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Abstract
Predictive coding has been previously introduced as a hierarchical coding framework for

the visual system. At each level, activity predicted by the higher level is dynamically sub-

tracted from the input, while the difference in activity continuously propagates further. Here

we introduce modular predictive coding as a feedforward hierarchy of prediction modules

without back-projections from higher to lower levels. Within each level, recurrent dynamics

optimally segregates the input into novelty and familiarity components. Although the ana-

tomical feedforward connectivity passes through the novelty-representing neurons, it is nev-

ertheless the familiarity information which is propagated to higher levels. This modularity

results in a twofold advantage compared to the original predictive coding scheme: the famil-

iarity-novelty representation forms quickly, and at each level the full representational power

is exploited for an optimized readout. As we show, natural images are successfully com-

pressed and can be reconstructed by the familiarity neurons at each level. Missing informa-

tion on different spatial scales is identified by novelty neurons and complements the

familiarity representation. Furthermore, by virtue of the recurrent connectivity within each

level, non-classical receptive field properties still emerge. Hence, modular predictive coding

is a biologically realistic metaphor for the visual system that dynamically extracts novelty at

various scales while propagating the familiarity information.

Introduction
Amajor challenge in understanding the human connectome is to unravel the intimate relation-
ship between anatomical and effective (functional) connectivity [1–4]. It has been recognized
that effective connectivity in terms of correlated activity does not necessarily require direct ana-
tomical projections [5]. On the other hand, anatomical connectivity in the form of white matter
tracts has been found to imply effective connectivity [6]. However, as we point out here, this
does not hold for anatomical projections in general. Even if excitatory connections
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instantaneously drive the postsynaptic activity, in a recurrent network the activity on the time
scale of network dynamics may be causally unrelated to the instantaneous drive.

Our model of stimulus representation in the visual system provides an example of how
effective and anatomical connectivities may differ. The visual system has been described as a
hierarchy of predictive coding schemes, where activity in a lower level is ‘predicted’ by activity
in the next level of the hierarchy [7–9]. Because the ‘prediction’ in the higher level is effectively
subtracted from the lower-level activity, it was argued that in this lower level only the error sig-
nal remains, and, as a consequence, only novelty information is passed to higher cortical levels
[7, 10]. However, this conclusion appears to rely on the short-term network dynamics only.
Instead, we propose that once the recurrent network has equilibrated, it is in fact the familiarity
information, not the novelty, that is projected forward to higher cortical areas (see also [11]).
We show that at each level of the hierarchy the recurrent dynamics divides the input signal
into orthogonal familiarity and novelty components. Both of these components do effectively
only depend on the lower-level familiarity component, but this functional dependence is not
reflected in the direct anatomical connectivity (cf. Figs 1 and 2). This is where our approach
differs crucially from the previous hierarchical predictive-coding work [7, 11], in which explicit
feedback connections from higher cortical areas played an essential role in the network
functionality.

To link anatomical and effective connectivity one may start with either of them. Classically,
data on anatomical connectivity is first collected and then interpreted in functional terms.
From a theoretical point of view, however, it is natural to first consider a possible functional
purpose, and then seek its neuronal implementation. Generative models represent a general
framework for operating in this opposite direction [12, 13]. The basic idea is to specify a model
describing how sensory stimuli can be reconstructed (‘generated’) from a lower-dimensional
neuronal activity pattern. The function assigned to the visual system in this setting is to repre-
sent visual stimuli in a compressed form such that the original stimuli can be reconstructed as
closely as possible (see also [14, 15]). This approach is also adopted in predictive coding [7]
and can itself be deduced from a unifying Bayesian optimization principle [16]. Given a genera-
tive model for reconstructing an image I from neuronal firing rates f, I� F(f), one may ask
whether the firing rates in turn could be explained by some neuronal processing triggered by
the image. This amounts to inverting the generative model and obtaining the firing rates from
the image, f� F−1(I). The task is then to find a generative function F such that its inverse F−1

can be implemented in a neuronal circuitry. We show that the requirement of neuronal imple-
mentability of the inverse generative function strongly constrains the neuronal transfer func-
tion, essentially only allowing threshold-linear neurons. Further restrictions on the generative
model arise from the fact that the receptive fields of neurons have limited size; thus, additional
neuronal layers are required to extract more global features from visual stimuli.

Here we suggest that stimulus representation and recognition in the visual system is based
on a modular hierarchy of predictive coding schemes with an effectively feedforward character.
Recurrent connections are restricted to each individual level to separate novelty from familiar-
ity information; they do not feed back to preceding levels as originally suggested [7]. We show
that a quadratic regularity constraint can make this modular architecture functionally very
similar to the fully recurrent architecture while keeping the advantages of a level-specific opti-
mal encoding and the fast relaxation time characteristic of visual perception [17–19]. Further-
more, non-classical receptive field (RF) properties—as observed in the original predictive
coding scheme [7, 20]—emerge from the within-level lateral connections, despite the absence
of the top-down projections and despite linear neuronal dynamics only. This becomes possible
because the RFs are limited to small overlapping areas on which the neurons develop specific
interactions.

Modular Predictive Coding
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Fig 1. Modular predictive coding and image reconstruction after learning. a Example of a novel image I presented to the network after learning on 1000
other images in a total of 5000 randomly sampled presentations. b Input f0 to the first level after retinal and LGN processing. c1 Activity of level-1 familiarity
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Finally, we suggest that, instead of being essential to the representation of natural visual sti-
muli by means of predictive coding, top-down connections are engaged in attention, memory
recall and in top-down-gated learning, without substantially affecting the fast processing of
sensory stimuli.

Results

Modular novelty-familiarity coding
In this paper we consider hierarchical coding of visual stimuli where at each level of the hierar-
chy it is possible to infer (‘predict’) the activity at the preceding lower level. Mathematically,
vector fi of neuronal firing rates at level i can approximate the firing rate vector fi−1 at the lower
level, fi−1 � ϕ(Ui fi), where Ui is a linear transform and ϕ the generative function, a possibly
nonlinear function applied component-wise to the linear combinations of neuronal activities at
level i. To enforce information extraction at each level, complexity constraints are imposed on
fi, e.g., that fi be of lower dimension than fi−1. The approximation quality is measured by a qua-
dratic error,

Ei ¼
1

2
k fi�1 � �ðUifiÞ k2 ; ð1Þ

neurons f1 receiving 1-to-1 input from n1-neurons through constrained connection matrix V1 (� UT
1 ). d1 Reconstruction of the preprocessed image based on

the steady-state activity of the level-1 familiarity neurons, f0� U1 f1. e1 Activity of level-1 novelty neurons n1 receiving 1-to-1 input from the LGN and localized
input from f1-neurons through the constrained connection matrixU1. Orange circles represent RFs of three neighboring f1-neurons. c2, d2, e2 The
corresponding quantities for level 2. The number of f2-neurons is 50% of the number of f1-neurons and 25% of the number of n1-neurons (= number of pixels
in the visual input).

doi:10.1371/journal.pone.0144636.g001

Fig 2. Anatomical versus effective connectivity. A Schematic anatomical connectivity pattern in the early
ventral visual cortex shows recurrent synaptic connections within each level (Eq (4)). Lower-level ‘familiarity’
neurons (green) project to ‘novelty’ neurons (red) at the next higher level.B Effective connectivity expressing
causal relationships results in a purely feedforward network (Eq (5)). At each level, familiarity and novelty
information is extracted from the familiarity representation at the previous level.

doi:10.1371/journal.pone.0144636.g002
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where for the first level (i = 1) the input activity represents the image, f0 = I. Within the classical
predictive coding framework [7], the total error function E1+E2+⋯+EL is minimized across L
levels, with the consequence that the activity vector fi depends on both the activities of the
lower and higher levels.

Here, we suggest a modular hierarchical coding which assumes that at each level i the corre-
sponding error function Ei is minimized independently of the representation at the higher level
(Fig 1). The minimization is achieved both on the time scale of the fast neuronal dynamics and
that of the slow synaptic plasticity. For the neuronal dynamics this amounts to calculating the
gradient of Ei with respect to the neuronal firing rates fi at each level separately, and equating
the negative of this gradient to the temporal derivative of fi. Assuming that ϕ is the identity
function, fi then evolves as

t _f i ¼ � @Ei

@fi
¼ UT

i ðfi�1 � UifiÞ ; ð2Þ

with some time constant τ and UT
i being the transpose of matrix Ui. As we argue below, nonlin-

ear functions ϕ different from threshold-linear would require non-local neuronal processing
rendering the corresponding generative model biologically unlikely, at least in the absence of
non-monotonic gain modulation.

To make the dynamics Eq (2) neuronally plausible we introduce auxiliary ‘novelty’ neurons
which represent the difference ni = fi−1 − Ui fi. Note that this difference expresses a prediction
error, i.e., the residual activity in the lower-level neurons fi−1 that cannot be ‘predicted’ by the
higher-level neuronal activities fi. In our interpretation, this difference is calculated by recur-
rent connections within the upper layer i, without assuming top-down connections (Fig 2a).
Since in reality and in our model the reconstruction is learned based on repeated stimulus pre-
sentation, the fi neurons encode the lower-level activity by exploiting the statistics of all images
presented, and hence we refer to the fi’s as ‘familiarity’ neurons (also called ‘prediction’ or
‘representation’ neurons—cf. [21]). Since due to the above definition the activity of novelty
neurons tracks the prediction errors instantaneously, their neuronal time constant must be
short compared to that of the fi neurons. This dynamical constraint can be taken into account
by introducing a small leak term −�fi, yielding a long integration time constant for fi as com-
pared to the dynamics of ni. The leak term can also be considered as additional constraint that
keeps the overall activity of the fi neurons low,

Ei ¼
1

2
k I � Uifi k2 þ

�

2

XNi

k¼1

ðfiÞ2k : ð3Þ

For biological realism—and to allow for nonlinear computational properties (see [22–24] and
below)—we truncate the firing rates of the fi neurons at 0 whenever they would become nega-
tive otherwise. The overall neuronal dynamics minimizing the individual error functions Ei
then becomes

tf _f i ¼ ��fi þ Vini ; constrained to fi � 0

tn _ni ¼ �ni þ fi�1 � Uifi ;
ð4Þ

where Ui represents the matrix of synaptic weights from the fi to the ni neurons, and its approx-
imate transpose Vi � UT

i the weights from the ni to the fi neurons within level i (similar, but
not the same initial values—see Methods—are more realistic biologically and the transposed
update rule Eq (6) lead to Vi approaching UT

i as learning progresses). Similar neuronal
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dynamics applied to a single layer with the whole image as each neuron’s receptive field was
introduced in [22].

The same quadratic constraint in Eq (3) also mimics the effect of the missing top-down con-
nections that would introduce a quadratic penalty term on the components not represented by
the upper level (Eq (S.7) in S1 Supporting Information). In the cross-level predictive coding
scheme, the top-down connections would selectively suppress components that provide less
information for the coarse-grained representation at the higher level. But in doing so, the
lower-level network will only converge to a steady state when the higher-level network does.
This deteriorates the convergence time for the lower level towards that of the higher level,
which itself can only extract the relevant information when the lower level dynamics is near
relaxation. The dynamics Eq (4), instead, is faster as it does not depend on the more global fi+1
activity.

Anatomical versus effective connectivity
The dynamics in Eq (4) describes a layered hierarchy of mutually connected familiarity and
novelty neurons fi and ni, respectively, which could be embedded in the visual system. Starting

with an image f0 ¼ ~I preprocessed by the lateral geniculate nucleus (LGN), novelty neurons ni
receive feedforward input from familiarity neurons fi−1 of the lower level as well as input from
familiarity neurons fi of the same level. These latter also receive input from novelty neurons ni
of the same level, and are thus embedded in a recurrent network within level i (Fig 2a). How-
ever, in the steady state we can express the activity of both the familiarity and novelty neurons

as a function of input from the previous level: from Eq (2) with _f i ¼ 0 we obtain fi ¼ Uþ
i fi�1,

where Uþ
i is the pseudoinverse of Ui. Plugging this into the second equation of Eq (4) while set-

ting _ni ¼ 0 yields ni as a function of fi−1. Hence, while the recurrent anatomical connectivity is
expressed by Eq (4) (Fig 2a), the effective connectivity in the steady state becomes purely feed-
forward (Fig 2b):

fi ¼ Uþ
i fi�1 and ni ¼ ð1� UiU

þ
i Þfi�1 ð5Þ

This effective connectivity represents the underlying causalities and effectively drives the
responses of familiarity and novelty neurons at level i by those of familiarity neurons at level i
− 1, averaged across the time scale τf of the network dynamics (on the order of milliseconds).
Due to the modularity, the full representational power at a specific level i is exploited to opti-
mize the novelty-familiarity representation at that spatial resolution, while also enabling an
optimized, parallel readout from the different levels. In contrast, when optimizing only the sin-
gle sum E1+E2+⋯+EL across all levels as in the classical ‘cross-level’ predictive coding [7], top-
down connections from level i+1 introduce additional constraints at level i and help to reduce
the error at level i+1, but this is at the expense of a non-optimal lower-level representation (see
Eq (S.7) and Fig A in S1 Supporting Information). A compromise that helps to improve the
prediction error at the next level i+1 while retaining the full representational power at level i is
to introduce a quadratic penalty term on the familiarity neurons at level i that we used to derive
the dynamics for fi (Eqs (3) and (4)).

Synaptic plasticity and hierarchical PCA
Learning was implemented in our model by further minimizing each individual error function
Ei with respect to the synaptic connectivity matrix Ui on the slow time scale of stimulus presen-

tation. While the input to the first level is clamped at the currently presented image f0 ¼ ~I , the
neuronal dynamics is relaxed across the levels until it reaches a steady state, and Ui is then

Modular Predictive Coding
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updated by gradient descent on the error function Ei (Eq (1)) with respect to synaptic weight
parameters Ui. Subject to a spatial locality constraint ensuring that outside a small area of the
RF the connectivity is always 0, the weight update is

DUi ¼ �Z
@Ei

@Ui

¼ Z ðfi�1 � Uif
�
i Þ ðf �i ÞT ¼ Z n�

i ðf �i ÞT ð6Þ

with some learning rate η. Here f �i and n�
i are steady-state neuronal activities after network

relaxation. Notice that this synaptic update rule has the Hebbian form of postsynaptic activity
times presynaptic activity. Similarly, the synaptic updates from the novelty to the familiarity
neurons take the Hebbian form

DVi ¼ Z fi ðniÞT ð7Þ

In the present case of modular hierarchical coding (but not for the cross-level predictive
coding [7]), this architecture performs a hierarchical principal-component analysis (PCA) of
the image. PCA is known to minimize the mean squared error ([25, 26]; also demonstrated
explicitly in S1 Supporting Information, Section S.II). The familiarity neurons’ activities fi rep-
resent the principal components of the activities fi−1 of the lower-level familiarity neurons by
virtue of the effective feedforward connectivity (Eq (5)). But unlike in the previous work [22,
25, 26], the receptive field (RF) of a single fi neuron is limited to a small area and does not span
the whole image. Different components are extracted on the RF overlaps. These components
jointly span the space of the first principal modes on the overlaps (cf. Fig 3e and S1 Supporting
Information, Subsection S.II). Yet, the PCA property does not imply that the image analysis is
linear. Due to the thresholded transfer functions, neurons with overlapping or neighboring RFs
may nonlinearly interact to minimize the prediction error on the entire set of images (see Sub-
section on endstopping below).

Development of level-1 recurrent connectivity
To track the progress of learning, we considered the evolution of the reconstruction error on a
training set of 1000 natural images and the average steady-state activities at the first level. As
expected, the average activity fav across the familiarity neurons f1 increases while the average
activity nav across the novelty neurons n1 decreases with repeated presentations of the images
(Fig 3a, black and magenta curves, respectively). At the same time, the reconstruction of the
LGN-preprocessed image f0 based on the activity of familiarity neurons f1, f0 � U1 f1, becomes
more accurate as expressed by the error curve (Fig 3a, golden) and the example reconstructions
(Fig 3b). The topographic representation of the neuronal activities shows that during the learn-
ing process the contrast among the novelty neurons decreases (Fig 3c1–3c3) while among the
familiarity neurons it increases (Fig 3d1–3d3). Learning transforms novelty into familiarity
while keeping the original information (as expressed by f0 = U1 f1+n1).

Inspection of the receptive fields (RFs) of familiarity neurons f1, as expressed by the vector
of synaptic input strengths from n1 neurons (rows of V1), shows RFs composed of patches of
excitation and inhibition (Fig 3e). When combined to jointly cover the input space, they form
the first principal components of the correlation matrix of the inputs (S1 Supporting Informa-
tion, Subsection S.II)). An additional sparseness constraint in the energy functional (Eq (1)),
e.g., an additional penalty term for the norm of fi or Ui, see S1 Supporting Information), may
force the weight vectors to become orthogonal, while the RFs become more Gabor-like, similar
to the ones observed biologically [27–29]. Yet, as the characterization of the RFs depends on
the choice of stimuli [30–32], we did not intend to reproduce specific RF shapes.

Modular Predictive Coding
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Fig 3. Local recurrent connectivity emerging from unsupervised learning improves reconstruction quality. a Evolution of reconstruction error (δ,
golden, averaged across 50 consecutive presentations) during 5000 random presentations from a set of 1000 training images. Average activity of level-1
novelty neurons (nav, magenta) mirrors decrease in δ. Initial sharp decrease in n1 activity is explained by average activity increase of level-1 familiarity

Modular Predictive Coding
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After learning, we assessed the learning quality on a set of 200 novel images from the same
library but never presented to the network before. The generalization quality is very good: the
average reconstruction error was less than 5% larger relative to that for the images used in
learning. Note that a specific image was only presented approximately 5 times (in each of the
5000 presentations, an image was randomly selected out of the 1000 images) during the learn-
ing process, and so learning of the local image structure is based on the statistics of all the 1000
images.

Hierarchical novelty-familiarity representation
To illustrate how the image representation is decomposed into familiarity and novelty signals
at different spatial scales, we superimposed a grid of two different line widths onto an image
not used for learning (Fig 4a and 4b). Neither grid is a typical feature of natural images, and
hence they are detected as novel. However, because of the different line widths, the narrow
‘curtain’ is mainly detected at level 1 (white grid in Fig 4c1, reflecting activity of n1-neurons),
while the area of the wide ‘fence’ is mainly detected at level 2 (white grid in Fig 4d2, reflecting
activity of n2-neurons). The wide bars of the fence are recognized as statistically familiar at
level 1 because a level-1 RF is covered by a uniform bar of the fence (narrow circle in Fig 4b),
and the uniform brightness as a zero-order principal component can be easily reconstructed by
the familiarity neurons. At this first level, only edges along the bars of the fence are partially
detected by the novelty neurons (Fig 4d1).

Novelty is a local phenomenon restricted to the receptive field. Where novelty is detected,
the original image can be partially reconstructed using surrounding familiarity neurons
through lateral connections. In fact, image reconstruction based on the familiarity neurons
alone partially succeeds to retouch away the narrow curtain at level 1 (Fig 4e1), and both the
fence and the curtain at level 2 (Fig 4e2 and 4f2). As the accurate image reconstructions from
the fewer level-2 familiarity neurons show, familiarity information is still available at that level,
despite the fact that input to level 2 is only fed into level-2 novelty neurons. This is possible
because familiarity neurons (at level 2) continuously integrate incoming information from
novelty neurons, until the activity in the novelty neurons cannot be explained anymore by the
familiarity neurons (cf. Eq (4)).

The size of an occlusion that can be correctly reconstructed depends on how small it is com-
pared to the RFs of the corresponding familiarity neurons. To investigate how the reconstruc-
tion quality at the first two levels improves as a function of the occlusion size, we consider
randomly scattered square-shaped occlusions of the same total area (5% of the image area, Fig
5a and 5b). Reconstruction quality is assessed based on 200 novel images from the same library,
but again not part of the training set. As expected, level-1 and level-2 familiarity neurons carry
original image information even for occluded patches. The distance between the reconstruc-
tions of occluded and non-occluded images is much less than that between the non-occluded
and occluded images themselves for small occlusion sizes (k = 0 corresponds to no occlusion
and, correspondingly, all curves start at 0 for k = 0). This suggests that for small occlusion sizes
despite the occlusions, it is the original, non-occluded, image that is reconstructed.

neurons (fav, black), which quickly learn to extract the most dominant component, mean local brightness (cf. d2). b1–b3 Reconstruction of a single novel
image (not used for training) after 0, 100, and 5000 presentations based on f1 activities. c1–c3 Activity of all novelty neurons n1 (same number of neurons as
pixels in image), showing the reduction of local novelty with decreasing reconstruction error. d1–d3 Corresponding activities of f1-neurons in response to the
novel image. Image representation is gradually refined, despite the image not having been presented to the network. e1–e3 Evolution of overlapping
receptive fields (RFs, rows of V1), shown separated for visualization, of nine representative nearest-neighbor familiarity neurons.

doi:10.1371/journal.pone.0144636.g003
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The activities of the novelty neurons on the occluded and non-occluded areas represent a
biologically feasible measure of reconstruction errors in the respective image areas. Level-1
novelty neurons’mean activity over the occluded areas (Fig 5d, decreasing solid blue curve) is
highest for the smallest occlusion patch size k and diminishes progressively with increasing k.
It equals the non-occluded neurons’ activity (Fig 5d, dotted blue curve) at approximately k = 8
pixels (the diameter of a single level-1 RF), and then continues to decrease, indicating that uni-
form occlusions larger than the size of a single RF are indeed the most familiar and easiest to
reconstruct. For level-2 novelty cells, the occluded (Fig 5d, solid red curve) and non-occluded
(dotted red curve) mean activities become equal at approximately the size of the level-2 RF
(diameter�18), as expected. The solid red curve, unlike the blue one, begins at 1 for the small-
est occlusion of size k = 1 (and remains non-monotone for small occlusion sizes). This is a con-
sequence of the natural definition of the RFs of level-2 novelty neurons as equal to those of the
corresponding level-1 familiarity neuron into which the occlusions fall. E.g., for k = 1 the 5%
total occlusion translates into approximately 1 pixel of occlusion for every 4.5 pixels of the
image and hence, on average, every level-2 novelty neuron’s RF contains a pixel of the occlu-
sion when k = 1.

Fig 4. Novelty detection and familiarity information fill-in at different spatial scales. A familiar image is either occluded by a narrow, 1-pixel-wide
‘curtain’ (a) or by a 7-pixel-wide ‘fence’ (b). Circles represent the RFs of level-1 (smaller circle) and level-2 neurons, respectively. Novelty neurons at level 1
are activated by the fine curtain (c1), while at level 2, curtain information is filtered out (c2). For the fence, novelty at level 1 is only detected at some edges
(d1), but novelty of the wide fence bars is detected at level 2 (d2). Reconstruction of the image (LGN activity) based on the level-1 and level-2 familiarity
neurons for the curtain (e1, 2) and the fence occlusions (f1, 2) shows how the occluded parts of the image are filled in despite the reduced number of
neurons.

doi:10.1371/journal.pone.0144636.g004

Modular Predictive Coding

PLOS ONE | DOI:10.1371/journal.pone.0144636 December 15, 2015 10 / 19



Non-classical RF property of endstopping results from within-layer
connectivity
To test for the non-classical RF property of endstopping, we stimulated each level-1 familiarity
neuron separately by a uniform bar extending horizontally across the whole neuron’s RF and
vertically across 40% of the RF diameter. The bar was approximately 5 times brighter (similarly
to [7]) than the background, whose brightness was equal to the average over all training images.
The equilibrium activity of each level-1 familiarity cell’s response to a horizontal bar was then
recorded and the 20% of the neurons with the highest equilibrium activities were designated
bar detectors. These detectors were then stimulated, again one at a time, by bars of the same
width (equal to the RF diameter) and height varying systematically from 0 to 3 RF diameters.
The activity deviations of all the novelty cells within each bar detector’s RF from their rest val-
ues, averaged over each bar detector’s RF, were computed for each height.

Fig 5. Reconstruction and novelty as a function of occlusion patch size k. a, b Example of a novel image with occlusion patches (grey squares) of side
length k = 1 (a) and 10 pixels (b). For each patch size, the total occluded area is 5% of the image area. c Reconstructions of occluded and non-occluded
images progressively becomemore similar across levels. Average distance δ (across 200 novel images) between the non-occluded original image I and the
same image Î occluded by the patches (black curve, ‘level 0’), and between the reconstructions of those images F−1(I) and F�1 ð̂IÞ based on the familiarity
neurons at level 1 (blue) and level 2 (red), respectively. d Average activity of level-1 (blue) and level-2 (red) novelty cells over the occluded (solid) and non-
occluded image areas (dotted curves). Novelty neurons in the occluded parts of the image are more active than novelty neurons in the non-occluded parts of
the image as long as the patch size k is smaller than the RF diameter (8 and 18 pixels for levels 1 and 2—cf. blue and red circles—respectively).

doi:10.1371/journal.pone.0144636.g005
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The relative response of the novelty neurons decreased when the bar height extended
beyond 0.4 RF diameter (Fig 6a) indicating cooperative effects between the familiarity cells
with overlapping RFs. To illustrate the typical behavior of novelty neurons, we also averaged
novelty activity across RFs of the familiarity neurons in a fixed-size neighborhood of approxi-
mately 3.5-by-3.5 RF diameters around each bar detector. The responses to the short stimulus
of height 0.4 RF diameter (Fig 6b) and the tallest stimulus of height 3 RF diameters (Fig 6c)
show that for the tall stimulus, despite the same brightness, the activity is considerably lower
and more uniform. The reduction of novelty activity in the bar center with increasing bar
height reveals an effective polysynaptic inhibitory effect of the neighboring neurons on the bar
detectors, consistent with the endstopping behavior of bar-detecting neurons in the primary
visual cortex arising from lateral connectivity [33–35]. The comparison between the response
to the short bar (Fig 6b) and that to the tall bar (that itself can be considered as a juxtaposition
of 3 vertically aligned bars of height 1) reveals the nonlinear inhibitory processing due to the
thresholding of the f1 activities. In fact, the response to the tall bar (Fig 6c) is much weaker
than the sum of the responses to the bars of height 1 would be.

Fig 6. Non-classical effect of endstopping is present in the effectively feedforward architecture of
modular predictive coding. a Activity of level-1 novelty neurons averaged across the RF of bar-detecting
level-1 familiarity neurons decreases as bar height exceeds approximately one-half of the RF diameter.
Activity is shown relative to baseline activity for the short bar of 0.4 RF diameter and five times brighter than
the background. Black circles indicate the responses of bar detectors relative to the baseline for short and tall
bars in panels b and c, respectively. b Average activities of level-1 novelty neurons in a neighborhood of
3.5-by-3.5 RF diameters around each bar-detector in response to the short bar. Central dark red square
(black circle) represents the average activity of all novelty cells within the RF of a bar detector, further
averaged across all bar detectors. The same double averaging was applied to the novelty neurons within the
RFs of the neighboring familiarity neurons. While these RFs are highly overlapping, they are displayed here
side-by-side. c Same as in panel b, but in response to a tall bar of height 3 (instead of 0.4) RF diameters. The
averaged activity of novelty neurons (representing the local reconstruction error) within the bar-detectors RF
(black circle) is lower than that for the short bar (compare black circles) and for the same reason also lower
than that recorded at the ends of the bar (top and bottom yellow patches).

doi:10.1371/journal.pone.0144636.g006
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Nonlinear predictive coding is neuronally implementable for threshold-
linear transfer functions only
Predictive coding has been considered within a general framework of optimization principles
allowing for nonlinear feature extraction [16, 21, 36]. In striving for a neuronal implementation
of such nonlinearities, however, we find below that it is essentially only the linear neuron
model with the quadratic error function that can be implemented by neurons using locally
available information. Yet, threshold-linear neurons allow the predictive coding model to
remain linear while enabling nonlinear feature extraction. Given the representation of the
unconstrained activities f by a difference of threshold-linear ‘ON’ and ‘OFF’neurons, f = bfc −
b−fc, another readout neuron may easily extract the sum bfc + b−fc. Qualitatively, the latter
operation is similar to taking the square of the linear filter output, f2, which was shown to lead
to phase-invariant receptive fields of complex [37] or motion-selective cells [38]. Hence, the
neuronal implementation of the linear version of modular predictive coding yields the ingredi-
ents to explain the ON-OFF simple cells [39] and also complex cells in the primary visual cor-
tex (V1) as they arise in nonlinear optimization models [40, 41].

Implementation of positive transfer functions. As everywhere in this paper, the neuronal
activities fi were kept positive by truncating them at 0 should they become negative. We also
explored the option of a non-negative prediction error. To achieve this, we applied a shift to
the n-activities by a vector n� with equal and positive components (large enough so that the ni
became nonnegative at all times) and then subtracted this shift again to calculate _f i and the
weight changes as if ni had not been offset. Hence, instead of Eqs (4), (6) and (7) we consider

tf _f i ¼ ��fi þ Vini � bi ; constrained to fi � 0

tn _ni ¼ �ni þ n� þ fi�1 � Uifi

ð8Þ

DUi ¼ Z ðn�
i � n�Þ ðf �i ÞT

DVi ¼ Z f �i ðn�
i � n�ÞT

Dbi ¼ Zbf �i

ð9Þ

Here, again, f �i and n�
i are the steady-state neuronal activities after network relaxation, while

η and ηb represent learning rates. The bias bi must converge towards Vi n� due to the steady
state conditions hnii = n�, which express that the prediction errors ni − n� are balanced around
0. This is the case because f �i on the right-hand side of the bi-update equation is a locally avail-

able approximation to the negative gradient of ðVin
�
i � biÞ2 with respect to bi.

Nonlinear generative functions do not have a neuronal implementation. When consid-
ering a nonlinear generative function ϕ, the gradients of Eq (1) with respect to fi and Ui

become, instead of Eqs (2) and (6),

t _f i ¼ UT
i ððfi�1 � �ðUifiÞÞ: � �0ðUifiÞÞ ð10Þ

DUi ¼ Z ððf �i�1 � �ðUif
�
i ÞÞ: � �0ðUif

�
i ÞÞðf �i ÞT ; ð11Þ

where.� is the componentwise multiplication, η is a positive learning rate and f � is the steady-
state activity.

Any nonlinear generative function ϕ that is different from threshold-linear introduces a
nontrivial multiplicative modulation of the synaptic input to the fi-neurons as expressed by the
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pointwise product in Eq (10). The same product also arises in updating the weight matrix Ui in
Eq (11). By again considering the difference in the above equations as auxiliary neuronal quan-
tities, ni = fi−1 − ϕ(Ui fi), the modulation by ϕ0(Ui fi) even becomes non-local. In fact, the input
fi weighted by the synaptic strengths, Ui fi, would then become the input to a ni neuron and so
it is not locally available at the site of the fi neuron (without assuming a specific rewiring and
duplication of synaptic weights).

Alternatively, one may postulate a neuron with highly non-monotonic interactions among
different synaptic inputs as expressed by the steady state equation of that neuron, ni = (fi−1 −
ϕ(Ui fi)).�ϕ0(Ui fi). This would imply, on the one hand, that some part of the synaptic current
Ui fi is nonlinearly added to the other input fi−1, while on the other hand, the total postsynaptic
current is multiplicatively modulated by the derivative ϕ0(Ui fi). Although multiplicative gain
modulation, say by some dendritic input, is possible [42], this modulation would be non-
monotonic since ϕ0 (for a sigmoidal function ϕ) is 0 for both small and high values.

A possible non-quadratic error function. Further investigating other possible nonlineari-
ties in the optimization problem at hand, we also considered the error function

EUi
ðfi; fi�1Þ ¼ Cðfi�1 � UifiÞ

withCðxÞ ¼ 1
a2 log cosh ax applied component-wise. For small x this error is quadratic,

CðxÞ � 1
2
x2, and for large x it is linear,CðxÞ � 1

a jxj. We can combine this nonlinearity with

the rectification of fi and the upwards shift of ni. In the neuronal and synaptic dynamics speci-
fied by Eq (8) only the second line then changes to

ts _ni ¼ �ni þ n� þC0ðfi�1 � UifiÞ ;

whereC0ðxÞ ¼ 1
a tanh ax � x for small x is a standard sigmoidal nonlinearity often considered

in modeling a saturating neuronal transfer function. In computational terms, the nonlinearity
C tends to alleviate the effects of statistical outliers in input stimuli. Our simulations (with
optimized parameter α = 4, not shown), however, reveal that these benefits are rather humble.
Hence, all of the results presented in this paper are for the simpler, more transparent model
described by Eqs (8) and (9).

Discussion
We have reconsidered predictive coding as an organization principle of the visual cortex.
While in the original work the anatomical feedforward propagation of information from nov-
elty neurons has been emphasized [7, 10, 11], we show that in functional terms it is actually
the familiarity, not the novelty, information that is fed to the next level. This apparent conun-
drum arises because the only anatomical connections from a lower to a higher level project
from the lower-level familiarity neurons into the higher-level novelty neurons (Fig 2). How-
ever, at the higher level, it is again the familiarity information that is extracted from the feed-
forward input, although now at a coarser resolution. The network dynamics continuously
separates familiarity from the novelty information while simultaneously building up both
representations.

The modular predictive coding scheme that we are proposing here assumes that on the fast
recognition time scale features are only extracted via level-specific recurrent circuitry, not via
top-down projections (Fig 1). This modularity is a compromise between the fully backward-
connected original coding scheme [7] and a purely feedforward hierarchy without lateral con-
nectivity [1]. Viewing stimulus representation as being modular without top-down feedback
has distinct computational advantages. First, the network computation can be understood as a
hierarchical principal component analysis with increasing receptive field sizes. Second, it
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reduces relaxation times and hence the time for feature recognition at various spatial resolu-
tions that has been shown to be as fast as 30–100ms [17–19]. Third, at each level the full repre-
sentational power of all neurons is used to optimally extract the information at the
corresponding level of granularity. Correspondingly, stimulus compression is achieved solely
by limiting the number of prediction neurons, not by shunting the activity by top-down inputs
from the higher level.

While our model does not include feedback projections from higher levels, we do not sug-
gest that they would not be of functional use. The ubiquitous top-down connections [43, 44]
may have an important functional role in attention gating [45], in memory retrieval initiated
from higher cortical areas [46], or in gating synaptic plasticity by a modulatory input from
other areas [47–49]. However, we do propose that such connections may not be essential in
shaping the stimulus representations on the short-term time scale of the neuronal dynamics. In
fact, assuming that the activity of the novelty and familiarity neurons can be read out from all
levels of the hierarchy, additional top-down projections from within the predictive coding net-
work cannot provide new information about the stimulus. Learning, on the other hand, pro-
vides a helpful means to extract the relevant information by separating novelty from
familiarity. While learning strengthens familiarity and makes novelty more salient, the full
information remains accessible in the combined novelty-familiarity representation. When
restricted to the familiarity neurons, however, the original image is re-represented at each new
level in a more compressed form by filling in the within-level predictions of progressively
increasing size (Figs 3–5).

Despite the lack of top-down projections—and different from [20] where additional multi-
plicative and divisive nonlinearities were introduced—our model explains the emergence of
non-classical receptive field properties via lateral connectivity alone. Such results are in line
with recent experimental findings showing that RFs of V1 cells cannot be defined without con-
sidering their spatiotemporal context [30–32, 50]. In our case, the context sensitivity is facili-
tated by the fact that we did not impose a strict sparseness constraint, but instead derived a
‘soft’ quadratic penalty term from the full predictive coding scheme. In contrast to the sparse-
ness constraint that enforces zero activity, the soft constraint still allows for low activity that
may accumulate and shape the non-classical RF properties. Yet, learning still reduces the over-
all activity within each level and hence leads to a ‘soft sparseness’. This, in addition, arises
because learning decreases the prediction error and hence decreases the activity of the numer-
ous novelty neurons.

Considering possible neuronal implementation of predictive coding, we have arrived at
severe restrictions on the generative functions prompted by the requirement of compatibility
with the current knowledge on neuronal processing. We found that, in essence, the only type of
nonlinearity for generative functions that is neuronally implementable is the threshold-linear
function, whereas other nonlinearities would require non-local processing. However, use of the
threshold-linear transfer function still results in the neuronal processing becoming nonlinear
as shown by the non-classical RF properties (Fig 6b and 6c), making the suggested PCA effec-
tively nonlinear. It has been shown that with such a nonlinearity, PCA can extract independent
components [23, 24]. We further suggest that the thresholding of the linear transfer function at
zero leads to the emergence of ON-cells and OFF-cells [39] that would combine to produce a
fully linear response function or to a response function with complex cell properties [41]. How
far modular predictive coding as presented here can explain such nonlinear properties of V1
neurons, however, is yet to be analyzed in detail.
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Methods

Model inputs, structure and fast dynamics
We applied the modular coding scheme to a set of 1000 grey-level images I (128-by-192 pixels)
from a natural image library [51]. They were passed through localized center-surround filters
(Fig 1a and 1b) intended to mimic the combined effects of eye adaptation and LGN processing.
From each pixel’s brightness in the image we subtracted 80% of the mean brightness, including
that of the pixel itself, in a small circular neighborhood of radius 5 around that pixel. We imple-
mented this filtering for each image I by performing a Fast Fourier Transform (FFT) of the
image, multiplying it by the FFT of the filter, and then taking the inverse FFT to obtain the fil-

tered image ~I ¼ FðIÞ.
The output of the LGN, an image ~I of the same size as I, was fed into the network with

dynamics defined in Eq (4), f0 ¼ ~I and two further levels i = 1,2. The truncation of fi at 0
ensured that the activities remained positive. In view of this rectification we doubled the num-
ber of the familiarity neurons to maintain the reconstruction quality as compared to uncon-
strained neurons used, e.g., in [7]. The total number of (threshold-linear) familiarity neurons
in the first level thus was 2 times, and in the second level 4 times as small as the number of pix-
els in the image, leading to a gradually compressed image representation across levels. When
the truncation of fi at 0 was not applied, we obtained very similar results for the significantly
higher compression factors of 4 and 16 in the first and second levels, respectively (data not
shown). Each filtered image was presented to the network for 5τf time units so that the fast
dynamics could equilibrate. To keep the dynamics of the novelty neurons fast as compared to
one of the familiarity neurons, we set the ni activities to their equilibrium levels, effectively
allowing their instantaneous equilibration and corresponding to τn = 0.

We have also carried out extensive simulations with non-instantaneous ni-dynamics and
nonnegative ni-values for more biological realism as per Eqs (8) and (9); the results were simi-
lar (not shown in this paper).

Other fast-dynamics parameters were as follows: � = 0.01, τf = 1; integration by the forward
Euler method with time step δt = 0.03. The matrix of level-1 familiarity cells defining the length
of the activity vectors f1 was 91-by-136 so that the total number of familiarity neurons was one
half that of pixels in the image, whereas the number of the level-1 novelty neurons was equal to
the total number of pixels in the image, i.e., 24576. The radius of the circular receptive field
(RF) within level 1, defining the non-zero row entries for (24’576-by-12’288 dimensional) syn-
aptic matrix U1, was equal to 4 (yielding�50 entries for each row, i.e., pixels in the RF of a
familiarity neuron). For level 2, the procedure was exactly the same, except that the feedforward
input to level 2 was provided by the f1-values at the end of the fast dynamics, and these values
were not filtered. The size of the second-level familiarity matrix was 64-by-96, and the RF radius
defining the row entries of (12’288-by-6’144 dimensional) matrix U2 was again 4 (which implies

that its effective RF radius in terms of the original image is� 9:0 ¼ 3:5 � ffiffiffi
2

p þ 4: there will be

on average 3.5 distances (
ffiffiffi
2

p
in terms of original interpixellary distance) between level-1 famil-

iarity cells within the level-2 RF and the level-1 familiarity cells outermost in the level-2 RF will
contribute their full radius in terms of the original image, i.e., 4).

Synaptic plasticity
The entire learning session consisted of presenting the 1000 filtered images, randomly sampled
in a total of T = 5000 presentations. Following the equilibration of the fast neuronal dynamics
during an image presentation, the synaptic weights were updated according to Eqs (6) and (7).
The non-zero entries of the weight matrices U and V (corresponding to the RFs) were
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initialized independently with a mean of 0 and standard deviation of�0.0006 for both levels 1
and 2. The learning rate for U was initialized to be ZU0 ¼ 0:0001 for level 1 and ZU0 ¼ 0:0002

for level 2. During the course of the image presentations these learning rates were gradually
reduced to one-fifth of the original rates according to the schedule ηk = η0/(1 + 4k/T) that
defined the learning rates at the kth presentation (k = 1. . .T).

Performance measures
To quantify how good a reconstruction of an input image familiarity neurons fi at each level

would allow, we evaluated the distance δ between the filtered image ~I (LGN output) and its

reconstruction based on the activity of level-1 or level-2 familiarity neurons, ~I � U1f1 and
~I � U1 U2f2, respectively. As a distance measure between two images (or between two activity
vectors) a and b we used the Euclidean (l2) norm of the difference of normalized images (repre-
sented as vectors), δ(a, b) = ka/kak − b/kbkk. For visual comparison purposes, we also pre-
sented the reconstructed images throughout the paper as inverted back into the original image
space (e.g. Fig 1d1 and 1d2). The brain does not need to perform such an explicit reconstruc-
tion. Instead, it may differentially use the local familiarity and novelty information at each level
for further processing and for obtaining the full original information. In fact, after the relaxa-

tion of the neuronal dynamics (Eq (4) with _f i ¼ _ni ¼ 0), the lower-level activity could be fully
reconstructed, e.g. f0 = U1 f1+n1, while the information is segregated into familiarity and nov-
elty representations at the higher level (Fig 1c–1e).

To trace the various quantities during the learning process in Fig 3a, we low-pass filtered
these quantities according to �x :¼ ð1� lÞ�xþlx, with λ = 0.02, x representing the reconstruc-
tion error δ or the spatial average of neuronal activities f1 and n1, respectively, and �x being the
low-pass-filtered version of the same quantity.

The reconstruction error in Fig 5c was calculated using the distance measure δ(a, b) between
the reconstructed images a and b corresponding to cases with and without the occlusion,
respectively. This choice highlights the effects of occlusion rather than reconstruction errors
present both with and without the occlusion.

Supporting Information
S1 Supporting Information. Modular predictive coding analysis in further detail.
(PDF)
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Here we first present the framework of the classical ‘cross-level’ predictive coding
(Section S.I). We show that for a single level, with a readout at the next level but
without top-down connectivity, predictive coding performs principal component analysis
(Section S.II). We next argue that cross-level predictive coding across 2 levels can
essentially be reduced to a single level (Section S.III). To keep the computational benefit
of a hierarchical principal component analysis and to reduce processing time throughout
the levels, we therefore reduce the cross-level predictive coding to our modular predictive
coding scheme (Section S.IV). These sections form the background for Subsection of the
main text in which we consider alternative coding schemes and conclude that in terms
of a neuronal implementation, all the generative models (e.g., as reviewed in [1])
essentially reduce to the quadratic error function with a linear transfer function.

S.I Classical cross-level predictive coding

In [2], predictive coding was introduced as a hierarchical model of visual processing
based on a global objective function summed across the individual components

Ei = EUi
(fi, fi−1) = 1

2‖fi−1 − φ(Uifi)‖2 (S.1)

at each level i of the hierarchy (cf. Eq. (1) in the main text). Here, fi is the vector of
neuronal activations at level i (with ‘f ’ standing for ‘familiarity’), and f0 = I being the
input into the system. Ui is a matrix of suitable dimensions with φ(Uifi) representing
the prediction of the activity in level i− 1 based on level-i activity.

Notice that in a Gaussian noise scenario, where each component of the low level
activity fi−1 is contaminated by an additive Gaussian noise of mean 0 and variance 1,
the log-likelihood of the ‘data’ fi−1 given the ‘parameters’ Ui and fi is just a constant
minus the error function (Eq. (S.1)), i.e., formally logP ( fi−1 |Ui, fi ) = C − Ei , with
C = −Ni−1 log(2π)/2 and Ni−1 the dimension of fi−1. Hence, maximizing the
log-likelihood of the lower-level data is equivalent to minimizing the reconstruction error.
This links the predictive coding scheme (S.1) to various types of Bayesian modeling [1].
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The global objective function according to [2] is just a weighted sum over the levels,

E1 + · · ·+ EL = E(U, f ; I) =

L∑
i=1

EUi
(fi, fi−1) . (S.2)

Recognition in this system amounts to minimizing E(U, f ; I) with respect to fi for
i > 0 to obtain

E(U ; I) = min
fi,i>0

E(U, f ; I) ,

and learning amounts to a slow dynamics in Ui minimizing the average 〈E(U ; I)〉I of
the errors obtained during recognition.

For recognition the relevant gradients defining the temporal evolution dfi/dt of the
neuronal activity in the i-th level are

∇fiE(U, f ; I) = ∇fiEUi(fi, fi−1) +∇fiEUi+1(fi+1, fi) (S.3)

if 1 ≤ i < L, whereas for i = L the second term in the sum is absent. Hence the
gradient in fi also depends on the activations in level i+ 1 and this in effect introduces
a global coupling of the system. If there are many levels such a global relaxation process
becomes difficult to reconcile with the time constraints of visual processing.

S.II Single-level predictive coding performs
principle component analysis (PCA)

Since, as per Subsection 2.7 of the main text, only linear generative functions φ have a
neuronal implementation we set φ = id (as also done in [2]). We first consider a single
level L = 1 so that the global objective function reduces to

E1 = EU1
(f1, I) = 1

2‖I − U1f1‖2

Minimizing this with respect to f1 yields f1 = U+
1 I, where U+

1 is the Moore-Penrose
pseudo-inverse1 of U1. Inserting this in the above inequality yields for
E(U ; I) = 1

2‖(1− U1U
+
1 )I‖2. Note that U1U

+
1 = PU1 represents the orthononal

projection onto the subspace spanned by the columns of U1. Similarly, 1− PU1
= PU⊥

1

represents the orthonormal projection onto the orthogonal complement of the space
spanned by the columns of U1. We hence obtain E(U1; I) = 1

2‖PU⊥
1
I‖2.

Using the last equation we calculate the expected error across images:

〈E(U1; I)〉I = 1
2

〈(
PU⊥

1
I
)T

PU⊥
1
I

〉
I

= 1
2

〈
Tr

(
PU⊥

1
I
(
PU⊥

1
I
)T)〉

I

= 1
2

〈
Tr

(
PU⊥

1
IIT

(
PU⊥

1

)T)〉
I

= 1
2Tr

(
PU⊥

1

〈
IIT

〉
I

)
.

To arrive at the last line we used the fact that within the argument of the trace
operator the three symmetric matrices commute, Tr(ABC) = Tr(ACB), and that for
any projection PU one has PU P

T
U = P 2

U = PU . Hence, to find the minimum of the
above expression across U1, the columns of U⊥1 must span the subspace of eigenvectors

1If the columns of U = U1 are linearly independent then UTU is invertible and U+ = (UTU)−1UT .
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of the correlation matrix
〈
IIT

〉
I

with the smallest eigenvalue. Put differently, the
columns of the matrix U1 itself must span the eigenspace corresponding to the largest
eigenvalues. If U1 has N1 columns and an image I is encoded by N0 pixels, the
dimension of this subspace is N0 −N1. We then get

min
U1

〈E(U1; I)〉I = 1
2 min
U1

Tr
(
PU⊥

1

〈
IIT

〉
I

)
= 1

2

N0∑
k=N1+1

λ
(0)
k , (S.4)

where λ
(0)
k are the N0 −N1 smallest eigenvalues of the correlation matrix

〈
IIT

〉
I
.

Hence, U1U
+
1 = PU1

is the projection onto the first N1 principal components of the
images I, and since in the steady state we have f1 = U+

1 I, the f1 must jointly encode
these first principal components. Thus, finding U1 which minimizes the energy function
essentially corresponds to doing principal component analysis (PCA). Compared to
other PCA algorithms, the present procedure may be more neural but is also less
constrained, since, after minimizing in f1, the relevant object is not U1 but PU1

. So any
two matrices spanning the same subspace become equivalent and, in particular, there is
no reason why the U1 we find should have, say, orthonormal columns. For the same
reason there is no scale in the system, any nonzero scalar multiple of U1 is just as good
as U1.

In many applications of predictive coding, the possible values of U1 are constrained
by the fact that the neurons of f1 should have limited receptive fields (RFs). In fact, if
a RF of a first level neuron covers p0 pixels in the image, the corresponding column of
U1 will have N0 − p0 zero entries. However, this does not affect the above analysis, and
there the full optimization just has to be replaced by a constrained optimization. This
leads to a constrained PCA where the individual neurons jointly represent the
eigenspaces of the input. Assuming an n1-fold overlap of RFs at any position in the
image space, the minimization procedure will extract the first n1 eigenvectors of the
N0 ×N0 correlation matrix

〈
IIT

〉
I

averaged across all images I.

S.III Reduction of cross-level to modular predictive
coding

Error minimization across neighboring levels

E(U, f ; I) = EU1
(f1, I) + EU2

(f2, f1) .

Minimizing E(U, f ; I) across f1 and f2 will, at the top level, still lead to an optimal f2
of the form f2 = U+

2 f1, whatever f1 is. As above we calculate

EU2(f2, f1) = 1
2‖f1 − U2f2‖2 = 1

2‖(1− PU2)f1‖2

= 1
2‖PU⊥

2
f1‖2 .

Note that this reduces the optimization problem across both levels to an optimization
within only the first level,

E(U, f ; I) = 1
2‖I − U1f1‖2 + 1

2‖PU⊥
2
f1‖2 . (S.5)

The reduced optimization problem consists of finding the N1 ×N2 matrix U1 (mapping
the N2- to the N1-dimensional space) and the (N1 −N2)-dimensional subspace
orthogonal to the columns of U2 within the N1-dimensional space.

We next plug in as f1 the activity f∗1 which minimizes the total error and take the
average across the images I. Applying again the calculations underlying Eq. S.4 yields
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the estimate

〈E(U ; I)〉I = 〈EU1(f∗1 , I)〉I + E2 , (S.6)

E2 ≥ 1
2

N1∑
k=N2+1

λ
(1)
k ,

where λ
(1)
i ’s represent the N1 −N2 smallest eigenvalues of the correlation matrix〈

f∗1 f
∗
1
T
〉
I
. For the first level we have that EU1(f∗1 , I) ≥ EU1(U+

1 I, I), so the fact that

f∗1 can depend on U2 does not help to make the first term in (S.6) smaller and hence

〈EU1
(f∗1 , I)〉I ≥

1
2

N0∑
k=N1+1

λ
(0)
k .

In contrast to the single-level optimization, however, it is not clear that the first
level lower bound is attained when optimizing the objective function summed across
both levels, since this might yield a choice of f1 which extracts a high penalty in E2. So
in the joint optimization there is a trade-off between the prediction quality in the first
level on one hand, and obtaining an easily predictable distribution of f1 for the second
level on the other hand. But if nature does not use the full expressive power provided
by the N1 neurons in level 1, it might quite simply choose a smaller value of N1 and,
instead, use additional neurons to interpret the activity in the second level. From this
efficiency perspective, the advantage of miming the sum E1 + E2 over minimizing E1

and E2 individually remains therefore unclear. In contrast, the individual minimization
has a distinct advantage that is particularly useful in the sensory representation and
that goes beyond the processing speed argument: when information at the different
resolution levels needs to be accessed, it is individually optimized at the level of interest.
The joint minimization instead may obscure the representation at that level, for the
sake optimizing it at the next level.

Reduction to a single level

Given the unclear motivation to consider top-down interactions in terms of image
encoding we ask whether we cannot compensate for the top-down signaling by enlarging
the interactions within the lower level. This is in fact possible, as alluded to in (S.5). To
make this point clear, we express f1 in new coordinates f̃ (specified below) such that
the second term in (S.5) reduces to a sum over squared activities. The 2-layer
optimization problem (Eq. S.2 with L = 2) then reduces via (S.5) to

E(Ũ , f̃ ; I) = 1
2‖I − Ũ1f̃1‖2 + 1

2

N1∑
k=N2+1

(f̃1)2k , (S.7)

where N1 and N2 are the number of neurons in the first and second level, respectively.
Recognition again amounts to the minimization of (S.7) with respect to the activities

f̃1 of the first-level neurons, while learning amounts to the minimization of (S.7) with
respect to Ũ1 at the minimum values of f̃1. The additional constraint imposed by the
joint 2-level minimization is on the mapping Ũ1 that emerges from the specific
coordinate transform (see next paragraph). Basically, (S.7) states that the 2-level error
function E1 + E2 is minimized by finding a representation f1 at the first level that
minimizes E1 while keeping small the (N1 −N2) components that are not represented
at the second level. Of course, when constructing the first level representation it is not
clear which dimensions will be cut off in the second level representations. But instead of
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evoking top-down connections from higher levels that would deliver this information –
and would also slow down the network relaxation time – we explored an effectively
feedforward strategy.

One strategy to mimic the top-down effect in (S.7) is to uniformly keep the f1
activities small for all components and defer the compression of the f1-code to the next
level. We therefore suggest to directly minimize the quadratic error function Ei at each
level i, with an additional regularity constraint of the form

∑
k(f̃i)

2
k , where the sum

now extends across all Ni components of f̃i, i.e.

Ei = 1
2‖I − Uifi‖

2 + ε
2

Ni∑
k=1

(fi)
2
k , (S.8)

although with an ε smaller than 1/2. This regularity limits the size of the fi activity,
but it does not impose sparseness, as e.g. the L1-norm on fi would do [3]. We did not
consider specific sparseness constraints by several reasons. First, the experimental
notion of sparseness is somewhat vague and in biology firing rates are often small but
rarely zero, as it would be the case for sparse coding. The square norm in (S.8) impedes
high firing rates of individual neurons but allows for uniformly low firing rates across
the network. Second, sparseness would lead to strict Gabor-like RFs [3] that, for
non-grating stimuli, do not seem to square with the context-dependent RF
variations [4–7]. Third, from an economical point of view, it is more efficient to achieve
a high stimulus compression rate by limiting the number of fi neurons, rather by
enforcing them mostly not to respond. Finally, abstaining from additional penalty terms
increases the clarity of the procedure.

The coordinate transform leading to the form (S.7) is given by f1 = Sf̃1, where the
columns of the orthogonal matrix S are the normalized eigenvectors of the correlation

matrix
〈
f∗1 f

∗
1
T
〉
I
, ordered according to decreasing eigenvalues (assumed to be

non-vanishing). Notice that S can be written as a concatenation S = U2 ⊕ U⊥2 of a
N1 ×N2 dimensional matrix U2 and a N1 × (N1 −N2) dimensional matrix U⊥2 . Note
that the projection matrix PU⊥

2
arising in (S.5) transforms into the diagonal matrix

STPU⊥
2
S with 0’s in the first N2 entries and 1’s in the N1 −N2 remaining entries. With

Ũ1 = U1S this proves (S.7). The effective receptive fields of the f1 neurons are given by
the non-vanishing row entries of Ũ1, and via the correlation matrix S they depend on
the overlaps of the feedforward receptive fields of f1 and, in the case of the
fully-recurrent network, they also depend on the top-down input from the higher level.

S.IV Implementation of modular and cross-level
hierarchical coding

The above analysis suggests decoupling the optimization problem for multiple levels,
thus enhancing the clarity of the procedure as well as increasing the speed of
convergence. Hence, instead of minimizing the overall error across levels (Eq. S.2), we
individually minimize the errors (S.1) within each level. For the (negative) gradients
with respect to fi and Ui with φ = id we obtain for the modular case,

τ ḟi = −εfi + Vini

τ ṅi = −ni + fi−1 − Uifi (S.9)

∆Ui = η n∗i (f∗i )T

with Vi = UTi and ∆Vi = ∆UTi (cf. Eqs. (4) and (6) in the main text).
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When considering the original, non-modular optimization principle where
minimization is performed across all levels as in [2], we need to implement the gradient
(S.3). This leads to the same three equations as in (S.9), except the first equation is
replaced by

τ ḟi = −εfi + Vini − ni+1 , (S.10)

and hence during the learning process fi’s are implicitly modified until the novelty ni+1

at the higher level cannot be explained anymore by combining the novelty ni at level i
via matrix Vi (and assuming that ε is small, cf. also Fig. Aa). At a functional level this
corresponds to the constrained optimization problem for fi as expressed in Eqs. S.5 and
S.7, without the need to consider the activities from the next level i+ 1. An equivalent
implementation of the cross-level optimization problem following Eq. S.7 leads to the
same dynamics as in (S.9), but with the first equation replaced by a neuronal dynamics
with weak and strong neuronal leak terms,

τ (ḟi)k =

{
−ε(fi)k + (Vini)k for k = 1, . . . , Ni+1

−(1 + ε)(fi)k + (Vini)k for k = Ni+1 + 1, . . . , Ni ,
(S.11)

where Ni and Ni+1 are the numbers of familiarity neurons at level i and i+ 1,
respectively. Thus, recognition is again performed in an effectively feedforward network,
with simple (i.e. diagonalized Gaussian) activity priors depending on the number of
neurons in the i+ 1’th level (Fig. Ab).

Input

layer

Level 1

Level 2

noveltyfamiliarityA B

Figure A. Anatomical versus effective connectivity for the cross-level predictive coding
as in [2]. A In contrast to minimizing the error function locally at each level,
minimizing the summed error function across all levels requires top-down connections
from the novelty neurons ni+1 to the familiarity neurons fi (cf. Eqs. (S.9), (S.10) and
Fig. (2) in the main text). B The effective connectivity expressing causal relationships
remains feedforward. The only ‘top-down’ information (dotted arrows) consists in
providing the number of familiarity neurons used at level i+ 1, and this determines the
number of familiarity neurons at level i which are subject to a strong leak in the
neuronal dynamics (cf. Eqs. (S.7) and (S.11)). This distortion caused by the strong leak
may reduce the prediction error Ei+1 at the upper level, while possibly increasing the
error Ei at the lower level (with an overall reduction in the sum Ei + Ei+1).
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