would indicate
the absence of an action potential within that time. Synaptic
efficacies (strengths, weights) Ji j from neuron j to neuron i
are excitatory, but subject to global inhibition (with separate
inhibitory populations in each layer, the results were simi-
lar). The synaptic efficacies are continuous and normalized,
taking values between 0 and 1. We use m = 2 for the simu-
lations of the monkey learning task (Figs. 1, 2), and m = 1
otherwise.

Consider a set of P binary stimuli ξµ, with components
ξ

µ
i =0 or 1 (i = 1 . . . n, µ = 1 . . . P). The total postsynaptic

current to neuron i in the next layer is

Ii = 1

ni

ni∑

j=1

(Ji j − gI )ξ
µ
j (1)

where ni is the number of synapses onto neuron i , and gI

defines global inhibition. The neuron is activated (yi = 1)
if Ii > 0, and inactive (yi = 0) otherwise. The strength of
global inhibition was set to gI = 0.5, so that the effective
connection strengths range from −0.5 to 0.5. In the presence
of multiplicative synaptic bounds, this implies that learning
drives the effective synaptic efficacies towards 0, the point
of balance between excitation and inhibition (Senn and Fusi
2005).

Replacing ξ
µ
j by y j , we compute the activities of all cells

in the subsequent layers iteratively. Once the states Z =
(z1, . . . , zm) of the output neurons have been determined,
the same global reward signal r = r(Z , µ) is administered
to each synapse. If Z is equal to the desired output configu-
ration for stimulus µ, we set r = 1; otherwise, r = 0.

4.2 Hebbian reinforcement learning (HRL)

The network learns by changing each synaptic efficacy Ji j

as a function of the presynaptic activity (x j ), the postsyn-
aptic activity (yi ), and the reward signal r = r(Z , µ). A
pure Hebbian learning rule would change the weight propor-
tionally to (yi −0.5)xi . Our Hebbian reinforcement learning
(HRL) rule changes the weight in the same Hebbian way in
the case of reward (r = 1) and in an anti-Hebbian way in
the case of punishment (i.e., no reward, r = 0). Learning
in the case of reward is further modulated by a factor of
(1−rm), where rm is the running mean of the previously gar-
nered reward (see below). This factor insures that the network
learns most from responses that generate the levels of reward
farthest from the average. Also, synaptic modifications then

properly decrease in response to rewarded stimuli, prevent-
ing repeated learning and unlearning of the same stimuli,
and learning stops once all the stimuli have produced the
desired outputs. Hence, to define the effective weight change
we consider the quantity

˜∆Ji j =
{

(1 − rm) η (yi − 0.5) x j if r = 1
−η (yi − 0.5) x j if r = 0

(2)

where η is some learning rate. In all simulations η was cho-
sen to provide the fastest learning as measured by the median
learning time. The specific values used for η are as follows:
0.05 for Fig. 1, 0.05 for HRL and the batch learning and
0.0625 and 0.09 for learning from non-attenuated reward and
punishment only, respectively, for Fig. 2. η = 0.0025 for
Fig. 3. For Fig. 4, η = 0.003 for panels a1 and b1 and η =
0.002 for panels a2, b2, a3, and b3.

To implement soft synaptic bounds at 0 and 1 during syn-
aptic potentiation and depression, respectively, the effective
weight change was

∆Ji j =
{

˜∆Ji j
(
1 − Ji j

)
if ˜∆Ji j > 0

˜∆Ji j Ji j if ˜∆Ji j < 0
(3)

The initial distribution of synaptic efficacies was uniformly
random between 0 and 1 except for Figs. 1 and 2, where the
network began to learn the set of four novel stimuli with the
synaptic weights at the values found during the previous stage
of learning the four familiar stimuli. This was intended to
reflect the experimental observation (Chen and Wise 1995a;
Wirth et al. 2003) that the monkeys would almost always
recognize the familiar stimuli correctly when learning the
full set of stimuli. The choice of stimulus presented on any
trial was (uniformly) random throughout this study, except
for the fixed-order batch (Fig. 2a) where all the stimuli were
repeatedly presented in the same order.

The average reward rm was initialized at a uniform random
value between 0 and 1 to take into account some reward sto-
chasticity in the network history prior to learning the task
at hand. After each stimulus presentation rm was updated
according to

∆rm = λ(r − rm) (4)

where λ is a small forgetting rate of the previously collected
reward within the presentation protocol. We chose a value
of λ guaranteeing that more than 3P stimulus presentations
were required to reach the target average reward value of
0.96, if initially rm = 0.5. When rm achieves the target value
of 0.96, we say that the network has learned and stop the sim-
ulation, since with the running mean technique the maximum
level of reward equal to 1 cannot be achieved. The value of
0.96 represents less than 5% of incorrect network responses
on average. The specific values used for λ are as follows:
λ = 0.05 for learning the four familiar stimuli and λ = 0.07
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for learning the four novel stimuli in Figs. 1 and 2. Note that
0.05 is actually significantly smaller than necessary to sim-
ply average over 12 = 3P stimulus presentations into the
past. This is intended to stabilize the network responses to
the familiar stimuli even more than usual to take into account
the experimental observation (Chen and Wise 1995a; Wirth
et al. 2003) that the monkeys would almost always recognize
the familiar stimuli correctly. For Fig. 3, λ = 0.005, and for
Fig. 4, λ = 0.03.

4.3 Node perturbation (NP)

For a fair comparison, we adapted the original node pertur-
bation learning rule (Jabri and Flower 1992; Cauwenberghs
1993; Werfel et al. 2005) to the case of bounded weights
and endowed it with reward saturation as was done for HRL.
When the input layer is clamped by a stimulus, the state of
the network is computed with synaptic current to neuron i
perturbed by a noise signal ∆hi , drawn from a normal dis-
tribution with zero mean and variance of σ 2

NP. The output
yi of the i th neuron is set to 1 if Ii + ∆hi > 0 and to 0
otherwise. The noise signals used for each neuron (and on
each trial) are independent. After iteratively calculating the
neuronal activities, the reward r = r(Z , µ) is administered
and the weights of all the synaptic afferents onto neuron i are
updated based on

˜∆Ji j =
{

(1 − rm) ηNP∆hi x j if r = 1
−ηNP∆hi x j if r = 0

(5)

where ηNP is a learning rate. To enforce the bounds on the
synaptic efficacies, the actual updates ∆Ji j are obtained from
(3). Similarly, rm is updated in the same way as for HRL, with
the same parameters. The specific values used for σNP and
ηNP are as follows: σNP = 0.01 and ηNP = 1 for Fig. 1.
For Fig. 3, σNP = 0.0005 and ηNP = 1. σNP = 0.0045 and
ηNP = 0.3 for Fig. 4a1, b1; σNP = 0.002 and ηNP = 0.5 for
Fig. 4a2, b2; σNP = 0.003 and ηNP = 0.3 for Fig. 4a3, b3.

4.4 Weight perturbation (WP)

For a fair comparison, we adapted the original weight per-
turbation learning rule (Widrow and Lehr 1990; Flower and
Jabri 1993; Werfel et al. 2005) to the case of bounded weights
and endowed it with reward saturation as was done for HRL.
Synaptic updates occur twice per learning step: first, a noisy
exploratory update, followed by a definitive learning update
based on the outcome of the exploration. On the exploratory
step current synaptic strengths Ji j are updated to become
Ji j + ∆hi j , and the network output is calculated based on
these updated weights. The noise signals ∆hi j are drawn
from a normal distribution with zero mean and variance of
σ 2

WP. All ∆hi j are independent from neuron to neuron and

from trial to trial, but the same sample values are used in the
exploratory and learning updates (below).

After obtaining the reward value r(Z , µ) for the output
produced by the exploratory synaptic changes, those changes
are undone before the learning update is performed. If r = 1,
the synapses with presynaptic activity are then changed in the
direction of the corresponding provisional noise, whereas the
changes are in the opposite direction if r = 0. Formally, the
original Ji j are updated based on

˜∆Ji j =
{

(1 − rm) ηWP∆hi j x j if r = 1
−ηWP∆hi j x j if r = 0

(6)

where ηWP is a learning rate. To enforce the bounds on the
synaptic efficacies, the actual updates ∆Ji j are obtained from
(3). Similarly, rm is updated in the same way as for HRL, with
the same parameters. The specific values used for σWP and
ηWP are as follows: σWP = 0.04 and ηWP = 0.25 for Fig. 1.
σWP = 0.003 and ηWP = 0.5 for Fig. 4a1, b1; σWP = 0.003
and ηWP = 0.5 for Fig. 4a2, b2; σWP = 0.002 and ηWP = 0.5
for Fig. 4a3, b3.
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