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Abstract

A fascinating property of the brain is its ability to continuously evolve and adapt to a

constantly changing environment. This ability to change over time, called plasticity, is mainly

implemented at the level of the connections between neurons (i.e. the synapses). So if we want

to understand the ability of the brain to evolve and to store new memories, it is necessary to

study the rules that govern synaptic plasticity.

Among the large variety of factors which influence synaptic plasticity, we focus our

study on the dependence upon the precise timing of the pre- and postsynaptic spikes. This

form of plasticity, called Spike-Timing-Dependent Plasticity (STDP), works as follows: if

a presynaptic spike is elicited before a postsynaptic one, the synapse is up-regulated (or

potentiated) whereas if the opposite occurs, the synapse is down-regulated (or depressed).

In this thesis, we propose several models of STDP which address the two following

questions: (1) what is the functional role of a synapse which elicits STDP and (2) what is

the most compact and accurate description of STDP? In the first two papers contained in

this thesis, we show that in a supervised scenario, the best learning rule which enhances

the precision of the postsynaptic spikes is consistent with STDP. In the three following pa-

pers, we show that the information transmission between the input and output spike trains

is maximized if synaptic plasticity is governed by a rule similar to STDP. Moreover, we

show that this infomax principle added to an homeostatic constraint leads to the well-known

Bienenstock-Cooper-Munro (BCM) learning rule. Finally, in the last two papers, we propose

a phenomenological model of STDP which considers not only pairs of pre- and postsynaptic

spikes, but also triplets of spikes (e.g. 1 pre and 2 post or 1 post and 2 pre). This model can

reproduce of lot of experimental results and can be mapped to the BCM learning rule.

Keywords: Spike-Timing-Dependent Plasticity, Hebbian Learning, Long-Term Potentia-

tion, Information Theory, BCM Learning Rule, Triplets of Spike.
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Version résumée

Une propriété fascinante du cerveau est sa capacité d’évoluer et de s’adapter continuellement

à un environnement qui change constamment. Cette capacité de se modifier au cours du

temps, appelée plasticité est principalement implémentée au niveau des connections entre les

neurones (les synapses). Donc, si nous désirons comprendre la capacité du cerveau à changer

et mémoriser de nouveaux éléments, il est nécessaire d’étudier les règles qui gouvernent la

plasticité synaptique.

Parmi la grande variété de facteurs qui influencent la plasticité synaptique, nous focal-

isons notre étude sur la dépendance du temps de tir des potentiels d’action pre- et postsy-

naptiques. Cette forme de plasticité, appelée plasticité synaptique à modulation temporelle

relative (STDP ou Spike-Timing-Dependent Plasticity) fonctionne de la façon suivante: si un

potentiel d’action presynaptique a lieu avant un potentiel d’action postsynaptique, la synapse

est renforcée (ou potentialisée); si au contraire, l’ordre des potentiels d’action est inversé, la

synapse est affaiblie (ou déprimée).

Dans cette thèse, nous proposons plusieurs modèles de la STDP qui adresent les deux

questions suivantes: (1) quel est le rôle fonctionnel d’une synapse suivant une règle STDP et

(2) quelle est la description la plus compacte et la plus précise de la STDP? Dans les deux

premiers papiers contenus dans cette thèse, nous montrons que dans un contexte supervisé,

la meilleure règle d’apprentissage qui augmente la précision des potentiels d’action postsy-

naptiques est cohérante avec la STDP. Dans les trois papiers qui suivent, nous montrons que

la transmission d’information entre les trains de potentiels d’action d’entrée et de sortie est

maximisée si la plasticité synaptique est gouvernée par une règle similaire à la STDP. De

plus, nous montrons que ce principe infomax ajouté à une contrainte homéostatique conduit

à la règle d’apprentissage appelée Bienenstock-Cooper-Munro (BCM). Finalement, dans les

deux derniers papiers, nous proposons un modèle phénoménologique de la STDP qui con-

sidère non seulement des paires de potentiels d’action pre- et postsynaptiques, mais aussi des
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triplets de potentiels d’action (1 pre et 2 post ou 1 post et 2 pre). Ce modèle peut reproduire

beaucoup de résultats expérimentaux et peut être relié à la règle d’apprentissage BCM.

Mot-clés: Plasticité synaptique à modulation temporelle relative (STDP), Apprentis-

sage Hebbien, Potentialisation à long-terme, Théorie de l’information, Règle d’apprentissage

BCM, Tripets de potentiels d’action.
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CHAPTER 1

Introduction

One of the most remarkable feature of the nervous system is its ability to change over time.

This ability to evolve, named plasticity, is especially clear during development. This early

developmental plasticity is mainly implemented by new physical connections between neu-

rons. Even if plasticity is mainly present during the early stage of development, it is clear

that at the adult stage, the nervous system can still acquire new behaviors and store new

memories. It is now widely acknowledged that memories depend on a persistent change of

synaptic transmission, but it has not been always the case. Indeed, in his own words Lashley

(1924) stated that

Among the many unsubstantiated beliefs concerning the physiology of the learn-

ing process, none is more widely prevalent than the doctrine that the passage of

the nerve impulse through the synapse somehow reduces synaptic resistance and

leads to the fixation of a new habit.

Many years later, Lashley’s student, D.O. Hebb took the risk to formulate as a postulate

what his professor and others heavily criticized. His point of view is that if we assume

a structural change at the level of the synapse, i.e. “synaptic activity makes the synapse

more readily traversed”, lasting memory is possible. More precisely, in his monograph, “The

Organization of Behavior”, which was highly influential, D.O. Hebb (1949) postulated that

When an axon of cell A is near enough to excite cell B and repeatedly or per-

1
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sistently takes part in firing it, some growth process or metabolic change takes

place in one or both cells such that A’s efficiency, as one of the cells firing B, is

increased.

In other words, according to this postulate, correlated activity of neuron A and B in-

creases the strength of the synapse (or weight) between A and B. Even if the notion of

correlation-based learning has been formulated before Hebb (James 1890)1, it is often called

Hebbian learning. An important aspect of Hebb’s postulate is its intrinsic notion of “lo-

cality”. Only locally available information, namely the pre- and postsynaptic activities can

trigger a weight change. Without such an unsupervised mechanism which adapts continu-

ously the weights, it would be impossible to tune individually each of the 1014 synapses in

the human brain.

Clearly, if synapses have only a mechanism for potentiation and none for depression, they

will quickly saturate to their maximal value. Therefore, a mechanism which decreases the

synaptic strength is necessary. This is why Stent (1973) proposed to add to Hebb’s original

postulate that “when the presynaptic axon of cell A repeatedly and persistently fails to excite

the postsynaptic cell B while cell B is firing under the influence of other presynaptic axons,

metabolic changes take place in one or both cells such that A’s efficiency, as one of the cells

firing B, is decreased”.

1.1 Experiments on Synaptic Plasticity

At this stage, there was no physiological evidence for such a mechanism. It is only in 1973

(Bliss and Gardner-Medwin 1973; Bliss and Lomo 1973) that has been published the detailed

description of long-term potentiation (LTP)2. In LTP, the strength of a synapse increases for

a prolonged period if the synapse is activated by a brief but intense stimulation. Initially,

LTP was elicited in intact anesthetized rabbit (Bliss and Gardner-Medwin 1973) and later in

awake rabbit (Bliss and Lomo 1973). This major discovery nicely confirmed the intuition of

Hebb and inspired an enormous number of researchers. In 2006, more than 14’000 papers have
1James (1890) stated that “When two elementary brain processes have been active together or in imme-

diate succession, one of them, on re-occurring, tends to propagate its excitement into the other”. Note that

the temporal order of the processes are not mentioned here.
2The very first results on LTP have been already published in 1966 by Lomo (1966) in an abstract.
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been written in relation to LTP. This phenomenon continues to fascinate the neuroscience

community. As Bliss and Lynch (1988) said

No matter how often one has witnessed the phenomenon, it is impossible not

to retain a sense of amazement that such modest stimulation can produce so

immediate, so profound, and so persistent an effect.

Why such a fascination for this phenomenon? For our brains to store memories, it is

necessary that short stimulations induce structural changes that persist for a long time. This

is precisely what LTP does. The correspondence between the necessary condition and the

observed phenomenon fascinates. See the introductory remarks of Bliss, Collingridge, and

Morris (2003) as well as the entire issue on long-term potentiation.

It is only 20 years after the discovery of LTP that the opposite phenomenon, i.e. long-

term depression, has been elicited for the first time. Although it was known that potentiation

could be reversed by a phenomenon termed “depotentiation”(Barrionuevo et al. 1980), the

key advance has been to show that synapses could be depressed by low-frequency stimulation

(Dudek and Bear 1992): this phenomenon is now termed long-term depression (LTD).

Hebbian learning does not contain only the notion of locality in space. The concept

of locality in time or simultaneity and even the idea of causality is also present in Hebb’s

postulate (” . . . takes part in firing it . . . ”), but the time scale of simultaneity is not

mentioned explicitly.

The first experimental work on this notion of simultaneity has been done by Levy and

Stewart (1983). They stimulated extracellularly a burst of 8 spikes at 400 Hz and after a given

delay stimulated the postsynaptic neuron with a similar burst of spikes. They observed that

the size of the excitatory postsynaptic potential (EPSP) increased if the presynaptic burst

occurred before the postsynaptic one and decreased if the timing is reversed. One important

outcome of this study is that potentiation or depression occurs in a limited time window of

the order of ±100 ms. Although this type of experiment is different from the ones described

below, named Spike-Timing-Dependent Plasticity (STDP), it shares most of the features and

gives an experimental confirmation of Hebb’s postulate.

In order to achieve the behaviorally required temporal precision in the barn owl auditory

system, Gerstner, Kempter, van Hemmen, and Wagner (1996) assumed a specific form of si-

multaneity between the pre- and postsynaptic spikes within which potentiation or depression
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Figure 1.1: Synaptic plasticity depends on the relative timing ∆t = tpost− tpre between pre-

and postsynaptic spikes. If the presynaptic spike at time tpre occurs before the postsynaptic

spike at time tpost, the synaptic strength w increases whereas depression occurs if the timing

is reversed. Data redrawn from Bi and Poo (1998).

can occur. More precisely, this learning window has been defined as follows. If a single presy-

naptic spike is before a postsynaptic one, maximal potentiation occurs whereas depression is

elicited if the timing is reversed. With this mechanism, synapses from presynaptic neurons

that “take part in firing” the postsynaptic one are potentiated whereas synapses that elicit

a postsynaptic potential too late (i.e. after the postsynaptic spike) are depressed.

Shortly after this learning window had been introduced on theoretical grounds, a lot of

in vitro experiments (Bell et al. 1997; Markram et al. 1997; Bi and Poo 1998; Zhang et al.

1998) showed that synaptic strength depends on the precise timing between the pre- and

postsynaptic spikes. This phenomenon is now termed Spike-Timing-Dependent Plasticity

(STDP). See Fig. 1.1 for the learning window obtained by Bi and Poo (1998). Potentiation

occurs if pre- and postsynaptic spikes arrive in a causal order, i.e. pre-before-post, whereas

depression is elicited for acausal pre- and postsynaptic spikes, i.e. pre-after-post.

Although STDP is now a well established phenomenon for in vitro experiments, it is

however less clear whether and how STDP operates in vivo. Extracellular recordings in the

visual cortex of anesthetized cats show that sequential visual stimulation induces a shift of
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orientation tuning of the cells (Frégnac et al. 1992; Yao and Dan 2001; Yao and Dan 2004)

and a shift of the cell’s receptive field (Fu et al. 2002) in a way which is consistent with STDP.

The problem with extracellular recordings is that the precise location where plasticity occurs

is unclear. Recently Meliza and Dan (2006) used whole-cell recording techniques in vivo to

show that the response of a single neuron to visual stimulus changes consistently with STDP.

It should be noted that the LTP or LTD reported in (Yao and Dan 2001) lasts only of the

order of 10 minutes and then vanishes. Therefore, it still remains to be elucidated if the

observed in vivo phenomenon is identical to the one observed in vitro which lasts for hours.

1.2 Models of STDP

Since this thesis is about modeling STDP, it is necessary to be aware of the different types

of models one can elaborate on a given phenomenon, STDP in our case; see Fig. 1.2. Even

if there are various ways to classify the different types of models, we propose here to classify

the existing models of STDP into three different groups: the phenomenological models, the

biophysical models and the optimal models (see the preface of Dayan and Abbott (2001)).

What, how and why are the three questions addressed by those three types of model. The

phenomenological models (or descriptive models) are intended to describe the phenomenon

in a precise, but compact way, i.e. the number of required parameters should be as small

as possible while describing the phenomenon as accurately as possible. Biophysical models

(or mechanistic models) belong to a bottom-up approach and aim to explain how the mech-

anism operates. The goal of those models is to create a link between biophysical quantities

such as the calcium concentration, the number of released vesicles, the ion current through

NMDA channels, . . . and the observed phenomenon. Finally optimal models (or interpretive

models) have an opposite perspective: the role of such top-down models is to explain the

functional role of the phenomenon. Practically, this is often done by showing that the phe-

nomenon maximizes a given quantity which corresponds to a given function. In the following

subsections, we will discuss the strengths and weaknesses of those different approaches.
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Figure 1.2: Classification of the different types of model for Spike-Timing Dependent Plas-

ticity. The phenomenological models summarize the experimental data, giving a minimal

description of the observed phenomena. Biophysical models create a link between physical

quantities and the STDP data. Optimal models (or interpretive models) of STDP propose a

functional role of the synapse. This is often done by showing that STDP maximizes a given

quantity, which corresponds to the function of the synapse.
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1.2.1 Phenomenological Models

A first observation about the results of STDP experiments shows that data are extremely

noisy. This can be observed in Fig. 1.1 as well as in all papers dealing with STDP. This can

have several implications on models of STDP. Indeed, when we compare plasticity experi-

ments with other electrophysiological experiments such as input-output characterization of

a neuron (Hodgkin and Huxley 1952), we realize that the high variability in the data does

not allow us to develop a canonical model such as the Hodgkin and Huxley model. As a

consequence, the models should be as simple as possible and therefore contain as few param-

eters as possible. This is exactly the approach of the phenomenological models which are

able to create a link between similar types of experiments controlling the timing of the pre-

and postsynaptic spikes (Sjöström et al. 2001; Froemke and Dan 2002; Wang et al. 2005;

Froemke et al. 2006)

Volterra expansion

Let us present now a possible conceptual framework for phenomenological models. Since

those models should be as simple as possible, let us consider a framework in which we can

consider the simplest models of STDP and then incrementally increase the level of complexity.

This can be done by assuming that the instantaneous weight change ẇ is given by the Volterra

expansion (Volterra 1930; Gerstner and Kistler 2002) of an unknown functional H[X,Y ]

which depends on the history of the presynaptic spike train X(t) =
∑

tpre δ(t− tpre) and the

postsynaptic spike train Y (t) =
∑

tpost δ(t − tpost) where δ(s) is the Dirac function and tpre

and tpost are respectively the pre- and postsynaptic spike times:

ẇ(t) = H[X,Y ] (1.2.1)

Clearly, synaptic plasticity depends also on other neuronal quantities such as calcium

concentration (Malenka et al. 1988; Lisman 1989; Shouval et al. 2002; Karmarkar and

Buonomano 2002), the depolarization (Artola et al. 1990; Sjöström et al. 2001) and of

course the current value of the weight w (Bi and Poo 1998; van Rossum et al. 2000; Kistler

and van Hemmen 2000; Gütig et al. 2003). All those variables could be introduced in the

functional H. For the sake of simplicity, let us omit them from now on. If we further assume

that the weight changes are instantaneous and occur whenever a pre- or a postsynaptic spike
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is emitted, we can write

ẇ(t) = H0 +X(t)F [X,Y ] + Y (t)G[X,Y ] (1.2.2)

where F and G are unknown functional of the pre- and postsynaptic spike trains and H0

is a constant. Let us perform a Volterra expansion of those functionals. This gives

F ([X,Y ]) = F x1 +
∫ ∞

0
F xx2 (s)X(t− s)ds+

∫ ∞
0

F xy2 (s)Y (t− s)ds

+
∫ ∞

0

∫ ∞
0

F xxx3 (s, s′)X(t− s)X(t− s′)ds′ds

+
∫ ∞

0

∫ ∞
0

F xxy3 (s, s′)X(t− s)Y (t− s′)ds′ds

+
∫ ∞

0

∫ ∞
0

F xyy3 (s, s′)Y (t− s)Y (t− s′)ds′ds+ . . . (1.2.3)

Similarly, the expansion of G yields

G([X,Y ]) = Gy1 +
∫ ∞

0
Gxy2 (s)X(t− s)ds+

∫ ∞
0

Gyy2 (s)Y (t− s)ds

+
∫ ∞

0

∫ ∞
0

Gxxy3 (s, s′)X(t− s)X(t− s′)ds′ds

+
∫ ∞

0

∫ ∞
0

Gxyy3 (s, s′)X(t− s)Y (t− s′)ds′ds

+
∫ ∞

0

∫ ∞
0

Gyyy3 (s, s′)Y (t− s)Y (t− s′)ds′ds+ . . . (1.2.4)

Note that the upper index in functions represents the type of interaction. For example,

Gxyy3 refers to a triplet interaction consisting of 1 pre- and 2 postsynaptic spikes. We remark

that the Gxyy3 term could correspond to a pre-post-post sequence as well as a post-pre-post

sequence. See appendix A for the compact description of the Volterra expansion.

The interest of such a framework is that it is possible to classify a lot of existing models

within this framework. For example, the first model of STDP (Gerstner et al. 1996) considers

the pair terms, i.e. F xy2 and Gxy2 as well as a constant term H0. Kempter et al. (1999) and

Kistler and van Hemmen (2000) modeled STDP with the pair terms F xy2 , Gxy2 and added a

pure presynaptic term F x1 as well as a pure postsynaptic term Gy1. Most of the STDP models,

like the ones of Song et al. (2000) and Roberts (1999) only consider the pair terms F xy2 , Gxy2 .
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Since not all STDP models can be fitted in this framework, it is possible broaden it

in order to include new classes of STDP models. As given by the Eqs. (1.2.2), (1.2.3) and

(1.2.4), whenever there is a pre- or postsynaptic spike, it interacts with all previous pre- or

postsynaptic spikes. We will call this the All-to-All interaction scheme. There is no a priori

reason to think that say each presynaptic spike should interact in the same way with all

previous postsynaptic spikes and vice versa. This is why other schemes of interaction have

been proposed (van Rossum et al. 2000; Bi 2002; Sjöström et al. 2001; Izhikevich 2003;

Burkitt et al. 2004; Meffin et al. 2006); see Fig. 1.3.

For the sake of simplicity for the following discussion, let us restrict to the case of

pair terms since the same logic applies for the higher order terms. In a Nearest-Past-Spike

interaction scheme (see papers VI and VII)3, each presynaptic spike interacts only with

the previous postsynaptic spike and each postsynaptic spike with the previous postsynaptic

one. The Nearest-Future-Spike interaction scheme (van Rossum et al. 2000) (called “nearest

neighbor” by (Bi 2002)) considers the opposite case. Each presynaptic spike interacts with the

next postsynaptic spike and vice versa. In the Presynaptic-Centric case (which corresponds to

the “output restricted” case of Burkitt, Meffin, and Grayden (2004)), each presynaptic spike

interacts only with the last and the next postsynaptic spikes (Izhikevich 2003). Similarly, in

the Postsynaptic-Centric case (which corresponds to the “input restricted” case of Burkitt,

Meffin, and Grayden (2004)), each postsynaptic spike interacts with the previous and the

next presynaptic spikes (Sjöström et al. 2001; Meffin et al. 2006).

In order to include those different schemes in a Volterra-like framework, we have to

change the domain of integration of the Fk and Gk kernels. Instead of integrating from 0 to

∞ as done in Eqs. (1.2.3) and (1.2.4), it is possible to restrict the integration to the last pre-

or postsynaptic spike. For a general expression of the Nearest-Past-Spike interaction scheme,

see appendix A.

In summary, the high level of noise observed in the plasticity data lead us to phenomeno-

logical models which intend to be as simple as possible. Hence the above framework makes

sense only if the terms above second order or third order can be neglected. Even if we can

neglect terms that are above third order, we are left with a huge number of possible models.

Indeed, those models combine some or all terms up to the third order with the different

3Note that in those articles the Nearest-Past-Spike interaction scheme is called Nearest-Spike.
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All-to-All Nearest-Past-Spike Nearest-Future-Spike

Presynaptic-Centric Postsynaptic-Centric

Figure 1.3: Different types of interaction schemes for pairs of pre- and postsynaptic spikes.

Solid lines denote pre-post interactions and dashed lines post-pre interactions. All-to-All:

each presynaptic spike interacts with all postsynaptic spikes and vice versa. Nearest-Past-

Spike: each presynaptic (postsynaptic) spike interacts with the last postsynaptic (presynap-

tic) spike. Nearest-Future-Spike: each presynaptic spike interacts with the next postsy-

naptic spike and vice versa. Presynaptic-Centric: each presynaptic spike interacts with

the last and the next postsynaptic spike. Postsynaptic-Centric: each postsynaptic spike

interacts with the last and the next postsynaptic spike.
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interaction schemes mentioned above. At this point, there are two strategies: either a brute-

force strategy which tries to test all different possibilities or a different strategy which uses

some insight from other approaches, e.g. from biophysical models, in order to choose which

combination of terms and interaction scheme to test. This brings us to the next type of

models.

1.2.2 Biophysical Models

As soon as we consider STDP experiments, we quickly realize the enormous number of

possible protocols. This problem becomes even more serious when we consider the required

time to get a single experimental data point 4. Even though great efforts have been done to

cover a large number of configurations of spike (Froemke et al. 2006), it is simply impossible

to cover all the possibilities for all different types of synapses. A different strategy would be

to try to understand the mechanisms which lead to the up-regulation or down-regulation of

the synapses. This is the approach of the biophysical models.

A large portion of those biophysical models (Karmarkar and Buonomano 2002; Shouval

et al. 2002) are based on the dynamics of calcium concentration
[
Ca2+

]
which is known to

play a crucial role in the induction of LTP or LTD (Malenka et al. 1988; Lisman 1989). Those

calcium models follow what has been termed the “calcium control hypothesis” (Shouval et al.

2002). This hypothesis states that the weight changes such that it reaches asymptotically a

function Ω(
[
Ca2+

]
) with a time constant τ(

[
Ca2+

]
) (see Fig. 1.4) which can be formulated

as

ẇ =
Ω(
[
Ca2+

]
)− w

τ([Ca2+])
(1.2.5)

In those models, the N -methyl-D-aspartate (NMDA) receptors play a key role. Indeed,

the NMDA channels let calcium ions enter the postsynaptic cell if two conditions are met.

First, there should be a presynaptic release of glutamate which binds the NMDA receptor

and second, the magnesium ion which blocks the NMDA channel should be removed by a

depolarization of the postsynaptic cell. This can occur when a postsynaptic spike is back-

propagated to the synapse. Therefore, the NMDA receptor acts as a coincidence detector
4According to a discussion I had with R. Froemke at Salt-Lake City (Cosyne 2006), when the whole set-up

is ready, it takes at least three months full-time to get a reasonable STDP learning window similar to the one

depicted in Fig. 1.1.
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Figure 1.4: Calcium control hypothesis. A. Asymptotic value of the weight as a function of

calcium concentration. B. Time constant of weight change as a function of calcium concen-

tration.

between a pre- and postsynaptic event. This is in direct agreement with the notion of

correlation-based learning formulated by Hebb.

SMT Model

Instead of giving some more details about calcium models, let us report another biophysical

model, i.e. the model of Senn, Markram, and Tsodyks (2001) (SMT) on Spike-Timing-

Dependent Plasticity since it reproduces a lot of experimental data and can be related to

this present work, especially paper VI and VII.

This model is based on the dynamics of the NMDA receptors. Those receptors are

assumed to be in three different states: the recovered state, the up state which correspond

to the saturation of glutamate and the down state corresponding to the state altered by

intracellular calcium (Mayer et al. 1987). Let Nu and Nd be the fraction of NMDA receptors

in the up and down state respectively. N r = 1−Nu −Nd denotes the fraction of receptors

in the recovered state; see Fig. 1.5.

Let us further denote the pre- and postsynaptic spike trains by X(t) =
∑

tpre δ(t− tpre)
and Y (t) =

∑
tpost δ(t − tpost), ∀t ≥ 0. For the sake of convenience, we assume that X(t) =

Y (t) = 0, ∀t < 0. The dynamics of those receptors becomes:
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Figure 1.5: Schematic description of the SMT model. In order to elicit LTP, the model

requires a first presynaptic spike (pre) that activates a fraction of NMDA receptors, a sub-

sequent postsynaptic spike (post) in order to set some secondary messengers in an up-state.

The second postsynaptic spike further induces LTP. Similarly, LTD is induced by a post-pre

as well as a post-pre-pre sequence of spikes. See appendix B.2 for more details.
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Ṅu(t) = −N
u(t)
τNu

+ ruN r(t)X(t) (1.2.6)

Ṅd(t) = −N
d(t)

τNd(t)

+ rdN r(t)Y (t) (1.2.7)

where ru denotes the fraction of recovered NMDA receptors that enter in an up state for

each presynaptic spike. Without presynaptic spikes, the number of NMDA receptors in an

up state decreases with a time constant of τNu . Similarly, for each postsynaptic spike the

fraction of receptors that follow the transition N r → Nd is given by rd and the decay time

constant of the NMDA receptors in a down state in the absence of postsynaptic spikes is τNd .

The SMT model further assumes the existence of so-called secondary messengers gov-

erned by the following kinetic:

Ṡu(t) = −S
u(t)
τSu

+ rSNu(t)(1− Su(t− ε))Y (t) (1.2.8)

Ṡd(t) = −S
d(t)
τSd

+ rSNd(t)(1− Sd(t− ε))X(t) (1.2.9)

where Su and Sd are the secondary messengers in the up and down state and ε is an

arbitrary small positive constant. The number of secondary messengers in the up state

increases if (1) there are some NMDA receptors in the up state and if (2) a postsynaptic

spike occurs. If at least one of those two conditions are not matched, Su decreases with a

time constant τSu . Similarly Sd are activated if presynaptic spikes are elicited when there

are NMDA receptors in a down state. If this is not the case, Sd decays with a time constant

of τSd . Finally, the target weight w∞ dynamic is given by

ẇ∞(t) = rP (1− w∞(t− ε)) [Su(t+ ε)− θu)]+ Y (t)− rDw∞(t− ε)
[
Sd(t+ ε)− θd

]+
X(t)

(1.2.10)

Here, the argument (t+ ε), ε > 0 of the variable Su and Sd ensures that the value of Su

(Sd) is taken just after its update due to a postsynaptic (presynaptic) spike. [s]+ denotes

a piecewise linear function, i.e. [s]+ = s if s > 0 and [s]+ = 0 elsewhere. If the number

of secondary messengers are above a given threshold θu, potentiation is trigered, with a
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rate rP (1 − w∞) whenever there is a pre-post or a pre-post-post sequence (see Fig. 1.5 and

appendix B.2 for more details). Analogously, if the number of secondary messangers in a

down state are abore a given threshold θd, long-term depression is ellicited, with a rate rDw∞,

when there is a post-pre or a post-pre-pre sequence (see appendix B.2 for more details).

In order to take into account the delay between the time of induction of LTP or LTD and

the time of expression, this model low-pass filters the target weight w∞ with a time constant

τM and gives the effective weight dynamics:

ẇ(t) =
w∞(t)− w(t)

τM
(1.2.11)

It should be noted that this biophysical model of synaptic plasticity is somehow at the

boundary between biophysical and phenomenological models. Indeed, all the parameters of

this model are chosen to fit the experimental data and not taken from known underlying

biophysical dynamics. Furthermore the nature of the secondary messengers and not well

identified.

This shows well the dilemma faced by all biophysical models. Either they aim to be

rather simple, like the SMT model, but they fail to identify the variables of the model with

biophysical quantities, or they take seriously the complex mechanisms involved in the up- or

down-regulation of synaptic strength (see for example (Rubin et al. 2005)). In this latter

case, it is necessary to consider that synaptic plasticity is cell-specific (Tzounopoulos et al.

2004), depends on the dendritic location (Froemke et al. 2005), the structure of dendritic

spines (Kasai et al. 2003), the activation of neighboring synapses (heterosynaptic plasticity)

(Bi 2002), the level of calcium concentration (Malenka et al. 1988), the level depolarization

(Sjöström et al. 2001). It is also clear that a highly complex genetic machinery (Kandel 2001)

is involved in the regulation of synaptic strength. It is even possible that astrocytes may play

an active role since they are regulating synaptic transmission (Volterra and Meldolesi 2005).

When facing this gigantic level of complexity, it seems reasonable to approach the prob-

lem of synaptic plasticity from a different point of view. Instead of getting lost in a mass of

(possibly irrelevant) details, we need criteria or guiding principles that allow us to focus on

relevant mechanisms of synaptic plasticity. In order to do so, we need to have a picture of

the functional role of the synapse. This is the approach of the optimality models developed

in the next section.
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1.2.3 Optimality Models

A wing would be a most mystifying structure if one did not know that birds flew.

Barlow (1961)

It is with those words that H. B. Barlow starts his influential 1961 paper. His point

of view is radically different from the biophysical approach. He is more interested in the

functional role of the synapse than in the mechanism that lead to the up- or down regulation

of synaptic strength. According to him this approach is necessary “if one does not will get

lost in a mass of irrelevant detail and fail to make the crucial observations” (Barlow 1961).

Among the three hypothesis he develops in his article in order to explain the functional role of

synapses, namely the password hypothesis, the controlled pass-characteristic hypothesis and

the redundancy-reducing hypothesis, he focuses his interest on the latter. The idea is that

“sensory relays” or synapses at a high level recode sensory messages so that the amount of

information transmission is maximal or the redundancy, formulated as a function of the input

entropy (Shannon 1948), is reduced.

At that time, this idea of redundancy reduction was not new. Indeed, few years earlier,

Attneave (1954) stated that “a major function of the perceptual machinery is to strip away

some of the redundancy of stimulation, to describe or encode information in a form more

economical than that in which it impinges on the receptors”. In fact, the idea of “economy

of thoughts” could be even traced back to Mach (1886) and Pearson (1892).

Later on, Laughlin (1981) gave the first experimental evidence that information theory

can be used to understand neural coding strategies. More precisely, Laughlin showed that

the contrast-response function of large monopolar cells (LMC’s) of fly visual system follows

the cumulative probability function for natural contrasts. In this way, the coding strategy

maximizes the information capacity of the LMC cells by setting the maximal slope and the

inflexion point of their contrast-function so that all levels of responses are used with equal

frequency.

Consistently with the idea of redundancy reduction, Linsker (1988) proposed a self-

organization principle of the sensory networks which is now called the infomax principle:

Given a layer L of cells, and the stationary ensemble statistical properties of

the signal activity values in the layer and given that layer L is to provide input
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to another cell layer M , the transformation of activity values from L to M is

to be chosen such that the rate R of information transmission form L to M is

maximized, subject to constraints and/or additional cost terms.

This information maximization principle, which can be mapped to Barlow’s redundancy

reduction hypothesis (Nadal et al. 1998), has been shown to have several computational

properties such as blind source separation (Nadal and Parga 1994; Bell and Sejnowski 1995).

The papers III and V in this thesis, show that this infomax principle leads as well to some

realistic biological properties such as STDP.

When developing such kind of models, it is important to keep in mind that those models

should help us to understand the functional role of the synapse, but the optimality approach

does not imply that all experiments can be reproduced by such models. As Barlow himself

made the point clear “I do not regard these ideas as moulds into which all experimental facts

must be forced”.

BCM Model

Another interesting consequence of the infomax principle is that it can be mapped to the

Bienenstock-Cooper-Munro (BCM) learning rule (Bienenstock et al. 1982) (see (Nadal and

Parga 1997) as well as paper IV). The aim of the BCM learning rule is to maximize the

selectivity of a given neuron. Let R = {ρ1, . . . , ρN} ∈ RM denote a set of N linearly

independent inputs presented with probability pj , j = 1, . . . , N to a linear postsynaptic

neuron, i.e. the response of this neuron is given by y = wTρ where w ∈ RM is the weight

vector. The postsynaptic neuron is called selective to the input pattern ρk ∈ R if its response

is maximal when ρj is presented and is zero whenever any other pattern ρi ∈ R, i 6= j is

presented. Formally, the selectivity of a neuron with synapses characterized by w can be

defined as

Sel(w) = 1−
〈wρ〉ρ∈R
max
ρ∈R

(wρ)
(1.2.12)

where 〈wρ〉ρ∈R denotes the average response of the neuron over all inputs ρ ∈ R. There-

fore, if the postsynaptic neuron gives the same response for all inputs, the average response
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Figure 1.6: Weight change given by the BCM learning rule. Here the function φ is given

by φ(y, θ) = −yθ + y2 and θ = 20 Hz (dashed line), θ = 30 Hz (solid line) and θ = 40 Hz

(dot-dahsed line)

will be equal to the maximal response, therefore the selectivity will be Sel(w) = 0. Con-

versely, if the postsynaptic neuron’s firing rate is minimal for all inputs except one to which

it responds maximally, the neuron is maximally selective. One of the main results of Bienen-

stock, Cooper, and Munro (1982) is that the following learning rule maximizes the input

selectivity:

ẇ = ηφ(wρj , θ)ρj (1.2.13)

Here η is the learning rate and φ(y, θ) is a function of the postsynaptic cell activity y (see

Fig. 1.6) such that

φ(0, θ) = 0 (1.2.14)

sgn(φ(y, θ)) = sgn(y − θ) (1.2.15)

θ is the threshold between depression and potentiation. If the threshold θ is fixed, it cor-

responds to an unstable fixed point of the dynamic, and therefore the weights could possibly
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all decrease to zero or increase up to infinity. In order to prevent such an uninteresting case,

the threshold is sliding according to the following non-linear dynamic5

θ = α 〈y〉p (1.2.16)

where α > 0 and p > 1 and sgn(s) is the sign function, i.e. sgn(s) = −1 if s < 0,

sgn(s) = 1, if s > 0 and sgn(0) = 0. With this learning rule it is possible to show that

the weights w∗ such that the selectivity is maximal correspond to a stable fixed point of

the dynamic given by Eq. (1.2.13). Therefore, in an environment of N input patterns, each

postsynaptic neuron specializes automatically to a given input. The nature of the input

to which it specializes depends on the initial condition. Because of this property, the BCM

learning rule has been used to show the emergence of orientation selectivity and the binocular

interaction in the visual cortex (Hubel and Wiesel 1959; Hubel and Wiesel 1962).

1.3 Aims and achievements

General aim

The aim of this thesis is to develop new models of Spike-Timing-Dependent Plasticity in

order to better understand the functional role and the phenomenology of the synapse.

Specific aims

1. To choose a suitable probabilistic description of a neuron which can be used to define

optimality criteria.

2. To develop optimality criteria in the context of supervised learning that lead to Spike-

Timing-Dependent Plasticity.

3. To develop models of synaptic plasticity, in the context of unsupervised learning, that

result from the maximization of mutual information with or without constraints.

5Note that another version of the sliding threshold proposed by Intrator and Cooper (1992) is given by

θ = α 〈yp〉. In this way, the result is slightly more general and requires less assumptions.
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4. To show possible links between Spike-Timing-Dependent Plasticity and the BCM learn-

ing rule.

5. To develop a phenomenological model of STDP which can reproduce as many experi-

ments as possible.

Achievements

This thesis is based on the following articles, which will be referred to by their Roman

numerals in the text:

I. Pfister JP and Barber D and Gerstner W. Optimal Hebbian Learning: A Proba-

bilistic Point of View. Artificial Neural Networks and Neural Information Processing -

ICANN/ICONIP 2003, edited by O. Kaynak, E. Alpaydin, E. Oja and L. Xu. Berlin:

Springer-Verlag, 92-98, 2003.

II. Pfister JP and Toyoizumi T and Aihara K and Gerstner W. Optimal Spike-

Timing Dependent Plasticity for Precise Action Potential Firing in Supervised Learn-

ing. Neural Computation, 18, 1309-1339, 2006.

III. Toyoizumi T and Pfister JP and Aihara K and Gerstner W. Spike-Timing De-

pendent Plasticity and Mutual Information Maximization for a Spiking Neuron Model.

Advances in Neural Information Processing Systems 17, edited by L.K. Saul and Y.

Weiss and L.Bottou, MIT Press, Cambridge MA, 1409-1416, 2005.

IV. Toyoizumi T and Pfister JP and Aihara K and Gerstner W. Generalized

Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information trans-

mission. Proceedings of the National Academy of Science USA. 102, 5239-5244, 2005.

V. Toyoizumi T and Pfister JP and and Aihara K and Gerstner W. Optimal-

ity Model of Unsupervised Spike-Timing Dependent Plasticity: synaptic memory and

weight distribution. Accepted to Neural Computation.

VI. Pfister JP and Gerstner W. Beyond Pair-Based STDP: a Phenomenological Rule

for Spike Triplet and Frequency Effects. Advances in Neural Information Processing



1.3. AIMS AND ACHIEVEMENTS 21

Systems 18, edited by Y. Weiss and B. Schölkopf and J. Platt, MIT Press, Cambridge

MA, 1083-1090, 2006.

VII. Pfister JP and Gerstner W. Why Triplets of Spike are Necessray in Models of

Spike-Timing-Dependent Plasticity. Submitted to The Journal of Neuroscience.

More specifically, I deals with points 1, 2 of the specific aims list. II deals with point

2. III, IV and V develop models of synaptic plasticity that follow point 3. IV, VI and

VII address the question 4. VI and VII give a example of approach for point 5.

In the next chapter, all those seven papers are presented with an introduction. The order

of the papers follows less the chronology of publication than the chronology of submission.

In this way, papers I to V deal with the first point of the general aim, i.e. develop optimality

models, and the papers VI and VII develop phenomenological models which is the second

point of the general aim.
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CHAPTER 2

Publications

This chapter presents a compilation of all the publications that came out as a product of this

thesis. Each paper is preceded by a short introductory summary that links it to the rest of

the work and reference details.

2.1 Paper I

Summary

The first five papers of this thesis (I-V) develop synaptic learning rules that can be classified as

optimal models (see section 1.2.3 of the introduction). Papers I and II deal with supervised

learning while papers III-V consider the case of unsupervised learning.

Paper I is a first attempt to define an objective function that synapses should maximize.

The objective function is here the logarithm of the probability of observing a single post-

synaptic spike at time tpost (and no other spikes from 0 to T ) when a presynaptic spike is

elicited at time tpre. This gives

L = logP (tpost|tpre) (2.1.1)

The resulting weight change ∆w = ∂L/∂w depends on the time difference between the

pre- and postsynaptic spike and can be expressed as a learning window. With this objective

25
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function, potentiation occurs if the presynaptic spike is just before the postsynaptic one and

depression otherwise. The interesting point about the potentiation part is that it follows

the shape of an excitatory postsynaptic potential (EPSP). Therefore, in this context, the

potentiation time constant of the optimal learning window is given by the membrane time

constant.

The acausal part of the learning window, i.e. when the presynaptic spike is after the

postsynaptic one, is more problematic. Indeed, the strong asymmetry in the learning window

occurs only in the presence of a depolarizing afterpotential which does not seem realistic.

Another problem of this approach is the negative offset of the learning which is not present

in the experimental results. Those open problems were the motivations for the paper II.

The interest of this paper is more in the developed framework than in the results them-

selves. Indeed, in order to have an objective function which depends explicitly on the synaptic

strength w, we used (1) the Spike-Response Model (SRM) which formulates the membrane

potential as an explicit function of the weight and (2) the escape noise theory which allows

us to calculate explicitly the probability of emitting a spike (and therefore the probability of

generating a whole spike train) for a given membrane potential. This combination of SRM

and escape noise has been used in the papers II-V as well as in other papers such as (Bohte

and Mozer 2005).

Reference

The content of this paper was presented at the EPFL Latsis Symposium (February 17-

22, 2003, Lausanne, Switzerland) and more formally at the Joint International Conference

ICANN/ICONIP 2003 (June 26 - 29, 2003, Istanbul, Turkey). This paper was published

after peer-review process in the proceedings of the ICANN/ICONIP conference under the

following reference:

Pfister JP and Barber D and Gerstner W. Optimal Hebbian Learning: A

Probabilistic Point of View. Artificial Neural Networks and Neural Information

Processing - ICANN/ICONIP 2003, edited by O. Kaynak, E. Alpaydin, E. Oja

and L. Xu. Berlin: Springer-Verlag, 92-98, 2003.

This paper has been cited by (Suri 2004).
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Jean-Pascal Pfister1, David Barber2, Wulfram Gerstner1

1 Laboratory of Computational Neuroscience, EPFL
CH-1005 Lausanne, Switzerland
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ICANN/ICONIP, 92-98 (2003)

Abstract

Many activity dependent learning rules have been proposed in order to
model long-term potentiation (LTP). Our aim is to derive a spike time de-
pendent learning rule from a probabilistic optimality criterion. Our approach
allows us to obtain quantitative results in terms of a learning window. This
is done by maximising a given likelihood function with respect to the synap-
tic weights. The resulting weight adaptation is compared with experimental
results.

1 Introduction

Since synaptic changes are most likely to underly memory and learning processes,
it is crucial to determine the causes and underlying laws describing this adaptation
process. Among the enormous number of models, there are mainly two categories:
rate-based and spike-based learning rule. In this paper, we want to present a new
way to derive a spike-time dependent learning rule. Existing models of spike-timing
dependent plasticity are either phenomenological [12] or, in contrast, mechanistic [1].

1
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Figure 1: Critical window for synaptic modifications. Long-term potentiation
(LTP)/long-term depression (LTD) were induced by correlated pre- and postsy-
naptic spiking at synapses between hippocampal glutamatergic neurons in culture.
Figure adapted from [4].

Our model is derived from a probabilistic point of view in the sense that the
learning rule should optimise the likelihood of observing a postsynaptic spike train
with a desired timing, given the postsynaptic membrane potential at the location of
the synapse.

A significant part of the synaptic plasticity models are based on Hebb’s postulate
[14]:

When an axon of cell A is near enough to excite cell B or repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one of
the cells firing B, is increased.

In fact models rephrase this postulate by saying that the adaptation of the
synaptic weights is driven by a simultaneous activity of the pre- and the postsynaptic
neuron. This simultaneity has to be defined in a time window. Recent experiments
[3] have shown the influence of a pair of a single pre- and postsynaptic spike on the
synaptic strength (figure 1).

The aim of this paper is to show that it is possible to get a similar learning
window as a result from an optimal learning rule. Recently Barber [2] studied this
question with neurons discrete in time. Here we want to extend this study to the
continuous case and discuss the results in relation with the experiments of Bi and
Poo [3].

2
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2 Spike Response Model

For the sake of simplicity, let us consider here a single presynaptic neuron j and
a postsynaptic neuron i. Those two neurons are considered as Poisson neurons, i.e
their firing times depend only on the present value of the membrane potential. Let
w be the synaptic weight between those neurons. Finally, let {tf ′

j } and {tfi } denote
respectively the pre- and postsynaptic firing times.

The fundamental hypothesis in this article is to assume that the instantaneous
firing rate of the postsynaptic neuron is given by an increasing function of the
membrane potential u(t):

ρ(t) = g(u(t)). (1)

This firing rate can be also termed escape rate [11]. The membrane potential
model we take is the Spike Response Model (SRM). The simplest SRM is called
SRM0 [9] and defines the membrane potential u(t) as follow:

u(t) = urest + η(t− t̂i) + w
∑

f ′

ε(t− t
f ′

j ), (2)

where, in our case, η(s) is a kernel describing the spike-afterpotential, ε(s) is
the kernel representing the excitatory post-synaptic potential (EPSP) and t̂i is the
last firing time of neuron i, i.e. t̂i = max{tfi |t

f
i < t}. The goal is now to maximise

the probability that the postsynaptic spike train Si(t) =
∑

f ′ δ(t − t
f ′

i ) has been
generated by the firing rate ρ(t).

3 Calculation of the likelihood L

In order to calculate the likelihood of a spike train given a firing rate, it is useful
to first make a time discretization before coming back to the continuous case. Let
ρ̄(t) be the discretised version of ρ(t) on the interval I = [0, T ] where ρ̄(t) = ρ(tn),
∀t ∈ [tn, tn + ∆t] and t0 = 0, tN = N∆t = T .

The probability that a neuron produces a spike at time t ∈ [t̃, t̃ + ∆t] given its
firing rate ρ̄(s) is simply given by the probability of spiking between t̃ and t̃ + ∆t

multiplied by the probability of not spiking at any other time:

P̄ (t ∈ [t̃, t̃ + ∆t]|ρ̄(s))∆t = ρ̄(t̃)∆t
∏

tn 6=t̃

(1− ρ̄(tn)∆t) (3)

To extend this result to the case of M spikes, we need to define t = (t1, . . . , tM)
a M -dimensional time variable ordered chronologically, i.e. tf < tf+1. Let t̃ be
the M desired firing times and Ω(t̃) =

∏

n[t̃n, t̃n + ∆t] a M -dimensional bin. The
probability of firing at the M given times t̃ is

P̄ (t ∈ Ω(t̃)|ρ̄(s))∆tM =
∏

f

ρ̄(t̃f)∆tM
∏

tn 6=t̃f

(1− ρ̄(tn)∆t)

3
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=
∏

f

ρ̄(t̃f)∆tM

1− ρ̄(t̃f )∆t

∏

n

(1− ρ̄(tn)∆t)

=
∏

f

ρ̄(t̃f)∆tM

1− ρ̄(t̃f )∆t
exp

(

∑

n

log(1− ρ̄(tn)∆t)

)

. (4)

Now we can come back to the continuous case. By taking the limit ∆t → 0, we
have ρ̄(t) → ρ(t), P̄ (t ∈ Ω(t̃)|ρ̄(s)) → P (t = t′|ρ(s)),

∑

n log(1 − ρ̄(tn)∆t) →
−
∫ T
0 ρ(t)dt and 1 − ρ̄(t̃f)∆t → 1. Therefore we can define the log-likelihood

L(ti|u(s)) of the postsynaptic spike train given the membrane potential u(s) by
simply taking the logarithm of P (t = t′|ρ(s)):

L(ti|u(s)) =
∑

f

log(g(u(tfi )))−
∫ T

0
g(u(t))dt. (5)

4 Learning rule

The goal of our study is to find a learning rule which tends to optimise the weight
w in order to maximise the likelihood of getting postsynaptic firing times given
the firing rate. This means that those weights must evolve in the direction of the
gradient of L:

wnew = w + κ
∂L

∂w
, (6)

with

∂L

∂w
(ti|u(s)) =

∑

f

dg(u(tf
i
))

du(tf
i
)

∂u(tf
i
)

∂w

g(u(tfi ))
−
∫ T

0

dg(u(t))

du(t)

∂u(t)

∂w
dt

=
∑

f

∑

f ′

ε(tfi − t
f ′

j )

g(u(tfi ))

dg(u(tfi ))

du(tfi )
−
∫ T

0

dg(u(t))

du(t)

∑

f ′

ε(t− t
f ′

j )dt (7)

and κ is the learning rate. Since g(u(t)) = exp(β(u(t)−θ)) is a reasonable choice
[11], we can use it to evaluate the gradient of L for a pre- and a postsynaptic spike
train:

∂L

∂w
(ti|u(s)) = β

∑

f

∑

f ′

ε(tfi − t
f ′

j )− β

∫ T

0
exp(β(u(t)− θ))

∑

f ′

ε(t− t
f ′

j )dt. (8)

Let us now study the restricted case with only one pre- and one postsynaptic
spike and β = 1:

∂L

∂w
(ti|u(s)) = ε(ti − tj)−

∫ T

0
exp(u(t)− θ)ε(t− tj)dt. (9)

4
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Figure 2: First step of the adaptation of weights ∆w = wnew − w = ∂L
∂w

. The
parameters for this simulation are : w = 0.2, θ − urest = −2, β = 1, ε0 = 1, τε =
3, τη = 5. The amplitude of the spike-afterpotential is given by η0 = −1 (HAP) for
(a) and η0 = 1 (DAP) for (b). Note the different vertical scales.

In order to represent the gradient of the log-likelihood function L (figure 2), it is
necessary to choose determine specific kernels for η(s) and ε(s). For simplicity sake,
we take

η(s) = η0e
− s

τη Θ(s), (10)

ε(s) = ε0e
− s

τε Θ(s), (11)

where Θ is the usual Heaviside step function with Θ(s) = 1 for s > 0 and
Θ(s) = 0 else. If η0 > 0, the neuron exhibits a depolarizing afterpotential (DAP).
In reverse, if η0 < 0, is exhibits a hyperpolarizing afterpotential (HAP).

It is interesting to note that the qualitative shape of this learning window is
similar to the one obtained by Bi and Poo [3] only in presence of DAP which could
be consistent with DAP observed by Connors et al. in neocortical neurons [6].

5 Discussion

One can note that a major difference between the result of Bi and Poo and our model
is the negative offset. This offset is related to the integral of the kernel ε(s). Indeed,
if the postsynaptic spike occurs a long time after the presynaptic spike and if w ' 0,
the first term of equation (9) can be neglected and the membrane potential can be
approximated by its resting potential in the range where ε(t− tj) is significant:

∂L

∂w
' − exp(urest − θ)

∫ T

tj

ε(t− tj)dt

' − exp(urest − θ)
∫ ∞

0
ε(s)ds. (12)

5
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This is of course valid only if T � tj. In fact, this offset is related to the
probability of not having a spike at time t 6= ti (c.f. last term of eq. (3)). In order
to increase the likelihood of not having a spike the weight needs to be reduced.

A possible way to solve the problem of negative bias of ∆w is to consider a
slightly different scenario where we still impose the postsynaptic spike at a given
time, but instead of imposing no spike at all the other times, we choose the desired
number of spikes that are allowed to occur stochastically over the period T . This
number of spikes has to be related to the spontaneous firing rate.

One can also note that the shape of the positive peak on figure 2a is dominated
by the kernel ε(s) (c.f. first term of eq. (9)). This is due to the choice of an
exponential for the function g(u).

Let us note that the we are looking at the gradient of the likelihood function L
and not at the optimal solution given by ∂L

∂w
= 0. Indeed, it is straightforward to

notice that there is no fixed point for w if ti < tj. For tj < ti, there is a fixed point

and it is stable since ∂2L
∂w2 < 0.

We have shown a new framework for deriving a spike-time dependent learning
rule. The interesting feature of this learning rule is the similarity to the one obtained
by Bi and Poo. This similarity is valid only in presence of DAP. The duration of
the DAP determines the width of the negative phase of the learning window.

As a consequence we could speculate that the form of the learning window
changes according to the type of neuron since in this framework the learning window
strongly depends on the spike-afterpotential.

It is of course possible to make the model more complex by not using the SRM0

model but more realistic models. Even if our study was restricted to a single pre-
and postsynaptic spike, equation (8) remains totally general for spike trains and is
also valid for an entire neural network.
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2.2 Paper II

Summary

This second paper follows the same line as the first one in the sense that it looks for an

objective function L that can be maximized by the weight changes in the hope that the

resulting weight change can be compared to the experimental results. In fact, we propose

three different objective functions LAc , LBc and LCc in three different scenarios (A, B and

C) and discuss the resulting learning windows. The motivation behind those scenarios is to

solve the two main problems raised by paper I, i.e. the negative offset in the learning window

and the difficulty to get an acausal LTD part in the learning window. This latter point was

achieved in paper I with the use of an unrealistic depolarizing afterpotential (DAP).

Scenario A proposes a solution for the LTD problem, but does not solve the offset prob-

lem. The idea is that, since we consider a supervised scenario, the postsynaptic spike has to

be triggered by a supervisor (or teacher). This is why we included a teaching signal, which

is present in the in vitro experiments. By taking a depolarizing current as a teaching signal,

there is no need anymore to assume a neuronal dynamic with a depolarizing afterpotential

in order to get LTD.

The second scenario (B) gives a solution to remove the negative offset while still having

an acausal LTD part. The LTD part is obtained with the same trick as the one used in

scenario A, i.e. the teaching signal. The offset problem has been solved in the following way.

In the first scenario we imposed a postsynaptic spike at time tpost and no one else from 0

to T . Since this constraint of “no other spikes” induced the negative offset, we relaxed this

constraint in scenario B and allowed a fixed spontaneous firing rate.

Finally, scenario C, which is a generalization of scenario A, solves the offset and the

LTD problem in a different way. Since the outcome of the simplest scenario (A) is a learning

window with an EPSP shaped potentiation and a negative offset, the idea is to impose an

(artificial) locality constraint which penalizes stronger weight changes when |tpre − tpost| is

bigger. In this way, the EPSP shaped potentiation remains, the negative offset for tpre just

after tpost is transformed into LTD and the offset for large |tpre − tpost| vanishes because of

this locality constraint.

In order to make the link between the learning rules derived in this paper (and also the
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one in paper I) which depend on the desired firing time tdes (and not the actual one) and the

experimentally observed STDP function, it is necessary to interpret correctly those learning

rules. A first possibility is to see those rules in a supervised scenario where the desired firing

times tdes are forced by the experimentalist himself or by a group of neurons and therefore

the desired firing time corresponds to the actual one. A second interpretation would place

the learning rules of papers Iand II in a reinforcement learning context (see section 4.1 in

paper II). From this point of view, the weights change only when the reward is non-zero.

Therefore, if a given spatio-temporal pattern of input leading to the desired postsynaptic

spikes tdes triggers some positive reward, the actual firing times tpost match the desired one

tdes. Therefore in both the supervised scenario and the reinforcement learning scenario, the

desired firing times can be matched to the actual firing times.

A stable result across the three scenarios A, B and C (and in agreement with paper I)

is that the shape of the potentiation part of the learning window remains given by the shape

of an EPSP. The situation for the acausal part of the learning window is different. Indeed,

the presence of a depression in the post-before-pre region is caused by different mechanisms

and therefore does not have a unique interpretation.
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Abstract

In timing-based neural codes, neurons have to emit action potentials
at precise moments in time. We use a supervised learning paradigm to
derive a synaptic update rule that optimizes via gradient ascent the like-
lihood of postsynaptic firing at one or several desired firing times. We
find that the optimal strategy of up- and downregulating synaptic effica-
cies depends on the relative timing between presynaptic spike arrival and
desired postsynaptic firing. If the presynaptic spike arrives before the
desired postsynaptic spike timing, our optimal learning rule predicts that
the synapse should become potentiated. The dependence of the poten-
tiation on spike timing directly reflects the time course of an excitatory
postsynaptic potential. However, our approach gives no unique reason
for synaptic depression under reversed spike-timing. In fact, the pres-
ence and amplitude of depression of synaptic efficacies for reversed spike
timing depends on how constraints are implemented in the optimization
problem. Two different constraints, i.e., control of postsynaptic rates or
control of temporal locality, are studied. The relation of our results to
Spike-Timing Dependent Plasticity (STDP) and reinforcement learning
is discussed.

∗Current address: Department of Complexity Science and Engineering, Graduate
School of Frontier Sciences, The University of Tokyo.

†Current address: IDIAP, Rue du Simplon 4, Case Postale 592, CH-1920 Mar-
tigny.
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1 Introduction

Experimental evidence suggests that precise timing of spikes is important in several
brain systems. In the barn owl auditory system, for example, coincidence detecting
neurons receive volleys of temporally precise spikes from both ears (Carr and Konishi
1990). In the electrosensory system of mormyrid electric fish, medium ganglion cells
receive input at precisely timed delays after electric pulse emission (Bell et al. 1997).
Under the influence of a common oscillatory drive as present in the rat hippocampus
or olfactory system, the strength of a constant stimulus is coded in the relative timing
of neuronal action potentials (Hopfield 1995; Brody and Hopfield 2003; Mehta et al.
2002). In humans precise timing of first spikes in tactile afferents encode touch
signals at the finger tips (Johansson and Birznieks 2004). Similar codes have also
been suggested for rapid visual processing (Thorpe et al. 2001), and for the rat’s
whisker response (Panzeri et al. 2001).

The precise timing of neuronal action potentials also plays an important role in
Spike-Timing Dependent Plasticity (STDP). If a presynaptic spike arrives at the
synapse before the postsynaptic action potential, the synapse is potentiated; if the
timing is reversed the synapse is depressed (Markram et al. 1997; Zhang et al. 1998;
Bi and Poo 1998; Bi and Poo 1999; Bi and Poo 2001). This biphasic STDP function
is reminiscent of a temporal contrast or temporal derivative filter and suggests that
STDP is sensitive to the temporal features of a neural code. Indeed, theoretical
studies have shown that, given a biphasic STDP function, synaptic plasticity can
lead to a stabilization of synaptic weight dynamics (Kempter et al. 1999; Song
et al. 2000; Kempter et al. 2001; van Rossum et al. 2000; Rubin et al. 2001) while
the neuron remains sensitive to temporal structure in the input (Gerstner et al.
1996; Roberts 1999; Kempter et al. 1999; Kistler and van Hemmen 2000; Rao and
Sejnowski 2001; Gerstner and Kistler 2002a).

While the relative firing time of pre- and postsynaptic neurons, and hence tem-
poral aspects of a neural code, play a role in STDP, it is, however, less clear whether
STDP is useful to learn a temporal code. In order to further elucidate the com-
putational function of STDP, we ask in this paper the following question: What
is the ideal form of a STDP function in order to generate action potentials of the
postsynaptic neuron with high temporal precision?

This question naturally leads to a supervised learning paradigm - i.e., the task to
be learned by the neuron is to fire at a predefined desired firing time tdes. Supervised
paradigms are common in machine learning in the context of classification and pre-
diction problems (Minsky and Papert 1969; Haykin 1994; Bishop 1995), but have
more recently also been studied for spiking neurons in feedforward and recurrent
networks (Legenstein et al. 2005; Rao and Sejnowski 2001; Barber 2003; Gerstner
et al. 1993; Izhikevich 2003). Compared to unsupervised or reward-based learn-
ing paradigms, supervised paradigms on the level of single spikes are obviously less
relevant from a biological point, since it is questionable what type of signal could
tell the neuron about the ‘desired’ firing time. Nevertheless, we think it is worth
addressing the problem of supervised learning - firstly as a problem in it’s own right,
and secondly as a starting point of spike base reinforcement learning (Xie and Seung
2004; Seung 2003). Reinforcement learning in a temporal coding paradigm implies
that certain sequences of firing times are rewarded whereas others are not. The

2
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“desired firing times” are hence defined indirectly via the presence or absence of a
reward signal. The exact relation of our supervised paradigm to reward-based rein-
forcement learning will be presented in section 4. Section 2 introduces the stochastic
neuron model and coding paradigm which are used to derive the results presented
in section 3.

2 Model

2.1 Coding Paradigm

In order to explain our computational paradigm, we focus on the example of tem-
poral coding of human touch stimuli (Johansson and Birznieks 2004), but the same
ideas would apply analogously to the other neuronal systems with temporal codes
mentioned above (Carr and Konishi 1990; Bell et al. 1997; Hopfield 1995; Brody and
Hopfield 2003; Mehta et al. 2002; Panzeri et al. 2001). For a given touch stimulus,
spikes in an ensemble of N tactile afferents occur in a precise temporal order. If the
same touch stimulus with identical surface properties and force vector is repeated
several times, the relative timing of action potentials is reliably reproduced whereas
the spike timing in the same ensemble of afferents is different for other stimuli (Jo-
hansson and Birznieks 2004). In our model, we assume that all input lines, labeled
by the index j with 1 ≤ j ≤ N converge onto one or several postsynaptic neurons.
We think of the postsynaptic neuron as a detector for a given spatio-temporal spike
patterns in the input. The full spike pattern detection paradigm will be used in
Section 3.3. As a preparation and first steps towards the full coding paradigm we
will also consider the response of a postsynaptic neuron to a single presynaptic spike
(Section 3.1) or to one given spatio-temporal firing pattern (Section 3.2).

2.2 Neuron Model

Let us consider a neuron i which is receiving input from N presynaptic neurons.

Let us denote the ensemble of all spikes of neuron j by xj = {t1j , . . . , t
Nj

j } where tkj
denotes the time when neuron j fired its kth spike. The spatio-temporal spike pattern
of all presynaptic neurons 1 ≤ j ≤ N will be denoted by boldface x = {x1, . . . , xN}.

A presynaptic spike elicited at time tf
j evokes an excitatory postsynaptic poten-

tial (EPSP) of amplitude wij and time course ε(t − tfj ). For the sake of simplicity,
we approximate the EPSP time course by a double exponential

ε(s) = ε0

[

exp

(

−
s

τm

)

− exp

(

−
s

τs

)]

Θ(s) (1)

with a membrane time constant of τm = 10 ms and a synaptic time constant of
τs = 0.7 ms which yields an EPSP rise time of 2 ms. Here Θ(s) denotes the Heaviside
step function with Θ(s) = 1 for s > 0 and Θ(s) = 0 else. We set ε0 = 1.3 mV
such that a spike at a synapse with wij = 1 evokes an EPSP with amplitude of
approximately 1 mV. Since the EPSP amplitude is a measure of the strength of a
synapse, we refer to wij also as the efficacy (or “weight”) of the synapse between
neuron j and i.

3
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Let us further suppose that the postsynaptic neuron i receives an additional
input I(t) that could either arise from a second group of neurons or from intracellular
current injection. We think of the second input as a ‘teaching’ input that increases
the probability that the neuron fires at or close to the desired firing time tdes. For
the sake of simplicity we model the teaching input as a square current pulse I(t) =
I0Θ(t − tdes + 0.5∆T )Θ(tdes + 0.5∆T − t) of amplitude I0 and duration ∆T . The
effect of the teaching current on the membrane potential is

uteach(t) =

∫ ∞

0
k(s)I(t− s)ds (2)

with k(s) = k0 exp(−s/τm) where k0 is a constant that is inversely proportional to
the capacitance of the neuronal membrane.

In the context of the human touch paradigm discussed in section 2.1, the teach-
ing input could represent some preprocessed visual information (‘object touched by
fingers starts to slip now’), feedback from muscle activity (‘strong counterforce ap-
plied now’), cross-talk from other detector neurons in the same population (‘your
colleagues are active now’), or unspecific modulatory input due to arousal or reward
(‘be aware - something interesting happening now’).

In the context of training of recurrent networks (e.g. Rao and Sejnowski 2001),
the teaching input consists of a short pulse of an amplitude that guarantees action
potential firing.

The membrane potential of the postsynaptic neuron i (Spike Response Model,
Gerstner and Kistler 2002b) is influenced by the EPSPs evoked by all afferent spikes

of stimulus x, the ‘teaching’ signal and the refractory effects generated by spikes tf
i

of the postsynaptic neuron

ui(t|x, yi
t) = urest +

N
∑

j=1

wij

∑

t
f
j ∈xj

ε(t− tfj ) +
∑

t
f
i ∈yi

t

η(t− tfi ) + uteach(t) (3)

where urest = −70 mV is the resting potential, yi
t = {t1i , t

2
i , . . . , t

F
i < t} is the

set of postsynaptic spikes that occurred before t and tF
i always denotes the last

postsynaptic spike before t. On the right-hand side of Eq. (3), η(s) denotes the
spike-afterpotential generated by an action potential. We take

η(s) = η0 exp

(

−
s

τm

)

Θ(s) (4)

where η0 < 0 is a reset parameter that describes how much the voltage is reset after
each spike; for the relation to integrate-and-fire neurons see (Gerstner and Kistler
2002b). The spikes themselves are not modeled explicitly but reduced to formal
firing times. Unless specified otherwise, we take η0 = −5 mV.

In a deterministic version of the model, output spikes would be generated when-
ever the membrane potential ui reaches a threshold ϑ. In order to account for
intrinsic noise, and also for a small amount of ‘synaptic noise’ generated by stochas-
tic spike arrival from additional excitatory and inhibitory presynaptic neurons which
are not modeled explicitly we replace the strict threshold by a stochastic one. More
precisely we adopt the following procedure (Gerstner and Kistler 2002b). Action
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potentials of the postsynaptic neuron i are generated by a point process with time
dependent stochastic intensity ρi(t) = g(ui(t)) that depends non-linearly upon the
membrane potential ui. Since the membrane potential in turn depends on both the
input and the firing history of the postsynaptic neuron, we write:

ρi(t|x, yi
t) = g(ui(t|x, yi

t)). (5)

We take an exponential to describe the stochastic escape across threshold, i.e, g(u) =
ρ0 exp

(

u−ϑ
∆u

)

where ϑ = −50 mV is the formal threshold, ∆u = 3 mV is the width
of the threshold region and therefore tunes the stochasticity of the neuron, and
ρ0 = 1/ms is the stochastic intensity at threshold (see Fig. 1). Other choices of
the escape function g are possible with no qualitative change of the results. For
∆u → 0, the model is identical to the deterministic leaky integrate-and-fire model
with synaptic current injection (Gerstner and Kistler 2002b).
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Figure 1: A. Escape rate g(u) = ρ0 exp
(

u−ϑ
∆u

)

. B. Firing rate of the postsynaptic
neuron as a function of the amplitude I0 of a constant stimulation current (arbitrary
units). C. Interspike interval (ISI) distribution for different input currents.

We note that the stochastic process, defined in Eq. (5) is similar to, but differ-
ent from a Poisson process since the stochastic intensity depends on the set yt of
the previous spikes of the postsynaptic neuron. Thus the neuron model has some
‘memory’ of previous spikes.

2.3 Stochastic Generative Model

The advantage of the probabilistic framework introduced above via the noisy thresh-
old is that it is possible to describe the probability density1 Pi(y|x) of an entire spike

1For the sake of simplicity, we denoted the set of postsynaptic spikes from 0 to T
by y instead of yT .
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train2 Y (t) =
∑

t
f
i ∈y

δ(t − tfi ) (see appendix A for details):

Pi(y|x) =







∏

t
f
i ∈y

ρi(t
f
i |x, y

t
f
i

)






exp

(

−

∫ T

0
ρi(s|x, ys)ds

)

= exp

(∫ T

0
log(ρi(s|x, ys))Y (s)− ρi(s|x, ys)ds

)

(6)

Thus we have a generative model that allows us to describe explicitly the likelihood
Pi(y|x) of emitting a set of spikes y for a given input x. Moreover, since the likelihood
in Eq. (6) is a smooth function of its parameters, it is straightforward to differentiate
it with respect to any variable. Let us differentiate Pi(y|x) with respect to the
synaptic efficacy wij , since this is a quantity that we will use later on:

∂ log Pi(y|x)

∂wij
=

∫ T

0

ρ′i(s|x, ys)

ρi(s|x, ys)
[Y (s)− ρi(s|x, ys)]

∑

t
f
j ∈xj

ε(s− tfj )ds. (7)

where ρ′i(s|x, ys) = dg
du
|u=ui(s|x,ys).

In this paper, we propose three different optimal models called A, B and C (cf.
Table 1). The models differ in the stimulation paradigm and the specific task of the
neuron. In section 3, the task and hence the optimality criteria are supposed to be
given explicitly. However, the task in model C could also be defined indirectly by
the presence or absence of a reward signal as discussed in section 4.1. The common
idea behind all three approaches (A-C) is the notion of optimal performance. Opti-
mality is defined by an objective function L that is directly related to the likelihood
formula of Eq. (6) and that can be maximized by changes of the synaptic weights.
Throughout the paper, this optimization is done by a standard technique of gradient
ascent:

∆wij = α
∂L

∂wij
(8)

with a learning rate α. Since the three models correspond to three different tasks,
they have a slightly different objective function. Therefore, gradient ascent yields
slightly different strategies for synaptic update. In the following we start with the
simplest model with the aim to illustrate the basic principles that generalize to the
more complex models.

3 Results

In this section we present synaptic updates rules derived by optimizing the likeli-
hood of postsynaptic spike firing at some desired firing time tdes. The essence of
the argument is introduced in a particularly simple scenario, where the neuron is
stimulated by one presynaptic spike and the neuron is inactive except at the desired
firing time tdes. This is the raw scenario that is further developed in several different
directions.

2Capital Y is the spike train generated by the ensemble (lower case) y.
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Firstly, we may ask the question of how the postsynaptic spike at the desired
time tdes is generated: (i) the spike could simply be given by a supervisor. As always
in maximum likelihood approaches, we then optimize the likelihood that this spike
could have been generated by the neuron model (i.e., the generative model) given
the known input; (ii) the spike could have been generated by an strong current
pulse of short duration applied by the supervisor (teaching input). In this case the
a priori likelihood that the generative model fires at or close to the desired firing
time is much higher. The two conceptual paradigms give slightly different results as
discussed in scenario A.

Secondly, we may, in addition to the spike at the desired time tdes allow for
other postsynaptic spikes generated spontaneously. The consequences of sponta-
neous activity for the STDP function are discussed in scenario B. Thirdly, instead
of imposing a single postsynaptic spike at a desired firing time tdes, we can think of
a temporal coding scheme where the postsynaptic neuron responds to one (out of
M) presynaptic spike patterns with a desired output spike train containing several
spikes while staying inactive for the other M − 1 presynaptic spike patterns. This
corresponds to a pattern classification task which is the topic of scenario C.

Moreover, optimization can be performed in an unconstrained fashion or under
some constraint. As we will see in this section, the specific form of the constraint
influences the results on STDP, in particular the strength of synaptic depression
for post-before-pre timing. To emphasize this aspect, we discuss two different con-
straints. The first constraint is motivated by the observation that neurons have a
preferred working point defined by a typical mean firing rate that is stabilized by
homeostatic synaptic processes (Turrigiano and Nelson 2004). Penalizing deviations
from a target firing rate is the constraint that we will use in scenario B. For very
low target firing rate, the constraint reduces to the condition of ‘no activity’ which
is the constraint implemented in scenario A.

The second type of constraint is motivated by the notion of STDP itself: changes
of synaptic plasticity should depend on the relative timing of pre- and postsynaptic
spike firing and not on other factors. If STDP is to be implemented by some physical
or chemical mechanisms with finite time constants, we must require the STDP func-
tion to be local in time, i.e., the amplitude of the STDP function approaches zero
for large time differences. This is the temporal locality constraint used in scenario
C. While the unconstrained optimization problems are labeled with the subscript u
(Au, Bu, Cu), the constrained problems are marked by the subscript c (Ac, Bc, Cc)
(c.f Table 1).

3.1 Scenario A: One Postsynaptic Spike Imposed

Let us start with a particularly simple model which consists of one presynaptic
neuron and one postsynaptic neuron (c.f. Fig. 2A). Let us suppose that the task of
the postsynaptic neuron i is to fire a single spike at time tdes in response to the input
which consists of a single presynaptic spike at time tpre, i.e. the input is x = {tpre}
and the desired output of the postsynaptic neuron is y = {tdes}. Since there is only
a single pre- and a single postsynaptic neuron involved, we drop in this section the
indices j and i of the two neurons.

7
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Unconstrained scenarios Constrained scenarios

Au
Postsynaptic spike imposed

Ac
No activity

LAu = log(ρ(tdes)) LAc = LAu −
∫ T

0 ρ(t)dt

Bu

Postsynaptic spike imposed

Bc
Stabilized activity

+ spontaneous activity
LBu = log(ρ̄(tdes)) LBc = LBu − 1

Tσ2

∫ T

0
(ρ̄(t) − ν0)2dt

Cu

Postsynaptic spike

Cc

Temporal locality
patterns imposed constraint

LCu = log





∏

i

Pi(y
i|xi)

∏

k 6=i

Pi(0|x
k)

γ
M−1



 LCc = LCu , P∆∆′ = aδ∆∆′

(

∆− T̃0

)2

Table 1: Summary of the optimality criterion L for the three unconstrained scenarios
(Au, Bu, Cu) and the three constrained scenarios (Ac, Bc, Cc). The constraint for
scenario C is not included in the likelihood function LCc itself, but rather in the
deconvolution with a matrix P that penalizes quadratically the terms that are non-
local in time. See appendix C for more details.
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Figure 2: A. Scenario A: a single presynaptic neuron connected to a postsynaptic
neuron with a synapse of weight w. B. Optimal weight change given by Eq. (10) for
the scenario Au. This weight change is exactly the mirror image of an EPSP.

3.1.1 Unconstrained scenario Au: One Spike at tdes

In this subsection, we assume that the postsynaptic neuron has not been active in the
recent past, i.e. refractory effects are negligible. In this case, we have ρ(t|x, yt) =
ρ(t|x) because of the absence of previous spikes. Moreover, since there is only a
single presynaptic spike (i.e. x = {tpre}), we write ρ(t|tpre) instead of ρ(t|x).

Since the task of the postsynaptic neuron is to fire at time tdes, we can define
the optimality criterion LAu as the log-likelihood of the firing intensity at time tdes,
i.e.

LAu = log
(

ρ(tdes|tpre)
)

(9)

8
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The gradient ascent on this function leads to the following STDP function:

∆wAu = α
∂LAu

∂w
= α

ρ′(tdes|tpre)

ρ(tdes|tpre)
ε(tdes − tpre) (10)

where ρ′(t|tpre) ≡ dg
du
|u=u(t|tpre). Since this optimal weight change ∆wAu can

be calculated for any presynaptic firing time tpre, we get a STDP function which
depends on the time difference ∆t = tpre− tdes (c.f. Fig. 2B). As we can see directly
from Eq. (10), the shape of the potentiation is exactly a mirror image of an EPSP.
This result is independent of the specific choice of the function g(u).

The drawback of this simple model becomes apparent, if the STDP function
given by Eq. 10 is iterated over several repetitions of the experiment. Ideally, it
should converge to an optimal solution given by ∆wAu = 0 in Eq. (10). However,
the optimal solution given by ∆wAu = 0 is problematic: for ∆t < 0, the optimal
weight tends towards ∞ whereas for ∆t ≥ 0, there is no unique optimal weight
(∆wAu = 0, ∀w). The reason of this problem is, of course, that the model describes
only potentiation and includes no mechanisms for depression.

3.1.2 Constrained Scenario Ac: No Other Spikes Than at tdes

In order to get some insight of where the depression could come from, let us consider
a small modification of the previous model. In addition to the fact that the neuron
has to fire at time tdes, let us suppose that it should not fire anywhere else. This
condition can be implemented by an application of Eq. (6) to the case of a single
input spike x = {tpre} and a single output spike y = {tdes}. In terms of notation we
set P (y|x) = P (tdes|tpre) and similarly ρ(s|x, y) = ρ(s|tpre, tdes) and use Eq. (6) to
find:

P (tdes|tpre) = ρ(tdes|tpre) exp

[

−

∫ T

0
ρ(s|tpre, tdes)ds

]

. (11)

Note that for s ≤ tdes, the firing intensity does not depend on tdes, hence ρ(s|tpre, tdes) =
ρ(s|tpre) for s ≤ tdes. We define the objective function LAc as the log-likelihood of
generating a single output spike at time tdes, given a single input spike at tpre. Hence,
with Eq. (11):

LAc = log(P (tdes|tpre))

= log(ρ(tdes|tpre))−

∫ T

0
ρ(s|tpre, tdes)ds (12)

and the gradient ascent ∆wAc = α∂LAc/∂w rule yields

∆wAc = α
ρ′(tdes|tpre)

ρ(tdes|tpre)
ε(tdes − tpre)− α

∫ T

0
ρ′(s|tpre, tdes)ε(s− tpre)ds (13)

Since we have a single postsynaptic spike at tdes, Eq. (13) can directly be plotted
as a STDP function. In Fig. 3 we distinguish two different cases. In Fig. 3A we
optimize the likelihood LAc in the absence of any teaching input. To understand
this scenario we may imagine that a postsynaptic spike has occurred spontaneously
at the desired firing time tdes. Applying the appropriate weight update calculated

9
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Figure 3: Optimal weight adaptation for scenario Ac given by Eq. (7) in the absence
of a teaching signal (A) and in the presence of a teaching signal (B). The weight
change in the post-before-pre is governed by the spike afterpotential uAP (t) = η(t)+
uteach(t). The duration of the teaching input is ∆T = 1 ms. The amplitude of
the current I0 is chosen so that maxt uteach(t) = 5 mV. urest is chosen such that
the spontaneous firing rate g(urest) matches the desired firing rate 1/T , i.e. urest =
∆u log 1

Tρ0
+ θ ' −60 mV. The weight strength is w = 1.

from Eq. (13) will make such a timing more likely the next time the presynaptic
stimulus is repeated. The reset amplitude η0 has only a small influence.

In Fig. 3B we consider a case where firing of the postsynaptic spike at the ap-
propriate time was made highly likely by a teaching input of duration ∆T = 1 ms
centered around the desired firing tdes. The form of the STDP function depends on
the amount η0 of the reset. If there is no reset η0 = 0, the STDP function shows
strong synaptic depression of synapses that become active after the postsynaptic
spike. This is due to the fact that the teaching input causes an increase of the
membrane potential that decays back to rest with the membrane time constant τm.
Hence the window of synaptic depression is also exponential with the same time
constant. Qualitatively the same is true, if we include a weak reset. The form of
the depression window remains the same, but its amplitude is reduced. The inverse
of the effect occurs only for strong reset to or below resting potential. A weak reset
is standard in applications of integrate-and-fire models to in vivo data and is one of
the possibilities to explain the high coefficient of variation of neuronal spike trains
in vivo (Bugmann, Christodoulou, and Taylor 1997; Troyer and Miller 1997).

A further property of the STDP functions in Fig. 3 is a negative offset for |tpre−
tdes| → ∞. The amplitude of the offset can be calculated for w ' 0 and ∆t > 0,
i.e. ∆w0 ' −ρ′(urest)

∫∞
0 ε(s)ds. This offset is due to the fact that we do not want

spikes at other times than tdes. As a result, the optimal weight w? (i.e. solution
of ∆wAu = 0), should be as negative as possible (w? → −∞ or w? → wmin in the
presence of a lower bound) for ∆t > 0 or ∆t � 0.

10
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3.2 Scenario B: Spontaneous Activity

The constraint in Scenario Ac of having strictly no other postsynaptic spikes than
the one at time tdes may seem artificial. Moreover, it is this constraint which leads
to the negative offset of the STDP function discussed at the end of the previous
paragraph. In order to relax the constraint of “no spiking”, we allow in scenario
B for a reasonable spontaneous activity. As above, we start with an unconstrained
scenario Bu before we turn to the constrained scenario Bc.

3.2.1 Unconstrained scenario Bu: Maximize the Firing Rate at tdes

Let us start with the simplest model which includes spontaneous activity. Scenario
Bu is the analog of the model Au, but with two differences.

First, we include spontaneous activity in the model. Since ρ(t|x, yt) depends
on the spiking history for any given trial, we have to define a quantity which is
independent of the specific realizations y of the postsynaptic spike train.

Secondly, instead of considering only one presynaptic neuron, we consider N =
200 presynaptic neurons, each of them emitting a single spike at time tj = jδt, where
δt = 1 ms (see Fig. 4A). The input pattern will therefore be described by the set of
delayed spikes x = {xj = {tj}, j = 1, . . . , N}. As long as we consider only a single
spatio-temporal spike pattern in the input, it is always possible to relabel neurons
appropriately so that neuron j + 1 fires after neuron j.
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Figure 4: Scenario B. A. N = 200 presynaptic neurons are firing one after the other
at time tj = jδt with δt = 1 ms. B. The optimal STDP function of scenario Bu.

Let us define the instantaneous firing rate ρ̄(t) that can be calculated by aver-
aging ρ(t|yt) over all realizations of postsynaptic spike trains:

ρ̄(t|x) = 〈ρ(t|x, yt)〉yt|x
. (14)

Here the notation 〈·〉yt|x
means taking the average over all possible configuration of

postsynaptic spikes up to t for a given input x. In analogy to a Poisson process,
a specific spike train with firing times yt = {t1i , t

2
i , . . . , t

F
i < t} is generated with
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probability P (yt|x) given by Eq. (6). Hence, the average 〈·〉yt|x
of Eq. (14) can be

written as follows (see appendix B for numerical evaluation of ρ̄(t)):

ρ̄(t|x) =
∞
∑

F=0

1

F !

∫ t

0
· · ·

∫ t

0
ρ(t|x, yt)P (yt|x)dtFi . . . dt1i . (15)

Analogously to the model Au, we can define the quality criterion as the log-
likelihood LBu of firing at the desired time tdes:

LBu = log(ρ̄(tdes|x)). (16)

Thus the optimal weight adaptation of synapse j is given by

∆wBu

j = α
∂ρ̄(tdes|x)/∂wj

ρ̄(tdes|x)
(17)

where ∂ρ̄(t|x)
∂wj

is given by

∂ρ̄(t|x)

∂wj
= ρ̄′(t|x)ε(t− tj) +

〈

ρ(t|x, yt)
∂

∂wj
log P (yt|x)

〉

yt|x

, (18)

∂
∂wj

log P (yt|x) is given by Eq. (7) and ρ̄′(t|x) =
〈

dg
du

∣

∣

u=u(t|x,yt)

〉

yt|x
.

Figure 4B shows that, for our standard set of parameters, the differences to
scenario Au are negligible.

Figure 5A depicts the STDP function for various values of the parameter ∆u at
a higher postsynaptic firing rate. We can see a small undershoot in the pre-before-
post region. The presence of this small undershoot can be understood as follows:
enhancing a synapse of a presynaptic neuron that fires too early would induce a
postsynaptic spike that arrives before the desired firing time and therefore, because
of refractoriness, would prevent the generation of a spike at the desired time. The
depth of this undershoot decreases with the stochasticity of the neuron and increases
with the amplitude of the refractory period (if η0 = 0, there is no undershoot).
In fact, correlations between pre- and postsynaptic firing reflect the shape of an
EPSP in the high-noise regime, whereas they show a trough for low noise (Poliakov
et al. 1997; Gerstner 2001). Our theory shows that the pre-before-post region of the
optimal plasticity function is a mirror image of these correlations.

3.2.2 Constrained scenario Bc: Firing Rate Close to ν0”

In analogy to model Ac we now introduce a constraint. Instead of imposing strictly
no spikes at times t 6= tdes, we can relax the condition and minimize deviations of
the instantaneous firing rate ρ̄(t|x, tdes) from a reference firing rate ν0. This can be
done by introducing into Eq. (16) a penalty term PB given by

PB = exp

(

−
1

T

∫ T

0

(ρ̄(t|x, tdes)− ν0)
2

2σ2
dt

)

. (19)

For small σ, deviations from the reference rate yields a large penalty. For σ → ∞,
the penalty term has no influence. The optimality criterion is a combination of a

12
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Figure 5: A. The optimal STDP functions of scenario Bu for different level of stochas-
ticity described by the parameter ∆u. The standard value (∆u = 3 mV) is given
by the solid line, decreased noise (∆u = 1 mV and ∆u = 0.5 mV) are indicated
by dot-dashed and dashed lines respectively . In the low-noise regime, enhancing a
synapse which fires slightly too early can prevent the firing at the desired firing time
tdes due to refractoriness. To increase the firing rate at tdes it is thence advantageous
to decrease the firing probability some time before tdes. Methods: For each value of
∆u, the initial weight w0 are set such that the spontaneous firing rate is ρ̄ = 30Hz.
In all three cases, ∆w has been multiplied by ∆u in order to normalize the ampli-
tude of the STDP function. Reset: η0 = −5 mV. B. Scenario Bc. Optimal STDP
function for scenario Bc given by Eq. (21) for a teaching signal of duration ∆T = 1
ms. The maximal increase of the membrane potential after 1 ms of stimulation with
the teaching input is maxt uteach(t) = 5 mV. Synaptic efficacies wij are initialized
such that u0 = −60 mV which gives a spontaneous rate of ρ̄ = ν0 = 5 Hz. Standard
noise level: ∆u = 3 mV.

high firing rate ρ̄ at the desired time under the constraint of small deviations from
the reference rate ν0. If we impose the penalty as a multiplicative factor and take
as before the logarithm, we get:

LBc = log
(

ρ̄(tdes|x)PB

)

(20)

Hence the optimal weight adaptation is given by

∆wBc

j = α
∂ρ̄(tdes|x)/∂wj

ρ̄(tdes|x)
−

α

Tσ2

∫ T

0
(ρ̄(t|x, tdes)− ν0)

∂

∂wj
ρ̄(t|x, tdes)dt. (21)

Since in scenario B each presynaptic neuron j fires exactly once at time tj = jδt and
the postsynaptic neuron is trained to fire at time tdes, we can interpret the weight
adaptation ∆wBc

j of Eq. (21) as a STDP function ∆wBc which depends on the time

difference ∆t = tpre − tdes. Fig. 5 shows this STDP function for different values
of the free parameter σ of Eq. (19). The higher the standard deviation σ, the less
effective is the penalty term. In the limit of σ →∞, the penalty term can be ignored
and the situation is identical to that of scenario Bu.
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3.3 Scenario C: Pattern Detection

3.3.1 Unconstrained Scenario Cu: Spike Pattern Imposed

This last scenario is a generalization of the scenario Ac. Instead of restricting the
study to a single pre- and postsynaptic neuron, we consider N presynaptic neurons
and M postsynaptic neurons (see Fig. 6). The idea is to construct M independent
detector neurons. Each detector neuron i = 1, . . . ,M , should respond best to a
specific prototype stimulus, say xi, by producing a desired spike train yi, but should
not respond to other stimuli, i.e. yi = 0, ∀xk, k 6= i (see Fig. 7). The aim is to find
a set of synaptic weights that maximize the probability that neuron i produces y i

when xi is presented and produces no output when xk, k 6= i is presented. Let the
likelihood function LCu be

LCu = log





M
∏

i=1

Pi(y
i|xi)

M
∏

k=1,k 6=i

Pi(0|x
k)

γ
M−1



 (22)

where Pi(y
i|xi) (c.f Eq. (6)) is the probability that neuron i produces the spike

train yi when the stimulus xi is presented. The parameter γ characterizes the
relative importance of the patterns that should not be learned compared to those
that should be learned. We get

LCu =

M
∑

i=1

log(Pi(y
i|xi)) + γ

〈

log(Pi(0|x
k))
〉

xk 6=xi
(23)

where the notation 〈·〉
xk 6=xi ≡ 1

M−1

∑M
k 6=i means taking the average over all

patterns other than xi. The optimal weight adaptation yields

∆wC
ij = α

∂

∂wij
log(Pi(y

i|xi)) + αγ

〈

∂

∂wij
log(Pi(0|x

k))

〉

xk 6=xi

(24)
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Figure 6: Scenario C. N presynaptic neurons are fully connected to M postsynaptic
neurons. Each postsynaptic neuron is trained to respond to a specific input pattern
and not respond to M − 1 other patterns as described by the objective function of
Eq. (22).
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Figure 7: Pattern detection after learning. Top. The left raster plot represents
the input pattern the ith neuron has to be sensitive to. Each line corresponds to
one of the N = 400 presynaptic neurons. Each dot represents an action potential.
The right figure represents one of the patterns the ith neuron should not respond to.
Middle. The left raster plot corresponds to 1000 repetitions of the output of neuron
i when the corresponding pattern xi is presented. The right plot is the response of
neuron i to one of the pattern it should not respond to. Bottom. The left graph
represents the probability density of firing when pattern xi is presented. This plot
can be seen as the PSTH of the middle graph. Arrows indicate the supervised timing
neuron i learned. The right graph describes the probability density of firing when
pattern xk is presented. Note the different scales of vertical axis.

The learning rule of Eq. (24) gives the optimal weight change for each synapse
and can be evaluated after presentation of all pre- and postsynaptic spike patterns,
i.e. it is a “batch” update rule. Since each pre- and postsynaptic neuron emit many
spikes in the interval [0, T ], we can not directly interpret the result of Eq. (24) as a
function of the time difference ∆t = tpre − tdes as we did in scenario A or B.

Ideally, we would like to write the total weight change of the optimal rule given
by Eq. (24) as a sum of contributions

∆wC
ij =

∑

tpre ∈ xi
j

tdes ∈ yi

∆WCu(tpre − tdes), (25)
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where ∆W Cu(tpre − tdes) is a STDP function and the summation runs over all pairs
of pre- and postsynaptic spikes. The number of pairs of pre- and postsynaptic
spikes with a given time shift is given by the correlation function which is best
defined in discrete time. We assume time steps of duration δt = 0.5 ms. Since the
correlation will depend on the presynaptic neuron j and the postsynaptic neuron
i under consideration, we introduce a new index k = N(i − 1) + j. We define the
correlation in discrete time by its matrix elements Ck∆ that describe the correlation
between the presynaptic spike train X i

j(t) and the postsynaptic spike train Y i(t −
T0 + ∆δt). For example, C3∆ = 7 implies that 7 spike pairs of presynaptic neuron
j = 3 with postsynaptic neuron i = 1 have a relative time shift of T0 −∆δt. With
this definition, we can rewrite Eq. (25) in vector notation (see appendix C.1 for
more details):

∆wC !
= C∆WCu (26)

where ∆wC = (∆wC
11, . . . ,∆wC

1N ,∆wC
21, . . . ,∆wC

MN )T is the vector containing all
the optimal weight change given by Eq. (24) and ∆WCu is the vector containing
the discretized STDP function with components ∆W Cu

∆ = ∆WCu(−T0 + ∆δt) for
1 ≤ ∆ ≤ 2T̃0 with T̃0 = T0/δ. In particular, the center of the STDP function (i.e.

tpre = tdes) corresponds to the index ∆ = T̃0. The symbol
!
= expresses the fact that

we want to find ∆WCu such that ∆wC is as close as possible to C∆WCu . By taking
the pseudo-inverse C+ = (CT C)−1CT of C, we can invert Eq. (26) and get

∆WCu = C+∆wC (27)

The resulting STDP function is plotted in Fig. 8A. As it was the case for the sce-
nario Au, the STDP function exhibits a negative offset. In addition to the fact the
postsynaptic neuron i should not fire at other times than the ones given by y i, it
should also not fire whenever pattern xk, k 6= i is presented. The presence of the
negative offset is due to those two factors.

3.3.2 Constrained Scenario Cc: Temporal Locality

In the previous paragraph, we obtained a STDP function with a negative offset. This
negative offset does not seem realistic because it implies that the STDP function
is not localized in time. In order to impose temporal locality (finite memory span
of the learning rule) we modify Eq. (27) in the following way (see appendix C.2 for
more details):

∆WCc = (CT C + P )−1CT ∆wC (28)

where P is a diagonal matrix which penalizes non-local terms. In this paper, we
take a quadratic suppression of terms that are non-local in time. With respect
to a postsynaptic spike at tdes, the penalty term is proportional to (t − tdes)2. In
matrix notation, and using our convention that the postsynaptic spike corresponds
to ∆ = T̃0, we have:

P∆∆′ = aδ∆∆′

(

∆− T̃0

)2
(29)

The resulting STDP functions for different values of a are plotted in Fig. 8B. The
higher the parameter a, the more non-local terms are penalized, the narrower is the
STDP function.
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Figure 8: A. Optimal weight change for scenario Cu. In this case, no locality
constraint is imposed and the result is similar to the STDP function of scenario Ac

(with η0 = 0 and uteach(t) = 0) represented on Fig. 3. B. Optimal weight change for
scenario Cc as a function of the locality constraint characterized by a. The stronger
the importance of the locality constraint, the narrower is the spike-spike interaction.
For A and B: M = 20, η0 = −5 mV. The initial weights wij are chose so that the
spontaneous firing rate matches the imposed firing rate.

Fig. 9A shows the STDP functions for various number of patterns M . No sig-
nificant change can be observed for different numbers of input patterns M . This is
due to the appropriately chosen normalization factor 1/(M − 1) in the exponent of
Eq. (22).
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Figure 9: A. Optimal STDP function as a function of the number of input patterns
M . (a = 0.04, N = 400) B. Optimal weight change as a function of the weight w. If
the weights are small (dashed line) potentiation dominates whereas if they are big
(dotted line) depression dominates.
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The target spike trains yi have a certain number of spikes during the time window
T , i.e. they set a target value for the mean rate. Let νpost = 1

TM

∑M
i=1

∫ T

0 yi(t)dt
be the imposed firing rate. Let w0 denote the amplitude of the synaptic strength
such that the firing rate ρ̄w0

given by those weights is identical to the imposed firing
rate: ρ̄w0

= νpost. If the actual weights are smaller than w0, almost all the weights
should increase whereas if they are bigger than w0, depression should dominate (c.f
Fig 9B). Thus the exact form of the optimal STDP function depends on the initial
weight value w0. Alternatively, homeostatic process could assure that the mean
weight value is always in the appropriate regime.

In Eqs. (25) and (26) we imposed that the total weight change should be gen-
erated as a sum over pairs of pre- and postsynaptic spikes. This is an assumption
which has been made in order to establish a link to standard STDP theory and ex-
periments where spike pairs have been in the center of interest (Gerstner et al. 1996;
Kempter et al. 1999; Kistler and van Hemmen 2000; Markram et al. 1997; Bi and
Poo 1998; Zhang et al. 1998). It is, however, clear by now that the timing of spike
pairs is only one of several factors contributing to synaptic plasticity. We therefore
asked how much we miss if we attribute the ‘optimal’ weight changes calculated in
Eq. (24) to spike-pair effects only. To answer this question we compared the optimal
weight change ∆wC

ij from Eq. (24) with that derived from the pair-based STDP rule

∆wrec
ij =

∑

tpre∈xi
j

∑

tdes∈yi ∆WCc(tpre− tdes) with or without locality constraint, i.e.

for different values of the locality parameter (a = 0, 0.04, 0.4): see Fig. 10. More
precisely, we simulate M = 20 detector neurons, each one of them having N = 400
presynaptic inputs, so each subplot of Fig. 10 contains 8000 points. Each point in
a graph corresponds to the optimal change of one weight for one detector neuron
(x axis) compared to the weight change of the very same weight due to pair based
STDP (y axis). We found that in the absence of a locality constraint the pair-wise
contributions are well correlated with the optimal weight changes. With strong
locality constraints the quality of the correlation drops significantly. However, for
a weak locality constraint that corresponds to a STDP function with reasonable
potentiation and depression regimes, the correlation of the pair-based STDP rule
with the optimal update is still good. This suggests that synaptic updates with a
STDP-function based on pairs of pre- and postsynaptic spikes is close to optimal in
the ‘pattern detection’ paradigm.

4 Discussion

4.1 Supervised versus Unsupervised and Reinforcement Learning

Our approach is based upon the maximization of the probability of firing at desired
times tdes with or without constraints. From the point of view of machine learn-
ing, this is a supervised learning paradigm implemented as a maximum likelihood
approach using the spike response model with escape noise as a generative model.
Our work can be seen as a continuous-time extension of the maximum likelihood
approach proposed in Barber (2003).

The starting point of all supervised paradigms is the comparison of a desired
output with the actual output a neuron has, or would have, generated. The difference
between the desired and actual output is then used as the driving signal for synaptic

18



56 CHAPTER 2. PUBLICATIONS

A a = 0 B a = 0.04 C a = 0.4

-0.3 0 0.3

∆w
opt

-0.3

0

0.3

∆w
re

c

PSfrag replacements

tpre − tdes [ms]
∆wopt

∆wrec

-0.3 0 0.3

∆w
opt

-0.3

0

0.3

∆w
re

c

PSfrag replacements

tpre − tdes [ms]
∆wopt

∆wrec

-0.3 0 0.3

∆w
opt

-0.3

0

0.3

∆w
re

c

PSfrag replacements

tpre − tdes [ms]
∆wopt

∆wrec

Figure 10: Correlation plot between the optimal synaptic weight change ∆wopt =
∆wCu and the reconstructed weight change ∆wrec = C∆WCc using the temporal
locality constraint. A. No locality constraint, i.e. a = 0. Deviations from the
diagonal are due to the fact that the optimal weight change given by Eq. (24) can
not be perfectly accounted for the sum of pair effects. The mean deviations are given
by Eq. (43). B. A weak locality constraint (a = 0.04) almost does not change the
quality of the weight change reconstruction. C. Strong locality constraint (a = 0.4).
The horizontal lines arise since most synapses are subject to a few strong updates
induced by pairs of pre- and postsynaptic spike times with small time shifts.

Unconstrained scenarios Constrained scenarios

Au
pre-before-post

Ac
post-before-pre

LTP ∼ EPSP LTD (or LTP) ∼ spike afterpot.

Bu
pre-before-post

Bc

post-before-pre
LTP/LTD ∼ reverse correlation LTD ∼ increased firing rate

Cu

pre-before-post

Cc

post-before-pre
LTP ∼ EPSP LTD ∼ background patterns
LTD ∼ background patterns ∼ temporal locality

Table 2: Main results for each scenario.

updates in typical model approaches (Minsky and Papert 1969; Haykin 1994; Bishop
1995). How does this compare to experimental approaches? Experiments focusing
on STDP have been mostly performed in vitro (Markram et al. 1997; Magee and
Johnston 1997; Bi and Poo 1998). Since in typical experimental paradigms firing of
the postsynaptic neuron is enforced by strong pulses of current injection, the neuron
is not in a natural ‘unsupervised’ setting; on the other hand, the situation is also
not fully supervised, since there is never a conflict between the desired and actual
output of a neuron. In one of the rare in vivo experiments to STDP (Frégnac et al.
1988; Frégnac et al. 1992), the spikes of the postsynaptic neuron are also imposed by
current injection. Thus, a classification of STDP experiments in terms of supervised,
unsupervised, or reward based, is not as clearcut as it may seem at a first glance.

From the point of view of neuroscience, paradigms of unsupervised or reinforce-
ment are probably much more relevant than the supervised scenario discussed here.
However, most of our results from the supervised scenario analyzed in this paper,
can be reinterpreted in the context of reinforcement learning following the approach
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proposed by Xie and Seung (2004). To illustrate the link between reinforcement
learning and supervised learning, we define a global reinforcement signal R(x, y)
which depends on the spike timing of the presynaptic neurons x and the postsy-
naptic neuron y. The quantity optimized in reinforcement learning is the expected
reward 〈R〉

x,y averaged over all pre- and postsynaptic spike trains, i.e.

〈R〉
x,y =

∑

x,y

R(x, y)P (y|x)P (x) (30)

If the goal of learning is to maximize the expected reward, we can define a learn-
ing rule which achieves this goal by changing synaptic efficacies in direction of the
gradient of the expected reward 〈R〉

x,y:

〈∆w〉
x,y = α

〈

R(x, y)
∂ log P (y|x)

∂w

〉

x,y

(31)

where α is a learning parameter and ∂ log P (y|x)
∂w

is the quantity we discussed in
this paper. Thus the quantities optimized in our supervised paradigm re-appear
naturally in a reinforcement learning paradigm.

For an intuitive interpretation of the link between reinforcement learning and
supervised learning consider a postsynaptic spike that (spontaneously) occurred at
time t0. If no reward is given, no synaptic change takes place. However, if the
postsynaptic spike at t0 is linked to a rewarding situation, the synapse will try to
recreate in the next trial a spike at the same time, i.e., t0 has the role of the desired
firing time tdes introduced in this paper. Thus the STDP function with respect to
a postsynaptic spike at tdes derived in this paper, can be seen as the spike timing
dependence which maximizes the expected reward in a spike-based reinforcement
learning paradigm.

4.2 Interpretation of STDP Function

Let us now summarize and discuss our results in a broader context. In all three
scenarios, we found an STDP function with potentiation for pre-before-post timing.
Thus this result is structurally stable and independent of model details. However,
depression for post-before-pre timing does depend on model details.

In scenario A, we have seen that the behavior of the post-before-pre region is
determined by the spike afterpotential (see table 2 for a result summary of the three
models). In the presence of a teaching input and firing rate constraints, a weak
reset of the membrane potential after the spike means that the neuron effectively
has a depolarizing spike after potential (DAP). In experiments, DAPs have been
observed by Feldman (2000), Markram et al. (1997) and Bi and Poo (1998) for strong
presynaptic input. Other studies, however, have shown that the level of depression
does not depend on the postsynaptic membrane potential (Sjöström et al. 2001).
In any case, a weak reset (i.e., to a value below threshold rather than to the resting
potential) is consistent with the findings of other researchers that used integrate-
and-fire models to account for the high coefficient of variation of spike trains in vivo
(Bugmann et al. 1997; Troyer and Miller 1997).

In the presence of spontaneous activity (c.f. scenario B), a constraint on the
spontaneous firing rate causes the optimal weight change to elicit a depression of
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presynaptic spikes that arrive immediately after the postsynaptic one. In fact, the
reason of the presence of the depression in scenario Bc is directly related to the
presence of a DAP caused by the strong teaching stimulus. In both scenarios A and
B, depression occurs in order to compensate the increased firing probability due to
the DAP.

In scenario C, it has been shown that the best way to adapt the weights (in a
task where the postsynaptic neuron has to detect a specific input pattern among
others) can be described as a STDP function. This task is similar to the one in
Izhikevich (2003) in the sense that a neuron is designed to be sensitive to a specific
input pattern, but different since our work does not assume any axonal delays. The
depression part in this scenario arises from a locality constraint. We impose that
weight changes are explained by a sum of pair-based STDP functions.

There are various ways of defining objective functions and we have used three
different objective functions in this paper. The formulation of an objective function
gives a mathematical expression of the ‘functional role’ we assign to a neuron. The
functional role depends on the type of coding (temporal coding or rate coding) and
hence on the information the postsynaptic neurons will read out. The functional
role also depends on the task or context in which a neuron is embedded. It might
seem that different tasks and coding schemes could thus give rise to a huge number
of objective functions. However the reinterpretation of our approach in the context
of reinforcement learning provides a unifying viewpoint: even if the functional role
of some neurons in a specific region of the brain can be different from other neurons
of a different region, it is still possible to see the different objective functions as
different instantiations of the same underlying concept - the maximization of the
reward, where the reward is task specific.

More specifically, all objective functions used in this paper maximized the firing
probability at a desired firing time tdes - reflecting the fact that in the framework of
timing based codes, the task of a neuron is to fire at precise moments in time. With
a different assumption on the neuron’s role on signal processing, different objective
functions need to be used. An extreme case is a situation, where the neuron’s task
is to avoid firing at time tdes. A good illustration is given by the experiments done
in the electrosensory lobe (ELL) of the electric fish (Bell et al. 1997). These cells
receive two sets of input: the first one contains the pulses coming from the electric
organ while the second input conveys information about the sensory stimulus. Since
a large fraction of the sensory stimulus can be predicted by the information coming
from the electric organ, it is computationally interesting to subtract the predictable
contribution and focus only on the unpredictable part of the sensory stimulus. In
this context, a reasonable task would be precisely to ask the neuron not to fire at
time tdes where tdes is the time where the predictable simulation arrives and this
task could be defined indirectly via an appropriate reward signal. An objective
function of this type would, in the end, reverse the sign of the weight change of the
causal part (LTD for the pre-before-post region), and this is precisely what is seen
experimentally (Bell et al. 1997).

In our framework, the definition of the objective function is closely related to
the neuronal coding. In scenario C, we postulate that neurons emit a precise spike
train whenever the “correct” input is presented and be silent otherwise. This cod-
ing scheme is clearly not the most efficient one. Another possibility is to impose
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postsynaptic neurons to produce a specific but different spike train for each input
pattern and not only for the “correct” input. Such a modification of the scenario
does not dramatically change the results. The only effect is to reduce the amount
of depression and increase the amount of potentiation.

4.3 Optimality Approaches versus Mechanistic Models

Theoretical approaches to neurophysiological phenomena in general, and to synaptic
plasticity in particular, can be roughly grouped into three categories: first, biophys-
ical models that aim at explaining the STDP function from principles of ion channel
dynamics and intracelluar processes (Senn et al. 2001; Shouval et al. 2002; Abar-
banel et al. 2002; Karmarkar and Buonomano 2002); second, mathematical models
that start from a given STDP function and analyze computational principles such
as intrinsic normalization of summed efficacies or sensitivity to correlations in the
input (Kempter et al. 1999; Roberts 1999; Roberts and Bell 2000; van Rossum
et al. 2000; Kistler and van Hemmen 2000; Song et al. 2000; Song and Abbott 2001;
Kempter et al. 2001; Gütig et al. 2003); finally, models that derive ‘optimal’ STDP
properties for a given computational task (Chechik 2003; Dayan and Häusser 2004;
Hopfield and Brody 2004; Bohte and Mozer 2005; Bell and Parra 2005; Toyoizumi
et al. 2005a; Toyoizumi et al. 2005b). Optimizing the likelihood of postsynaptic
firing in a predefined interval, as we did in this paper, is only one possibility amongst
others of introducing concepts of optimality (Barlow 1961; Atick and Redlich 1990;
Bell and Sejnowski 1995) into the field of STDP. Chechik (2003) uses concepts from
information theory, but restricts his study to the classification of stationary patterns.
The paradigm considered in Bohte and Mozer (2005) is similar to our scenario Bc,
in that they use a fairly strong teaching input to make the postsynaptic neuron
fire. Bell and Parra (2005) and Toyoizumi et al. (2005a) are also using concepts
from information theory, but they are applying them to the pre- and postsynaptic
spike trains. The work of Toyoizumi et al. (2005a) is a clearcut unsupervised learn-
ing paradigm and hence distinct from the present approach. Dayan and Häusser
(2004) use concepts of optimal filter theory, but are not interested in precise firing
of the postsynaptic neuron. The work of Hopfield and Brody (2004) is similar to
our approach in that it focuses on recognition of temporal input patterns, but in our
approach we are in addition interested in triggering postsynaptic firing with precise
timing. Hopfield and Brody emphasize the repair of disrupted synapses in a network
that has previously acquired its function of temporal pattern detector.

Optimality approaches, such as ours, will never be able to make strict predictions
about the properties of neurons or synapses. Optimality criteria may, however, help
to elucidate computational principles and provide insights about potential tasks of
electrophysiological phenomena such as STDP.
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A Probability Density of a Spike Train

The probability density of generating a spike train yt = {t1i , t
2
i , . . . , t

F
i < t} with the

stochastic process defined by Eq. (5) can be expressed as follows:

P (yt) = P (t1i , . . . , t
F
i )R(t|yt) (32)

where P (t1i , . . . , t
F
i ) is the probability density of having F spikes at times t1

i , . . . , t
F
i

and R(t|yt) = exp
(

−
∫ t

tFi
ρ(t′|yt′)dt′

)

corresponds to the probability of having no

spikes from tFi to t. Since the joint probability P (t1i , . . . , t
F
i ) can be expressed as a

product of conditional probabilities

P (t1i , . . . , t
F
i ) = P (t1i )

F
∏

f=2

P (tfi |t
f−1
i , . . . , t1i ) (33)

Eq. (32) becomes

P (yt) = ρ(t1i |yt1i
) exp

(

−

∫ t1i

0
ρ(t′|yt′)dt′

)

·







F
∏

f=2

ρ(tfi |yt
f
i

) exp

(

−

∫ t
f
i

t
f−1
i

ρ(t′|yt′)dt′

)







exp

(

−

∫ t

tFi

ρ(t′|yt′)dt′

)

=







∏

t
f
i ∈yt

ρ(tfi |yt
f
i

)






exp

(

−

∫ t

0
ρ(t′|yt′)dt′

)

(34)

B Numerical Evaluation of ρ̄(t)

Since it is impossible to numerically evaluate the instantaneous firing rate ρ̄(t) with
the analytical expression given by Eq. (14), we have to do it in a different way. In
fact, there are two different ways to evaluate ρ̄(t). Before going into the details, let
us first recall that from the law of large numbers, the instantaneous firing rate is
equal to the empirical density of spikes at time t:

〈ρ(t|yt)〉yt
= 〈Y (t)〉Y (t) (35)

where Y (t) =
∑

t
f
i ∈yt

δ(t− tfi ) is one realization of the postsynaptic spike train.

Thus the first and simplest method based on the r.h.s of Eq. (35) is to build a PSTH
by counting spikes in small time bins [t, t + δt] over, say K = 10′000 repetitions of
an experiment. The second, and more advanced method, consists in evaluating the
l.h.s. of Eq. (35) by Monte-Carlo sampling: instead of averaging over all possible
spike trains yt, we generate K = 10′000 spike trains by repetition of the same
stimulus. A specific spike train yt = {t1i , t

2
i , . . . , t

F
i < t} will automatically appear

with appropriate probability given by Eq. (6). The Monte-Carlo estimation ρ̃(t) of
ρ̄(t) can be written as

ρ̃(t) =
1

P

P
∑

m=1

ρ(t|ym
t ) (36)
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where ym
t is the mth spike train generated by the stochastic process given by

Eq. (5). Since we use the analytical expression of ρ(t|ym
t ), we will call Eq. (36)

a semi-analytical estimation. Let us note that the semi-analytical estimation ρ̃(t)
converges more rapidly to the true value ρ̄(t) than the empirical estimation based
on the PSTH.

In the limit of a Poisson process, i.e. η0 = 0, the semi-analytical estimation
ρ̃(t) given by Eq. (36) is equal to the analytical expression of Eq. (14), since the
instantaneous firing rate ρ of a Poisson process is independent of the firing history
yt = {t1i , t

2
i , . . . , t

F
i < t} of the postsynaptic neuron.

C Deconvolution

C.1 Deconvolution for Spike Pairs

With a learning rule such as Eq. (24), we know the optimal weight change ∆wij for
each synapse, but we still do not know the corresponding STDP function.

Let us first define the correlation function ck(τ), k = N(i − 1) + j between the
presynaptic spike train X i

j(t) =
∑

tpre∈xi
j
δ(t− tpre) and the postsynaptic spike train

Y i(t) =
∑

tdes∈yi δ(t− tdes):

ck(τ) =

∫ T

0
Xi

j(s)Y
i(s + τ)ds, k = 1, . . . , NM (37)

where we allow a range −T0 ≤ τ ≤ T0, with T0 � T . Since the sum of the pair
based weight change ∆W should be equal to the total adaptation of weights ∆wk,
we can write:

∫ T0

−T0

ck(s)∆W (s)ds
!
= ∆wk k = 1, . . . , NM (38)

If we want to express Eq. (37) in a matrix form, we need to descretize time in
small bins δt and define the matrix element

Ck∆ =

∫ (∆+1)δt−T0

∆δt−T0

ck(s)ds (39)

Now Eq. (38) becomes

∆w
!
= C∆W (40)

where ∆w = (∆w11, . . . ,∆w1N ,∆w21, . . . ,∆wMN )T is the vector containing all
the optimal weight change and ∆W is the vector containing the discretized STDP
function, i.e. ∆W∆ = ∆W (−T0 + ∆δt), for ∆ = 1, . . . , 2T̃0 with T̃0 = T0/δt.

In order to solve the last matrix equation, we have to compute the inverse of the
non-square NM × 2T̃0 matrix C, which is known as the Moore-Penrose inverse (or
the pseudo-inverse):

C+ = (CTC)−1CT (41)

which exists only if (CT C)−1 exists. In fact, the solution given by

∆W = C+∆w (42)

minimizes the square distance

D =
1

2
(C∆W −∆w)2 (43)
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C.2 Temporal Locality Constraint

If we want to impose a constraint of locality, we can add a term in the minimization
process of Eq. (43) and define the following:

E = D +
1

2
∆WT P∆W (44)

where P is a diagonal matrix which penalizes non-local terms. In this paper, we
take a quadratic suppression of terms that are non-local in time:

P∆∆′ = aδ∆∆′

(

∆− T̃0

)2
(45)

T̃0 corresponds to the index of the vector ∆W in Eqs. (40) and (44) for which
tpre− tdes = 0. Calculating the gradient of E given by Eq. (44) with respect to ∆W

yields
∇∆WE = CT (C∆W−∆w) + P∆W (46)

By looking at the minimal value of E, i.e. ∇∆WE = 0, we have

∆W = (CTC + P )−1CT∆w (47)

By setting a = 0, we recover the previous case.
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2.3 Paper III

Summary

Like the two first papers of this thesis, this third paper also aims to develop an optimal

model of STDP. The context is however completely different. Indeed, this paper and the two

following ones derive the synaptic learning in an unsupervised scenario. Here, we take the

mutual information between the input spike train and the output spike train as the objective

function.

The particularity of this paper, compared to the two next ones, is that we consider small

perturbations around the membrane potential. This assumption allows us to express the

mutual information as a function of the Fisher information.

With these assumptions, the potentiation part of the learning window is determined by

the ε(s) kernel which reflects the trajectory of an EPSP. More precisely, the causal part of

the learning window depends on ε2(s) as opposed to the results of the first two papers where

the LTP part of the learning window is given by ε(s).

The negative part of the STDP function comes essentially from the refractoriness. In-

deed, a presynaptic spike has no effect on the postsynaptic neuron if it occurs just after the

postsynaptic spike, i.e. during the refractory period. Note that this result is present in all

three unsupervised papers (papers III - V). Since refractoriness plays a crucial role in those

three papers, we included a strong refractoriness1.

It should be noted that the offset problem is not absent from this paper. The optimal

weight change resulting from mutual information maximization is decomposed into a constant

term, a pre- and a postsynaptic term and a correlation term. Those four terms corresponds

to the first Volterra expansion terms of Eqs. (1.2.2), (1.2.3) and (1.2.4). Here, the offset is

absorbed in the constant term, the pre- and the postsynaptic terms, so that the correlation

term can be compared to the experiments.

Curiously, the online learning rule given by Eq. (15) of this paper contains only pre-post

1In papers III and IV, refractoriness is modeled as a multiplicative factor (the instantaneous firing rate

ρ(t) is given by ρ(t) = g(u)R(t), where R(t) models refractoriness) which contains an absolute refractory

period as well as a relative refractory period. In paper V, refractoriness is included the EPSP suppression

with a relatively long recovery time constant (τa = 50 ms). In this way, it is possible to get a reasonably long

depression window.
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effects, i.e. synaptic weights increase whenever there is a postsynaptic spike at time t. So

where does the post-pre depression come from? In short, the LTD part comes from averaging.

Indeed, the calculated weight change corresponds to the expected weight change when tpre

and tpost are given. This means that other pre- or postsynaptic spikes can be generated by

the statistics of the pre- and postsynaptic neuron. Therefore, because of refractoriness, the

autocorrelation of the postsynaptic spike train is smaller than average for small interspike

intervals. This lead to the LTD part of the correlation term.
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Abstract

We derive an optimal learning rule in the sense of mutual information
maximization for a spiking neuron model. Under the assumption of
small fluctuations of the input, we find a spike-timing dependent plas-
ticity (STDP) function which depends on the time course of excitatory
postsynaptic potentials (EPSPs) and the autocorrelation function of the
postsynaptic neuron. We show that the STDP function has both positive
and negative phases. The positive phase is related to the shape of the
EPSP while the negative phase is controlled by neuronal refractoriness.

1 Introduction

Spike-timing dependent plasticity (STDP) has been intensively studied during the last
decade both experimentally and theoretically (for reviews see [1, 2]). STDP is a variant
of Hebbian learning that is sensitive not only to the spatial but also to the temporal corre-
lations between pre- and postsynaptic neurons. While the exact time course of the STDP
function varies between different types of neurons, the functional consequences of these
differences are largely unknown. One line of modeling research takes a given STDP rule
and analyzes the evolution of synaptic efficacies [3–5]. In this article, we take a different

∗Alternative address: ERATO Aihara Complexity Modeling Project, JST, 45-18 Oyama, Shibuya-
ku, 151-0065 Tokyo , Japan
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approach and start from first principles. More precisely, we ask what is the optimal synap-
tic update rule so as to maximize the mutual information between pre- and postsynaptic
neurons.

Previously information theoretical approaches to neural coding have been used to quantify
the amount of information that a neuron or a neural network is able to encode or trans-
mit [6–8]. In particular, algorithms based on the maximization of the mutual information
between the output and the input of a network, also called infomax principle [9], have been
used to detect the principal (or independent) components of the input signal, or to reduce
the redundancy [10–12]. Although it is a matter of discussion whether neurons simply
’transmit’ information as opposed to classification or task-specific processing [13], strate-
gies based on information maximization provide a reasonable starting point to construct
neuronal networks in an unsupervised, but principled manner.

Recently, using a rate neuron, Chechik applied information maximization to detect static
input patterns from the output signal, and derived the optimal temporal learning window;
the learning window has a positive part due to the effect of the postsynaptic potential and
has flat negative parts with a length determined by the memory span [14].

In this paper, however, we employ a stochastic spiking neuron model to study not only
the effect of postsynaptic potentials generated by synaptic input but also the effect of the
refractory period of the postsynaptic neuron on the shape of the optimal learning window.
We discuss the relation of mutual information and Fisher information for small input vari-
ance in Sec. 2. Optimization of the Fisher information by gradient ascent yields an optimal
learning rule as shown in Sec. 3

2 Model assumptions

2.1 Neuron model

The model we are considering is a stochastic neuron with refractoriness. The instantaneous
firing rate ρ at time t depends on the membrane potential u(t) and refractoriness R(t):

ρ(t) = g(βu(t))R(t), (1)

where g(βu) = g0 log2[1+e
βu] is a smoothed piecewise linear function with a scaling vari-

able β and a constant g0 = 85Hz. The refractory variable is R(t) = (t−t̂−τabs)
2

τ2
refr

+(t−t̂−τabs)2
Θ(t−

t̂ − τabs) and depends on the time elapsed since the last firing time t̂, the absolute refrac-
tory period τabs = 3 ms, and the time constant of relative refractoriness τrefr = 10 ms. The
Heaviside step function Θ takes a value of 1 for positive arguments and zero otherwise.
The postsynaptic potential depends on the input spike trains of N presynaptic neurons. A
presynaptic spike of neuron i ∈ {1, 2, . . . , N} emitted at time tfi evokes a postsynaptic
potential with time course ε(t− tfi ). The total membrane potential is

u(t) =

N
∑

i=1

wi

∑

f

ε(t− tfi ) =

N
∑

i=1

wi

∫

ε(s)xi(t− s)ds (2)

where xi(t) =
∑

f δ(t− t
f
i ) denotes the spike train of the presynaptic neuron i. The above

model is a special case of the spike response model with escape noise [2]. For vanishing
refractoriness τrefr → 0 and τabs → 0, the above model reduces to an inhomogeneous
Poisson process.

For a given set of presynaptic spikes in an interval [0, T ], hence for a given time course of
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membrane potential {u(t)|t ∈ [0, T ]}, the model generates an output spike train

y(t) =
∑

f

δ(t− tf ) (3)

with firing times {tf |f = 1, . . . , n} with a probability density

P (y|u) = exp

[

∫ T

0

(y(t) log ρ(t)− ρ(t)) dt

]

. (4)

where ρ(t) is given by Eq. (1), i.e., ρ(t) = g(βu(t))R(t). Since the refractory variable R
depends on the firing time t̂ of the previous output spike, we sometimes write ρ(t|t̂) instead
of ρ(t) in order to make this dependence explicit. Equation (4) can then be re-expressed in
terms of the survivor function S(t|t̂) = e−

∫

t

t̂
ρ(s|t̂)ds and the interval distribution Q(t|t̂) =

ρ(t|t̂)S(t|t̂) in a more transparent form:

P (y|u) =





n
∏

f=1

Q(tf |tf−1)



S(T |tn), (5)

where t0 = 0 and n is the number of postsynaptic spikes in [0, T ]. In words, the probability
that a specific output spike train y occurs can be calculated from the interspike intervals
Q(tf |tf−1) and the probability that the neuron ‘survives’ from the last spike at time tn to
time T without further firing.

2.2 Fisher information and mutual information

Let us consider input spike trains with stationary statistics. These input spike trains generate
an input potential u(t) with an average value u0 and standard deviation σ. Assuming a
weak dependence of g on the membrane potential u, i.e., for small β, we expand g around
g0 = g(0) to obtain g(βu(t)) = g0 + g′0βu(t) + g′′0 [βu(t)]

2/2 + O(β3) where g0 is the
value of g in the absence of input and the next terms describe the influence of the input.
Here and in the following, all calculations will be done to order β2.

In the limit of small β, the mutual information is given by [15]

I(Y ;X) =
β2

2

∫ T

0

dt

∫ T

0

dt′Σ(t− t′)J0(t− t′) +O(β3), (6)

with the autocovariance function of the membrane potential

Σ(t− t′) = 〈∆u(t)∆u(t′)〉X , (7)

with ∆u(t) = u(t)− u0 and Fisher information

J0(t− t′) = −

〈

∂2 logP (y|u)

∂βu(t)∂βu(t′)

∣

∣

∣

∣

β=0

〉

Y |β=0

, (8)

with 〈·〉Y |β=0 =
∫

·P (y|β = 0)dy and 〈·〉X =
∫

·P (x)dx. Note that the Fisher
information (8) is to be evaluated at the constant g0, i.e., at the value βu = 0, whereas
the autocovariance in Eq. (7) is calculated with respect to the mean membrane potentital
u0 = 〈u(t)〉X which is in general different from zero. The derivation of (6) is based
on the assumption that the variability of the output signal is small and g(βu) does not
deviate much from g0, i.e., it corresponds to the regime of small signal-to-noise ratio.
It is well known that the information capacity of the Gaussian channel is given by the
log of the signal-to-noise ratio [16], and the mutual information is proportional to the
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signal-to-noise ratio when it is small. The relation between the Fisher information, the
mutual information, and optimal tuning curves has previously been established in the
regime of large signal-to-noise ratio [17].

We introduce the following notation: Let µ0 = 〈y(t)〉Y |β=0 = 〈ρ(t)〉Y |β=0 be the spon-
taneous firing rate in the absence of input and µ−1

0 〈y(t)y(t′)〉Y |β=0 = δ(t − t′) + µ0[1 +
φ(t − t′)] be the postsynaptic firing probability at time t given a postsynaptic spike at t′,
i.e., the autocorrelation function of Y . From the theory of stationary renewal processes [2]

µ0 =

[∫

sQ0(s)ds

]−1

,

µ0[1 + φ(s)] = Q0(|s|) +

∫

Q0(s
′)µ0[1 + φ(|s| − s′)]Θ(|s| − s′)ds′, (9)

where Q0(s) = g0R(s)e
−g0[(s−τabs)−τrefr arctan(s−τabs)/τrefr] is the interval distribution for

constant g = g0. The interval distribution vanishes during the absolute refractory time τabs;
cf. Fig. 1.
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Figure 1: Interspike interval distribution Q0 and normalized autocorrelation function φ.
The circles show numerical results, the solid line the theory.

The Fisher information of (8) is calculated from (4) to be

J0(t− t′) = δ(t− t′)

(

g′0
g0

)2

〈ρ0(t)〉Y |β=0 (10)

with the instantaneous firing rate ρ0(t) = g0R(t). Hence the mutual information is

I(Y ;X) =
β2

2

(

g′0
g0

)2 ∫ T

0

dt µ0σ
2 (11)

=
β2

2

(

g′0
g0

)2

Tµ0σ
2. (12)

For an interpretation of Eq. (11) we note that σ2 = Σ(0) is the variance of the mem-
brane potential and depends on the statistics of the presynaptic input whereas µ0 is the
spontaneous firing rate which characterizes the output of the postsynaptic neuron. Hence,
Equation (11) contains both pre- and postsynaptic factors.

3 Results: Optimal spike-timing dependent learning rule

In the previous section we have calculated the mutual information between presynaptic
input spike trains and the output of the postsynaptic neuron under the assumption of small
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fluctuations of g. The mutual information depends on parameters of the model neuron, in
particular the synaptic weights that characterize the efficacy of the connections between
pre- and postsynaptic neurons. In this section, we will optimize the mutual information
by changing the synaptic weights in an appropriate fashion. To do so we will proceed in
several steps.

First, based on gradient ascent we derive a batch learning rule of synaptic weights that
maximizes the mutual information. In a second step, we transform the batch rule into an
online rule that reduces to the batch version when averaged. Finally, in subsection 3.2, we
will see that the online learning rule shares properties with STDP, in particular a biphasic
dependence upon the relative timing of pre- and postsynaptic spikes.

3.1 Learning rule for spiking model neuron

In order to keep the analysis as simple as possible, we suppose that the input spike trains
are independent Poisson trains, i.e., 〈∆xi(t)∆xj(t′)〉X = νiδ(t− t′)δij , where ∆xi(t) =
xi(t)− νi with rate νi = 〈xi(t)〉X . Then we obtain the variance of the membrane potential

σ2 = 〈[∆u(t)]2〉X = ε2
∑

j

w2
jνj (13)

with ε2 =
∫

ε2(s)ds.

Applying gradient ascent to (11) with an appropriate learning rate α, we obtain the batch
learning rule of synaptic weights as

∆wi = α
∂I(Y ;X)

∂wi
≈ α

β2

2

(

g′0
g0

)2 ∫ T

0

dt µ0
∂σ2

∂wi
. (14)

The derivative of µ0 with respect to wi vanishes, since µ0 is the spontaneous firing rate in
the absence of input. We note that both µ0 and σ2 are defined by an ensemble averages, as
is typical for a ‘batch’ rule.

While there are many candidates of online learning rule that give (14) on average, we
are interested in rules that depend directly on neuronal spikes rather than mean rates. To
proceed it is useful to write σ2 = 〈[∆u(t)]2〉X with ∆u =

∑

i wi∆εi(t) where ∆εi(t) =
∫

ε(s)∆xi(t − s)ds. In this notation, one simple form of an online learning rule that
depends on both the postsynaptic firing statistics and presynaptic autocorrelation is

dwi

dt
= αβ2

(

g′0
g0

)2

y(t)∆εi(t)∆u(t), (15)

Hence weights are updated with each postsynaptic spike with an amplitude proportional
to an online estimate of the membrane potential variance calculated as the product of
∆u and ∆εi. Indeed, to order β0, the input and the output spikes are independent;
〈y(t)∆εi(t)∆u(t)〉Y,X = 〈y(t)〉Y |β=0〈∆εi(t)∆u(t)〉X and the average of (15) leads back
to (14).

3.2 STDP function as a spike-pair effect

Application of the online learning rule (15) during a trial of duration T , yields a total
change of the synaptic efficacy which depends on all the presynaptic spikes via the factor
∆εi; on the postsynaptic potential via the factor ∆u; and on the postsynaptic spike train
y(t). In order to extract the spike pair effect evoked by a given presynaptic spike at tprei
and a postsynaptic spike at tpost, we average over x and y given the pair of spikes. The
spike pair effect up to the second order of β is therefore described as

∆wi(t
post − tprei ) = αβ2

(

g′0
g0

)2 ∫ T

0

dt〈y(t)〉Y |tpost,β=0〈∆εi(t)∆u(t)〉X|tpre

i
, (16)
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where 〈·〉Y |tpost,β=0 =
∫

dy · P (y|tpost, β = 0) and 〈·〉X|tpre

i
=

∫

dx · P (x|tprei ).
Note that the leading factor of Eq. (16) is already of order β2, so that all other fac-
tors have to be evaluated to order β0. Suppressing all terms containing β, we obtain
P (y|tpost, u) ≈ P (y|tpost, β = 0) and from the Bayes formula P (x|tprei , tpost) =

P (tpost|x,tpre

i
)

〈P (tpost|x,tpre

i
)〉

X|t
pre
i

P (x|tprei ) ≈ P (x|tprei ).

In order to see the contribution of tprei and tpost, we think of separating the effects caused by
spikes at tprei , tpost from the mean weight evolution caused by all other spikes. Therefore
we insert 〈y(t)〉Y |tpost,β=0 = δ(t−tpost)+µ0[1+φ(t−t

post)] and 〈∆εi(t)∆u(t)〉X|tpre

i
=

wi[ε
2(t− tpre) + ε2νi] into Eq. (16) and decompose ∆wi(t

post − tprei ) into the following

four terms: the drift term ∆w0
i = αβ2

(

g′
0

g0

)2

Tµ0ε2wiνi of the batch learning (14) that

does not depend on tprei or tpost; the presynaptic component ∆wpre
i = αβ2

(

g′
0

g0

)2

µ0ε2wi

that is triggered by the presynaptic spike at tprei ; the postsynaptic component ∆wpost
i =

αβ2
(

g′
0

g0

)2 [

1 + µ0

∫ T

0
φ(t− tpost)dt

]

ε2wiνi that is triggered by the postsynaptic spike

at tpost; and the correlation component

∆wcorr
i = αβ2

(

g′0
g0

)2

wi

[

ε2(tpost − tprei ) + µ0

∫ T

0

φ(t− tpost)ε2(t− tprei )dt

]

(17)

that depends on the difference of the pre- and postsynaptic spike timing.
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Figure 2: (A) The effect from EPSP: the first term in the square bracket of (17). (B) The
effect from refractoriness: the second term in the square bracket of (17). (C) Temporal
learning window ∆wcorr

i of (17).

In the following, we choose a simple exponential EPSP ε(t) = Θ(s)e−s/τu with a time
constant τu = 10 ms. The parameters are N = 100, νi = 40 Hz for all i, wi = (Nτuνi)

−1,
α = 1 and β = 0.1.

Figure 2 shows ∆wcorr
i of (17). The first term of (17) indicates the contribution of a

presynaptic spike at tprei to increase the online estimation of membrane potential variance
at time tpost, whereas the second term represents the effect of the refractory period on
postsynaptic firing intensity, i.e., the normalized autocorrelation function convolved with
the presynaptic contribution term. Due to the averaging of 〈·〉Y |tpost,β=0 and 〈·〉X|tpre

i
in

(16), this optimal temporal learning window is local in time; we do not need to impose a
memory span [14] to restrict the negative part of the learning window.

Figure 3 compares ∆wi of (16) with numerical simulations of (15). We note a good agree-
ment between theory and simulation. We recall, that all calculations, and hence the STDP
function of (17) are valid for small β, i.e., for small fluctuation of g.
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Figure 3: The comparison of the analytical result of (16) ( solid line ) and the numerical
simulation of the online learning rule (15) ( circles ). For the simulation, the conditional
average 〈∆wi〉X,Y |tpre

i
,tpost is evaluated by integrating dwi

dt over 200 ms around spike pairs
with the given interval tpost − tprei ;

4 Conclusion

It is important for neurons especially in primary sensory systems to send information from
previous processing circuits to neurons in other areas while capturing the essential features
of its input. Mutual information is a natural quantity to be maximized from this perspec-
tive. We introduced an online learning rule for synaptic weights that increases information
transmission for small input fluctuation. Introduction of the temporal properties of the tar-
get neuron enables us to analyze the temporal properties of the learning rule required to
increase the mutual information. Consequently, the temporal learning window is given in
terms of the time course of EPSPs and the autocorrelation function of the postsynaptic neu-
ron. In particular, neuronal refractoriness plays a major role and yields the negative part
of the learning window. Though we restrict our analysis here to excitatory synapses with
independent spike trains, it is straightforward to generalize the approach to a mixture of ex-
citatory and inhibitory neurons with weakly correlated spike trains as long as the synaptic
weights are small enough. The analytically derived temporal learning window is similar to
the experimentally observed bimodal STDP window [1]. Since the effective time course
of EPSPs and the autocorrelation function of output spike trains vary from one part of
the brain to another, it is important to compare those functions with the temporal learning
window in biological settings.
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2.4 Paper IV

Summary

This fourth paper has a similar approach to the last paper in the sense that it considers the

weight dynamics resulting from the maximization of the mutual information. However, it

differs from the previous one because it considers an additional term in the objective function.

This cost term, or penalty term, implements an homeostatic constraint which penalizes large

deviations from a fixed firing rate.

Clearly synapses can transmit more information if they increase their strength and

thereby increase the postsynaptic firing rate, but this is costly from the point of view of

biophysical implementation. It should be also noted that in the previous paper, where we

only had the mutual information term, there was no overall depression. Indeed, depression in

the acausal part of the learning window was visible only after subtracting the positive offset.

For those reasons, we have added an extra homeostatic constraint.

One of the interesting outcomes of this study is that the optimal weight change that

results from the maximization of the mutual information and the cost term lead the BCM

learning rule if Poisson statistics is assumed for the pre- and postsynaptic neuron. In this

case, the sliding threshold necessary for the BCM learning rule comes directly from the

homeostatic constraint. Moreover, this sliding threshold has to depend non-linearly on the

averaged postsynaptic firing rate. This is precisely the case whenever the homeostatic term

is present ( i.e. when γ > 0, c.f. Eq. (17) of paper IV).

The optimal learning rule derived in this paper does not have only rate-based properties,

like the input selectivity of the BCM learning rule. It shows also interesting spike-based

features. Indeed, if a first group of presynaptic neurons is spike-spike correlated and not the

second group, synapses of the first group will be potentiated (see Fig. 5 of paper IV). This

interesting property is a feature that the pure BCM learning rule cannot elicit.
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Abstract

Maximization of information transmission by a spiking neuron model pre-

dicts changes of synaptic connections that depend on timing of pre- and post-

synaptic spikes as well as on the postsynaptic membrane potential. Under the

assumption of Poisson firing statistics, the synaptic update rule exhibits all

the features of the Bienenstock-Cooper-Munro rule, in particular regimes of

synaptic potentiation and depression separated by a sliding threshold. More-

over, the new learning rule is also applicable to the more realistic case of

neuron models with refractoriness and is sensitive to correlations between in-

put spikes, even in the absence of presynaptic rate modulation. The learning

rule is found by maximizing the mutual information between presynaptic and

postsynaptic spike trains under the constraint that the postsynaptic firing

rate stays close to some target firing rate. An interpretation of the synap-

tic update rule in terms of homeostatic synaptic processes and spike-timing

dependent plasticity is discussed.

§Corresponding author, Telephone: 41-21-693 6713; FAX 41-21-693-9600; email wul-

fram.gerstner@epfl.ch
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1 Introduction

The efficacy of synaptic connections between neurons in the brain is not fixed but
varies depending on the firing frequency of presynaptic neurons [1,2], the membrane
potential of the postsynaptic neuron [3], spike timing [4–6] as well as intra-cellular
parameters such as the calcium concentration; for a review see [7]. During the
last decades, a large number of theoretical concepts and mathematical models have
emerged that have helped to understand the functional consequences of synaptic
modifications, in particular long-term potentiation and depression (LTP and LTD)
during development, learning, and memory; for reviews see [8–10]. Apart from the
work of Hebb [11], one of the most influential theoretical concepts has been the
model proposed by Bienenstock, Cooper, and Munro (BCM) originally developed to
account for cortical organization and receptive field properties during development
[12]. The model predicted (a) regimes of both LTD and LTP depending on the state
of the postsynaptic neuron and (b) a sliding threshold that separates the two regimes.
Both predictions a and b have subsequently been confirmed experimentally [2,13,14].

In this paper we construct a bridge between the BCM model and a seemingly
unconnected line of research in theoretical neuroscience centered around the concept
of optimality.

There are indications that several components of neural systems show close to
optimal performance [15–17]. Instead of looking at a specific implementation of
synaptic changes, defined by a rule such as in the BCM model, we therefore ask:
what would be the optimal synaptic update rule so as to guarantee that a spiking
neuron transmits as much information as possible? Information theoretic concepts
have been used by several researchers, since they allow to compare performance of
neural systems with a fundamental theoretical limit [16, 17], but ‘optimal’ synaptic
update rules have so far been mostly restricted to a pure rate description [18–21]. In
the following we apply the concept of information maximization to a spiking neuron
model with refractoriness. Mutual information is maximized under the constraint
that the postsynaptic firing rate stays as close as possible to the neuron’s typical
‘target’ firing rate stabilized by homeostatic synaptic processes [22]. In the special
case of vanishing refractoriness, we find that the optimal update rule has the two
BCM properties, i.e., regimes of potentiation and depression separated by a slid-
ing threshold. In contrast to the optimality approach of Intrator and Cooper [23],
the sliding threshold follows automatically from our formulation of the optimality
problem. Moreover, our extension of the BCM rule to spiking neurons with refrac-
toriness shows that synaptic changes should naturally depend on spike timing, spike
frequency, and PSP, in agreement with experimental results.

2 Methods and Models

Spiking Neuron Model. We consider a stochastically spiking neuron model with
refractoriness. For simulations, and also for some parts of the theory, it is con-
venient to formulate the model in discrete time with step size ∆t, i.e, tk = k ∆t.

2



80 CHAPTER 2. PUBLICATIONS

However, for the ease of interpretation and with respect to a comparison with bio-
logical neurons, it is more practical to turn to continuous time by taking ∆t → 0.
The continuous time limit is indicated in the following formulas by a right arrow
(→). The postsynaptic neuron receives input at N synapses. A presynaptic spike
train at synapse j is described in discrete time as a sequence xk

j (k = 1, . . . , K) of
zeros (no spike) and ones (spike). The upper index k denotes time bin k. Thus

xk
j = 1 indicates that a presynaptic spike arrived at synapse j at a time t

(f)
j with

tk−1 ≤ t
(f)
j < tk. Each presynaptic spike evokes a postsynaptic potential (PSP) of

amplitude wj and exponential time course ε(t − t
(f)
j ) with time constant τm = 10

ms. The membrane potential at time step tk is denoted as u(tk) and calculated as
the total postsynaptic potential

u(tk)=ur+
N

∑

j=1

k
∑

n=1

wjε(t
k−tn)xn

j → ur+
∑

j

∑

f

wjε(t−t
(f)
j ) [1]

where ur = −70 mV is the resting potential. The probability ρk of firing in time
step k is a function of the membrane potential u and the refractory state R of the
neuron,

ρk = 1 − exp
[

−g(u(tk)) R(tk) ∆t
]

≈ g(u(tk)) R(tk) ∆t . [2]

where ∆t is the time step and g is a smooth increasing function of u. Thus, the
larger the membrane potential, the higher the firing probability. For ∆t → 0 we
may think of g(u) R(t) as the instantaneous firing rate, or hazard of firing, given
knowledge about the previous firing history. We focus on non-adapting neurons
where the refractoriness R depends only on the timing of the last postsynaptic
spike, but the model can be easily generalized to include a dependence upon earlier
spikes as well. More specifically, we take for the simulations

R(t) =
(t− t̂− τabs)

2

τ 2
refr + (t− t̂− τabs)2

Θ(t− t̂− τabs), [3]

where t̂ denotes the last firing time of the postsynaptic neuron, τabs = 3 ms is
the absolute refractory time, and τrefr=10 ms is a parameter characterizing the
duration of relative refractoriness. The Heaviside function Θ(x) takes a value of
one for positive arguments and vanishes otherwise. With a function R(t) such as
in Eq. (3) that depends only on the most recent postsynaptic spike, the above
neuron model has renewal properties and can be mapped onto a Spike Response
Model with escape noise [9]. Except for Fig. 2, we take throughout the paper
g(u) = r0 log{1 + exp[(u − u0)/∆u]} with u0 = −65 mV, ∆u = 2 mV, and r0 = 11
Hz. This set of parameters corresponds to in vivo conditions with a spontaneous
firing rate of about 1 Hz. The function g(u) and the typical firing behavior of the
neuron model are shown in Fig. 1A. For Fig. 2, we consider the case τabs = τrefr = 0
and an instantaneous rate g2(u) = {10ms+[1/g(u)]}−1 with g(u) as above i.e., the
neuron model exhibits no refractoriness and is defined by an inhomogeneous Poisson

3
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Figure 1: Neuron model. A Left: Output rate νpost of the model neuron (solid line:
spiking neuron model used in Figs. 3 - 5; green dashed line: Poisson model used in
Fig. 2) as a function of presynaptic spike arrival rate at N = 100 synapses. All
synapses have the same efficacy wj = 0.5 and are stimulated by independent Poisson
trains at the same rate ν. Center: Interspike interval distribution PISI of the spiking
neuron model during firing at 10Hz (blue line), 20 Hz (green line), or 30 Hz (red
line). Firing is impossible during the absolute refractory time of τabs = 3ms. Right:
The function g(u) used to generated action potentials (see methods for details).
B From top to bottom: The measure Cj that is sensitive to correlations between
the state of the postsynaptic neuron and presynaptic spike arrival at synapse j; the
postsynaptic potentials caused by spike arrival at the same synapse j; the membrane
potential u; and the postsynaptic factor Bpost of Eq. (14) as a function of time.
During postsynaptic action potentials, the postsynaptic factor Bpost has marked
peaks. Their amplitude and sign depend on the membrane potential at the moment
of action potential firing. The coincidence measure Cj exhibits significant changes
only during the duration of PSPs at synapse j.

4
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process with maximum rate of 100Hz; cf. Fig. 1A. Integration of all equations is
performed in Matlab on a standard personal computer using a time step ∆t = 1 ms.

Spike Trains. The output of the postsynaptic neuron at time step tk is denoted
by a variable yk = 1 if a postsynaptic spike occurred between tk−1 and tk and zero
otherwise. A specific output spike train up to time bin k is denoted by upper case
letters Y k =

{

y1, y2, . . . , yk
}

. Since spikes are generated by a random process, we
distinguish the random variable Y

k by bold face characters from a specific realization
Y k. Note that the lower-case variable yk refers always to a specific time bin, whereas
the uppercase variable Y k to a whole spike train. Similar remarks hold for the input:
X is the random variable characterizing the input at all synapse 1 ≤ j ≤ N ; Xk is
a specific realization of all input spike trains up to time tk; Xk

j =
{

x1
j , x

2
j , . . . x

k
j

}

a
specific realization of an input spike train at synapse j, and xk

j it’s value in time bin
k.

For given presynaptic spike trains Xk and postsynaptic spike history Y k−1 the
probability of emitting a postsynaptic spike is described by the following binary
distribution:

P (yk|Y k−1, Xk) = (ρk)yk

(1 − ρk)(1−yk) [4]

since yk ∈ {0, 1}. Analogously, we find the marginal probability of yk given Y k−1

P (yk|Y k−1) = (ρ̄k)yk

(1 − ρ̄k)(1−yk) [5]

where ρ̄k = 〈ρk〉Xk|Y k−1 and 〈·〉Xk|Y k−1 =
∑

Xk ·P (Xk|Y k−1).
From probability calculus we obtain the conditional probability of the output

spike train Y k given the presynaptic spike trains Xk,

P (Y k|Xk) =
k

∏

l=1

P (yl|Y l−1, X l), [6]

and an analogous formula for the marginal probability distribution of P (Y k). With
Eqs. (4) and (6) we have an expression for the probabilistic relation between an
output spike train and an ensemble of input spike trains.

Mutual Information Optimization. Transmission of information between an
ensemble of presynaptic spike trains X

K of total duration K ∆t and the output train
Y

K of the postsynaptic neuron can be quantified by the mutual information [24]

I(Y K; XK) =
∑

Y K ,XK

P (Y K, XK) log
P (Y K|XK)

P (Y K)
, [7]

While it is easier to transmit information if the postsynaptic neuron increases its
firing rate, firing at high rates is costly from the point of view of energy consumption
and also difficult to implement by the cells biophysical machinery. We therefore op-
timize information transmission under the condition that the firing statistics P (Y K)
of the postsynaptic neuron stays as close as possible to a target distribution P̃ (Y K).

5



2.4. PAPER IV 83

Figure 2: Relation to BCM rule. A. The function φ(νpost) of the BCM learning
rule (16) derived from our model under assumption of Poisson firing statistics of
the postsynaptic neuron. A value of φ(νpost) > 0 for a given postsynaptic rate
νpost means that synapses are potentiated when stimulated presynaptically. The
transition from depression to potentiation occurs at a value θ that depends on the
average firing rate ν̄post of the postsynaptic neuron (blue ν̄post=10 Hz; green ν̄post=20
Hz; red ν̄post=30 Hz). B. The threshold θ as a function of ν̄post for different choices
of the parameter γ, i.e., γ = 0.5 (purple); γ = 1 (black); γ = 2 (orange).

With a parameter γ (set to γ = 1 for the simulations), the quantity we maximize is
therefore

L = I(Y K ; XK) − γD(P (Y K)||P̃ (Y K)), [8]

where D(P (Y K)||P̃ (Y K)) =
∑

Y K P (Y K) log(P (Y K)/P̃ (Y K)) denotes the Kullback-
Leibler divergence [24]. The target distribution is that of a neuron with constant
instantaneous rate g̃ (set to g̃ = 30 Hz throughout the paper except for Fig. 2)
modulated by the refractory variable R(t), i.e., that of a renewal process.

The main idea of our approach is as follows. We assume that synaptic efficacies
wj can change within some bounds 0 ≤ wj ≤ wmax so as to maximize information
transmission under the constraint of a fixed target firing rate. To derive the optimal
rule of synaptic update, we calculate the gradient of Eq. (8). Applying the chain rule
of information theory [24] to both the mutual information I and the Kullback-Leibler
divergence D, we can write L =

∑K

k=1 ∆Lk where

∆Lk =

〈

log
P (yk|Y k−1, Xk)

P (yk|Y k−1)
− γ log

P (yk|Y k−1)

P̃ (yk|Y k−1)

〉

Y k,Xk

, [9]

with 〈·〉Xk,Y k =
∑

Xk,Y k ·P (Xk, Y k). Assuming slow changes of synaptic weights, we
apply a gradient ascent algorithm to maximize the objective function and change the
synaptic efficacy wj at each time step by ∆wk

j = α(∂∆Lk/∂wj) with an appropriate
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learning rate α. Evaluation of the gradient (see Supporting Text, which is published
as supporting information on the PNAS web site) yields

∆wk
j = α〈Ck

j (F k − γGk)〉Xk,Y k , [10]

with three functions Cj, F, G described in the following. First, with ρ′ denoting the
derivative of ρ with respect to u, the quantity

Ck
j =

k
∑

l=k−ka

l
∑

n=1

ε(tl−tn)xn
j

ρ′l

ρl

[

yl −
1 − yl

1 − ρl
ρl

]

[11]

is a measure that counts coincidences between postsynaptic spikes (y l = 1) and the
time course of PSPs generated by presynaptic spikes (xn

j = 1) at synapse j, nor-
malized to an expected value 〈Ck

j 〉Y k|XK = 0. The time span ka of the coincidence
window is given by the width of the autocorrelation of the spike train of the post-
synaptic neuron (see Supporting Text and Fig. 6 which are published as supporting
information on the PNAS web site). The term

F k =log
P (yk|Y k−1, Xk)

P (yk|Y k−1)
=yk log

ρk

ρ̄k
+(1−yk) log

1− ρk

1− ρ̄k
[12]

compares the instantaneous firing probability ρk at time step k with the average
probability ρ̄k and, analogously, the term Gk = log(P (yk|Y k−1)/P̃ (yk|Y k−1)) com-
pares the average probability with the target value ρ̃k = g̃R(tk)∆t. We note that
both F and G are functions of the postsynaptic variables only. We therefore in-
troduce a postsynaptic factor Bpost by the definition Bpost(tk) = [F k − γGk]/∆t
and take the limit ∆t → 0. Under the assumption of small learning rate α (i.e.,
α = 10−4 in our simulations), the expectations 〈 〉X,Y in Eq. (10) can be approxi-
mated by averaging over a single long trial which allows us to define an on-line rule
dwj(t)/dt = α Cj(t) Bpost(t − δ) with a postsynaptic factor

Bpost(t) = δ(t− t̂−δ) log

[

g(u(t))

ḡ(t)

(

g̃

ḡ(t)

)γ]

−R(t) [g(u(t))− (1 + γ)ḡ(t) + γg̃] [13]

where t̂ is the firing time of the last postsynaptic spike. The delay δ in the Dirac-δ
function reflects the order of updates in a single time step of the numerical imple-
mentation, i.e., we first update the membrane potential, then the last firing time t̂,
then the factors Cj and B, and finally the synaptic efficacy wj; for the mathematical
theory we take δ → 0. The rate ḡ(t) = 〈g(u(t))〉X|Y denotes an expectation over the
input distribution given the recent firing history of the postsynaptic neuron. For a
numerical implementation, it is convenient to estimate the expected rate ḡ(t) by a
running average with exponential time window (time constant 10s). Similarly, we
replace the rectangular coincidence count window in Eq. (11) by an exponential one
(time constant 1 s; see Supporting Text).

7
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3 Results

We analyzed information transmission for a model neuron which receives input from
one hundred presynaptic neurons. A presynaptic spike that arrives at time t

(f)
j at

synapse j evokes an excitatory postsynaptic potential of time course ε(t − t
(f)
j ).

The amplitude wj of the postsynaptic response is taken as a measure of synaptic
efficacy and subject to synaptic dynamics. Firing of the postsynaptic neuron is
more likely if the total PSP u(t) = ur +

∑

j

∑

f wjε(t− t
(f)
j ) is large; however, due to

refractoriness firing is suppressed after a postsynaptic action potential at time t̂ by
a factor R which depends on the time since the last postsynaptic spike; see Methods
and Models for details.

Maximizing the mutual information between several presynaptic spike trains and
the output of the postsynaptic neuron can be achieved by a synaptic update rule
which depends on the presynaptic spike arrival time t

(f)
j , the postsynaptic membrane

potential u, as well as the last postsynaptic firing time t̂. More precisely, the synaptic
update rule can be written as

dwj

dt
= α Cj(t) Bpost(t− δ) [14]

where Cj is a measure sensitive to correlations between pre- and postsynaptic activ-
ity and Bpost is a variable which characterizes the state of the postsynaptic neuron;
(see Methods and Models). α is a small learning parameter. We note that in stan-
dard formulations of Hebbian learning, changes of synaptic efficacies are driven by
correlations between pre- and postsynaptic neurons, similar to the function Cj(t).
The above update rule, however, augments these correlations by a further postsy-
naptic factor Bpost.

This postsynaptic factor Bpost depends on the firing time of the postsynaptic
neuron; the refractory state of the neuron; its membrane potential u via the in-
stantaneous firing intensity g(u); as well as on its past firing history via ḡ(t). The
postsynaptic factor can be decomposed into two terms: the first one compares the
instantaneous firing intensity g(u) with its running average ḡ(t); the second the
running average with a target rate g̃. Thus the first term of Bpost measures mo-
mentary significance of the postsynaptic state whereas its second term accounts for
homeostatic processes; see Methods and Models for details.

The variable Cj measures correlations between the postsynaptic neuron and its
presynaptic input at synapse j

dCj(t)

dt
=−

Cj(t−δ)

τC

+
∑

f

ε(t−t
(f)
j )S(t)

[

δ(t− t̂−δ)−g(u(t))R(t)
]

[15]

with time constant τC=1 s. Here g(u(t))R(t) is the instantaneous firing rate modu-
lated by the refractory function R(t), and S(t) = g ′(u(t))/g(u(t)) is the sensitivity
(the prime denotes the derivate with respect to u) of the neuron to a change of its
membrane potential. The term with the Dirac δ-function δ(t − t̂ − δ) induces a

8
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positive jump of Cj immediately (with short delay δ) after each postsynaptic spike.
Between postsynaptic spikes, Cj evolves continuously. Significant changes of Cj are

conditioned on the presence of a PSP ε(t − t
(f)
j ) caused by spike arrival at synapse

j. In the absence of presynaptic input the correlation estimate decays with time
constant τC back to zero.

Both the correlation term Cj and the postsynaptic factor Bpost can be estimated
on-line (Fig. 1) and use only information which could, directly or indirectly, be
available at the site of the synapse: information about postsynaptic spike firing
could be conveyed by backpropagating action potentials; timing of presynaptic spike
arrival is transmitted by neurotransmitter receptors; and the total postsynaptic
potential can be estimated, although not perfectly, from the local potential at the
synapse. The direction of change of a synapse is determined by a subtle interplay
between the correlation term Cj and the postsynaptic factor Bpost which can both
be positive or negative.

To elucidate the balance between potentiation and depression of synapses, we
first considered a simplified neuron model without refractoriness and firing rate
νpost = g2(u). In this special case, the synaptic update rule (10) can be rewritten in
the simpler form

d

dt
wj = α νj φ(νpost, θ) [16]

where νj is the instantaneous firing rate of the presynaptic neuron as estimated from
the amplitude of the PSP [if the potential is measured in mV and time in ms, then

the proportionality constant a has units 1/(mVms)]. νj = a
∑

f ε(t−t
(f)
j ) generated

at synapse j; and φ(νpost, θ) = f(νpost) log(νpost/θ) is a function which depends on
the instantaneous postsynaptic firing rate νpost = g2(u) and a parameter θ. The
function f is proportional to the derivative of g2, i.e, f(νpost) = g′

2/a evaluated at
u = g−1

2 (νpost). The parameter θ denotes the transition from a regime of potentiation
to that of depression. It depends on the recent firing history of the neuron and is
given by

θ(t) = ν̄post(t)

(

ν̄post(t)

g̃

)γ

[17]

where g̃ = 20 Hz denotes a target value of the postsynaptic rate implemented by
homeostatic processes [22] and ν̄post(t) is a running average of the postsynaptic rate.
The function φ in Eq. (16), shown in Fig. 2 is characteristic for the BCM learning
rule [12]. Our approach by information maximization predicts a specific form of this
function which can be plotted either as a function of the postsynaptic firing rate νpost

or as a function of the postsynaptic potential u = g−1
2 (νpost), in close agreement with

experiments [2, 13]. Moreover, because information maximization was performed
under the constraint of a fixed target firing rate, our approach yields automatically
a sliding threshold of the form postulated in [12], but on different grounds. Thus for
neurons without refractoriness, i.e., a pure rate model, our update rule for synaptic
plasticity reduces exactly to the BCM rule.

9
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An application of rate models to stimulation paradigms that vary on a time scale
of tens of milliseconds or less, has often been questioned since an interpretation of
‘rate’ is seen as problematic. Our synaptic update rule is based on a spiking neuron
model that includes refractoriness and which captures well properties of much more
detailed neuron models [25]. The learning rule for spiking neurons has a couple of
remarkable properties that we explore now.

First, we consider a pattern discrimination task in a rate coding paradigm. Pat-
terns are defined by the firing rate νpre of 25 presynaptic neurons (νpre = 2, 13, 25, 40
Hz for patterns, 1-4, respectively) modeled as independent Poisson spike trains. The
remaining 75 synapses received uncorrelated Poisson input at a constant rate of 20
Hz. Each second, a pattern was chosen stochastically and applied during one second.
Those synapses that received pattern-dependent input developed strong efficacies
close to the maximal value wmax = 1 whereas most of the other 75 synapses devel-
oped weaker ones; cf. Fig. 3. However, some of the weakly driven synapses also
spontaneously increased their efficacy. This was necessary for the neuron to achieve
a mean postsynaptic firing rate close to the target firing rate. Despite the fact that
the mean firing rate approaches on a time scale of tens of seconds the target rate,
the spike count in each one-second segment is strongly modulated by the input pat-
tern and can be used to distinguish the patterns (Fig. 3B) with a misclassification
error of < 20%. (See Supporting Text and Fig. 7, which is published as supporting
information on the PNAS web site.)

In a second set of simulation experiments, we studied again rate coding, but con-
sidered two groups of input defined by periodic modulation of the presynaptic firing
rates. More precisely, 40 neurons received input spike trains generated by an inho-
mogeneous Poisson process with common rate modulation ν(t) = ν0 +A sin(2π t/T )
with amplitude A = 10 Hz and period T = 100 ms. Another group of 40 neurons
received modulated input of the same amplitude and period, however, with a phase
shift π. The remaining 20 synapses received Poisson input at a fixed rate ν0 = 20
Hz. All 100 inputs projected onto 9 postsynaptic neurons. Synaptic weights were
initialized randomly (between 0.10 and 0.12) and evolved according to the update
rule (14). Out of the 9 postsynaptic neurons, 4 developed strong connections to
the first group of correlated inputs, while 5 developed strong connections to the
second group of correlated inputs (Fig. 4A). The rate of the output neurons reflects
the modulation of their respective inputs (Fig. 4B). To summarize, the synaptic
update rule derived from the principle of information maximization drives neurons
to spontaneously detect and specialize for groups of coherent inputs. Just as in
the standard BCM rule, several output neurons (with different specialization) are
needed to account for the different features of the input.

Whereas the two preceding paradigms focused on rate modulation, we now show
that, even if all presynaptic neurons fire at the same mean rate, the presence of
weak spike-spike correlations in the input is sufficient to bias the synaptic selection
mechanism; cf. Fig. 5. All synapses received spike input at the same rate of 20 Hz,
but the spike trains of 50 synapses showed weak correlations (c = 0.1), whereas the
remaining 50 synapses received uncorrelated input. Most of the 50 synapses that

10
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Figure 3: Pattern discrimination. The first 25 synapses 1 ≤ j ≤ 25 are stimulated
by Poisson input with a rate νpre = 2, 13, 25, 40 Hz that changes each second. The
remaining 75 synapses receive Poisson input at a constant rate of 20 Hz. A Upper.
Evolution of all synaptic weights as a function of time (red: strong synapses wj ≈ 1;
blue : depressed synapses wj ≈ 0). All synapses are initialized at the same value
wj = 0.1. Lower. The evolution of the average efficacy of the 25 synapses that
receive pattern-dependent input (red line) and that of the 75 other synapses (blue).
Typical examples of individual traces (synapse 1: black and synapses 30: green) are
given by the dashed lines. B Upper. Evolution of the average mutual information I
per bin (blue line and left scale) and of the average Kullback-Leibler distance D per
bin as a function of time. Averages are calculated over segments of 1 min. Lower
Output rate (spike count during 1 second) as a function of pattern index before
(blue bars) and after (red bars) learning.
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Figure 4: Rate modulation. A. Distribution of synaptic efficacies of nine postsy-
naptic neurons after 60 min of stimulation with identical inputs for all neurons.
Synapses 1 ≤ j ≤ 40 (red symbols) received Poisson input with common rate mod-
ulation; the input at synapses 41 ≤ j ≤ 80 (blue symbols) was also rate modulated
but phase shifted; and the input at the remaining 20 synapses was uncorrelated
(green symbols). Four postsynaptic neurons (number 1, 3, 5, 8) develop a sponta-
neous specialization for the first group of modulated input (red symbols close to the
maximum efficacy of one) and five (2, 4, 6, 7, 9) specialized for the second group.
B. Modulation of the output rate of the 9 postsynaptic neurons before (left) and
after (right) learning. Red/blue bars: neurons responding to the first/second group
of input. Red/blue lines: modulation of the input of group 1 and 2.

12
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received a weakly correlated input increased their weights under application of the
synaptic update rule (Fig. 5). If at a later stage the group of correlated inputs
changes, the newly included synapses will be strengthened as well whereas those
that are no longer correlated decay. Moreover, the final distribution of synaptic
efficacies persists, even if the input is switched to random spike arrival. Thus the
synaptic update rule is sensitive to spike-spike correlations on a millisecond scale,
which would be difficult to account for in a pure rate model. A biophysical signature
of spike-spike correlations are systematic and large fluctuations of the membrane
potential. If several postsynaptic neurons receive the same input, their outputs
are again correlated and generate large fluctuations in the membrane potential of
a read-out neuron further down the processing chain (Fig. 5B). Thus, information
that is potentially encoded in millisecond correlations in the input can be detected,
enhanced, transmitted, and read out by other neurons.

4 Discussion

The synaptic update rule discussed in this paper relies on the maximization of the
mutual information between an ensemble of presynaptic spike trains and the output
of the postsynaptic neuron. As in all optimization approaches, optimization has do
be done under some constraint. Since information scales with the postsynaptic firing
rate, but high firing rates cannot be sustained by the biophysical machinery of the
cell over long times, we imposed that, on average, the postsynaptic firing rate should
stay close to a desired firing rate. This idea is consistent with the widespread finding
of homeostatic processes that tend to push a neuron always back into its preferred
firing state [22]. The implementation of this idea in our formalism gave naturally
rise to a control mechanism that corresponds exactly to the sliding threshold in the
original BCM model [12]. While derivations of the BCM model from optimality
concepts [19,23] or statistical approaches [26] are not new, our approach gives a new
perspective on the concept of a sliding threshold.

Our derivation extends the BCM model, which was originally designed for rate
models of neuronal activity to the case of spiking neuron models with refractoriness.
Spiking neuron models of the integrate-and-fire type, such as the one presented here,
can be used to account for a broad spectrum of neuronal firing behavior, including
the role of spike-spike correlations, interspike interval distributions, coefficient of
variations, and even timing of single spikes; for a review, see ref. [9]. The essential
ingredients of the spiking neuron model considered here were (i) PSP generated
by presynaptic spike arrival; (ii) a heuristic spiking probability that depends on
the total postsynaptic potential; and (iii) a phenomenological account of absolute
or relative refractoriness. The synaptic update rule depends on all three of these
quantities. While we do not imply that synaptic potentiation and depression of real
neurons are implemented the way it is suggested by our update rule, the rule shows
nevertheless some interesting features.

First, in contrast to pure Hebbian correlation driven learning, the update rule
uses a correlation term modulated by an additional postsynaptic factor. Thus, presy-
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Figure 5: Spike-spike correlations. The N = 100 synapses have been separated
into four groups of 25 neurons each (group A, 1 ≤ j ≤ 25; B, 26 ≤ j ≤ 50; C,
51 ≤ j ≤ 75; D, 76 ≤ j ≤ 100). All synapses were stimulated at the same rate of 20
Hz. But during the first 15 min of simulated time, neurons in groups C and D were
uncorrelated whereas the spike trains of the remaining 50 neurons (groups A and B)
had correlations of amplitude c = 0.1, i.e., ten percent of the spike arrival times were
identical between each pair of synapses. After 15 minutes, correlations changed so
that group A became correlated with C whereas B and D were uncorrelated. After
45 minutes of simulated time correlations stopped, but stimulation continued at
the same rate. A. Upper: Evolution of all 100 weights (red: potentiated; blue:
depressed). Lower: Average mutual information per bin as a function of time. In
the absence of correlations (t >45 min) mutual information is lower than before,
but the distribution of synaptic weights remains stable. B. 9 postsynaptic neurons
1 ≤ i ≤ 9 with membrane potential ui(t) are stimulated as discussed in A and
project to a read-out unit with potential h(t) =

∑9
i=1

∑

m ε(t − tmi ) where the sum
runs over all output spikes m of all 9 neurons. Mean membrane potentials are ū and
h̄, respectively. The fluctuations σu = [〈(ui(t)−ū)2〉]0.5 of the postsynaptic potentials
(blue line, top graph) and those of the readout potentials (σh = [〈(h(t) − h̄)2〉]0.5,
green line) are correlated (Lower) with the mutual information and can serve as
neuronal signal.
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naptic stimulation is combined with a highly nonlinear function of the postsynaptic
state in order to determine the direction and amplitude of synaptic changes. The
essence of the BCM rule (presynaptic gating combined with nonlinear postsynaptic
term) is hence translated into a spike-based formulation.

Second, the spike-based formulation of a synaptic update rule should allow a
connection to spike-timing dependent plasticity [5, 6] and allow its interpretation
in terms of optimal information transmission [27–29]. Given the highly nonlinear
involvement of postsynaptic spike times and postsynaptic potential in the optimal
synaptic update rule, a simple interpretation in terms of pairs or pre- and post-
synaptic spikes as in many standard models of synaptic plasticity [30, 31] can only
capture a small portion of synaptic plasticity phenomena. The optimal learning rule
suggests that nonlinear phenomena [32–35] are potentially highly relevant.
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Supporting Text

Evolution of the Average Synaptic Update Rule

In this appendix we evaluate the derivative of Eq. 9 in the main text, i.e., we
need to calculate

∂

∂wj

〈

log
P (yk|Y k−1, Xk)

P (yk|Y k−1)
− γ log

P (yk|Y k−1)

P̃ (yk|Y k−1)

〉

Y k,Xk

. [1]

Before we start let us recall some notation. The average of an arbitrary function
fw with arguments x and y is by definition

〈fw(x, y)〉
x,y =

∑

x

∑

y

pw(x, y) fw(x, y) [2]

where pw(x, y) denotes the joint probability of the pair (x, y) to occur and the sum
runs over all configurations of x and y. The subscript w indicates that both the
probability distribution pw and the function fw may depend on a parameter w.

By definition, we have pw(x, y) = pw(y|x)p(x) where p(x) is a given input distri-
bution and pw(y|x) the (parameter-dependent) conditional probability of generating
an output y given x. Hence Eq. 2 can be transformed into

〈fw(x, y)〉
x,y =

∑

x

p(x)
∑

y

pw(y|x) fw(x, y) =

〈

∑

y

pw(y|x) fw(x, y)

〉

x

[3]

If we now take the derivative with respect to the parameter w, the product rule
yields two terms

∂

∂w
〈fw(x, y)〉

x,y =

〈

∑

y

pw(y|x)
∂

∂w
fw(x, y)

〉

x

[4]

+

〈

∑

y

pw(y|x)

[

∂

∂w
log pw(y|x)

]

fw(x, y)

〉

x

The first term contains the derivative of the function fw whereas the second term
contains the derivative of the conditional probability pw. We note that Eq. 4 can
also be written in the form

∂

∂w
〈fw(x, y)〉

x,y =

〈

∂

∂w
fw(x, y)

〉

x,y

+

〈[

∂

∂w
log pw(y|x)

]

fw(x, y)

〉

x,y

, [5]

i.e., as an average over the joint distribution of x and y. This formulation will be
useful for the problem at hand.

The gradient in Eq. 1 contains several terms and for the moment we pick only
one of these. The others will then be treated analogously. Let us focus on the term
〈

log P (yk|Y k−1, Xk)
〉

Y k,Xk and apply steps completely analogous to those leading
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from Eqs. 2-5.

∂

∂wj

〈

log P (yk|Y k−1, Xk)
〉

Y k ,Xk

=

〈

∂

∂wj
log P (yk|Y k−1, Xk)

〉

Y k,Xk

[6]

+

〈[

∂

∂wj
log P (Y k|Xk)

]

log P (yk|Y k−1, Xk)

〉

Y k,Xk

We now evaluate the averages using the identity
〈·〉Y k ,Xk = 〈〈·〉

yk |Y k−1,Xk〉Y k−1,Xk . We find that the first term on the right-hand
side of Eq. 6 vanishes, since

〈

∂

∂wj

log P (yk|Y k−1, Xk)

〉

yk|Y k−1,Xk

=
∑

yk∈{0,1}

∂

∂wj

[

log P (yk|Y k−1, Xk)
]

P (yk|Y k−1, Xk)

=
∂

∂wj





∑

yk∈{0,1}

P (yk|Y k−1, Xk)



 = 0 [7]

because of the normalization of probabilities. The same argument can be repeated to

show that 0 =
〈

∂
∂wj

log P (yk|Y k−1)
〉

yk|Y k−1,Xk
. The reference distribution P̃ (yk|Y k−1)

is by definition independent of wj .
Hence the only term that gives a non-trivial contribution on the right-hand side

of Eq. 6 is the second term. With an analogous argument for the other factors in
Eq. 1 we have

∂

∂wj

〈

log
P (yk|Y k−1, Xk)

P (yk|Y k−1)
− γ log

P (yk|Y k−1)

P̃ (yk|Y k−1)

〉

Y k,Xk

=

〈[

∂ log P (Y k|Xk)

∂wj

] (

log
P (yk|Y k−1, Xk)

P (yk|Y k−1)
− γ log

P (yk|Y k−1)

P̃ (yk|Y k−1)

)〉

Y k,Xk

[8]

An identification of the factors C,F , and G in the main text is straightforward.
From Eq. 4 in the main text we have

log P (yk|Y k−1, Xk) = yk log(ρk) + (1 − yk) log(1 − ρk) [9]

Hence we can evaluate the factors

F k = log
P (yk|Y k−1, Xk)

P (yk|Y k−1)
=yk log

ρk

ρ̄k
+(1−yk) log

1− ρk

1− ρ̄k

Gk = log
P (yk|Y k−1)

P̃ (yk|Y k−1)
=yk log

ρ̄k

ρ̃
+(1−yk) log

1 − ρ̄k

1− ρ̃

Furthermore we can calculate the derivative needed in Eq. 8 using the chain rule
from Eq. 6 of the main text, i.e.,

P (Y k|Xk) =

k
∏

l=1

P (yl|Y l−1, X l) [10]

2
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which yields

∂ log P (Y k|Xk)

∂wj
=

∂

∂wj

k
∑

l=1

log P (yl|Y l−1, X l) [11]

=
k

∑

l=1

[

yl

ρl
−

1 − yl

1 − ρl

]

ρ′
l
∑

n

ε(tl − tn)xn
j [12]

We note that in Eq. 8 the factor ∂
∂wj

log P (Y k|Xk) has to be multiplied with

F k or with Gk before taking the average. Multiplication generates terms of the
form 〈yl yk〉Y k ,Xk = 〈〈yl yk〉Y k|Xk〉Xk For any given input Xk, the autocorrelation

〈yl yk〉Y k|Xk with l < k − ka of the postsynaptic neuron will have a trivial value

〈yl yk〉Y k|Xk = 〈yl〉Y k|Xk〈yk〉Y k|Xk for k − l > ka [13]

where ka ∆t is the width of the autocorrelation. As a consequence

〈[

yl

ρl
−

1 − yl

1 − ρl

]

(

F k − γGk
)

〉

Y k,Xk

= 0 for k − l > ka [14]

Hence, for k−l > ka, we can truncate the sum over l in Eq. 12, i.e.,
∑k

l=1 →
∑k

l=k−ka

which yields exactly the coincidence measure Cj introduced in the main text; cf. Eq.
11 in the main text, and which we repeat here for convenience

Ck
j =

k
∑

l=k−ka

[

yl

ρl
−

1− yl

1 − ρl

]

ρ′
l
∑

n

ε(tl − tn)xn
j [15]

From Averages to an Online Rule

The coincidence measure Ck
j counts coincidences in a rectangular time window.

If we replace the rectangular time window by an exponential one with time constant
τC and go to continuous time, the summation

∑k
l=k−ka

. . . in Eq. 15 turns into an

integral
∫ t

−∞ dt′ exp[−(t − t′)/τC ] . . . which can be transformed into a differential
equation

dCj(t)

dt
=−

Cj(t−δ)

τC
+

∑

f

ε(t−t
(f)
j )S(t)

[

δ(t− t̂−δ)−g(u(t))R(t)
]

; [16]

cf. Eq. 15 in the main text. Based on the considerations in the previous paragraph,
the time constant τC should best be chosen in the range ka∆t ≤ τC ≤ 10 ka∆t.

Similarly, the average firing rate ρ̄(t) = ḡ(t)R(t) can be estimated using a run-
ning average

τḡ
dḡ(t)

dt
= −ḡ(t) + g(u(t)) [17]

with time constant τḡ.
In Fig. 6, we compare the performance of three different update schemes in nu-

merical simulations. In particular, we show that (i) the exact value of the truncation

3
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of the sum in Eq. 15 is not relevant, as long as ka∆t is larger than the width of the
autocorrelation; and (ii) that the online rule is a good approximation to the exact
solution.

To do so we take the scenario from Fig. 3 of the main text. For each segment of
1 s, we simulate one hundred pairs of input and output spike trains. We evaluate
numerically Eq. 8 by averaging over the 100 samples. After each segment of 1
second (=1,000 time steps) we update the weights using a rule without truncation
in the sum of Eq. 15. We call this the full batch update; compare. Fig. 6 (Top).

Second, we use the definition of Ck
j with the truncated sum and repeat the above

steps; Fig. 6 (Middle). The truncation is set to ka ∆t = 200ms which is well above
the expected width of the autocorrelation function of the postsynaptic neuron. We
call this the truncated batch rule.

Third, we use the online rule discussed in the main body of the paper with τC = 1
s; Fig. 6 (Bottom).

Comparison of top and center graphs of Fig. 6 shows that there is no difference in
the evolution of mean synaptic efficacies, i.e., the truncation of the sum is allowed, as
expected from the theoretical arguments. A further comparison with Fig. 6 Bottom

shows that updates based on the online rule add some fluctuations to the results,
but its trend captures nicely the evolution of the batch rules.

Supplement to the Pattern Detection Paradigm

In Fig. 3 we presented a pattern detection paradigm where patterns defined by
input rates were chosen randomly and applied for one second. After learning, the
spike count over one second is sensitive to the index of the pattern. Fig. 7A shows
the histogram of spike counts for each pattern. Optimal classification is achieved by
choosing for each spike count the pattern which is most likely. With this criterion
81 percent of the patterns will be classified correctly.

The update of synaptic efficacies depends on the choice of the parameter γ in the
learning rule. According the the optimality criterion in Eq. 8 of the main text, a high
level of γ implies a strong homeostatic control of the firing rate of the postsynaptic
neuron whereas a low level of γ induces only a weak homeostatic control. In order
to study the role of γ, we repeated the numerical experiments for the above pattern
detection paradigm with a value of γ = 100 instead of our standard value of γ = 1.
Fig. 7B shows that the output firing rate is still modulated by the pattern index,
the modulation at γ = 100 is, however, weaker than that at γ = 1. As a results,
pattern detection is less reliably with 45 percent correct classification only. We note
that this is still significantly higher than the chance level of 25 percent.

4
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Figure 6: Evolution of the synaptic efficacies for the pattern detection paradigm of
Fig. 3 during the first 10 minutes of simulated time. Red: mean synaptic efficacy of
the 25 synapses that received pattern-dependent input rates. Blue: mean synaptic
efficacy of the remaining 75 synapses. The batch update rule (top), the truncated
batch rule (middle) and the online rule (bottom) yield comparable results.

A B

Figure 7: Pattern detection. A Histograms of spike counts nsp over one second
(horizontal axis, bin size 2) during presentation of pattern 1 (dark blue), pattern 2
(light blue), pattern 3 (yellow), and pattern 4 (red). Vertical scale: number of trials
n with a given spike count divided by total number Np of trials for that pattern.
B Spike count during one second (mean and variance) for each of the four patterns
with a parameter value γ = 1 (light blue) and γ = 100 (dark blue). The values for
γ = 1 are redrawn from Fig. 3.

5
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2.5 Paper V

Summary

This paper is the third paper in this thesis (c.f. papers III and IV) which considers an

unsupervised scenario. This time the objective function is composed of an information term,

an homeostatic term (identical to the one of paper IV) and an extra activity dependent weight

decay term.

This last term has been added in order to prevent weights to become arbitrarily large,

which is unrealistic. It should be noted that in the previous paper, which did not have the

weight decay term, it was necessary to impose a fixed upper bound. Indeed, the homeostatic

term prevents the postsynaptic firing to be too large, but does not prevent individual synapses

from unrealistic growth. So the weight decay term replaces the strict upper bound.

Another motivation for this quadratic weight penalty term is that the learning rule,

when applied to a STDP protocol, elicits a positive offset. So if the relative importance

of the extra penalty term is well chosen, it can compensate exactly the positive offset (see

Fig. 2d of paper V). Similarly to the previous papers, the shape of the potentiation part of

the learning window is determined by the EPSP time course. Depression comes from the

EPSP suppression we assumed in this paper. Indeed, if an EPSP is elicited just after the

postsynaptic spike, its amplitude is reduced and hence transmits less information.

We also added a weight dependent learning rate which vanishes for small weights. In

this way, there is no need to implement a strict lower bound at w = 0. This specific imple-

mentation of the learning rate brings interesting feature to the learning rule. One of them

is the ability to store memories for extremely long time. Indeed, if a neuron specializes to

a given input and thereby induces some small synaptic weights, those synapses will hardly

change and therefore contribute to the memory maintenance.

Another interesting feature of the derived learning rule is that unspecialized synapse

pattern (which corresponds to an unselective neuron) can be stable (see Fig. 3c of paper V).

This is in direct contrast with the BCM learning rule. Indeed, the only stable fixed point of

the BCM dynamics are the ones where the neuron is selective. This feature of our learning

rule directly comes from the quadratic weight penalty term we added in this paper. The

advantage of such a feature is that it prevents the neuron to specialize to an input pattern
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that has occurred “by chance”.

It should be noted that the stability of the unspecialized synapse pattern (which cor-

responds to an unimodal weight distribution) can co-exist with the stability of specialized

synapses (which corresponds to a bimodal weight distribution). This bistability is highlighted

by the presence of an hysteresis behavior of the weights (see Fig 3b of paper V).
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Summary

We studied the hypothesis that synaptic dynamics is controlled by three basic
principles: (A) Synapses adapt their weights so that neurons can effectively trans-
mit information; (B) homeostatic processes stabilize the mean firing rate of the
postsynaptic neuron; and (C) weak synapses adapt more slowly than strong ones,
while maintenance of strong synapses is costly. Our results show that a synaptic
update rule derived from these principles shares features with spike-timing depen-
dent plasticity, is sensitive to correlations in the input, and is useful for synaptic
memory. Moreover, input selectivity (sharply tuned receptive fields) of postsynaptic
neurons develops only if stimuli with strong features are presented. Sharply tuned
neurons can co-exist with unselective ones and the distribution of synaptic weights
can be unimodal or bimodal. The formulation of synaptic dynamics through an op-
timality criterion provides a simple graphical argument for the stability of synapses,
necessary for synaptic memory.

1



2.5. PAPER V 103

1 Introduction

Synaptic changes are thought to be involved in learning, memory, and cortical plas-
ticity, but the exact relation between microscopic synaptic properties and macro-
scopic functional consequences remains highly controversial. In experimental prepa-
rations, synaptic changes can be induced by specific stimulation conditions defined
through pre- and postsynaptic firing rates (Bliss and Lomo 1973; Dudek and Bear
1992), postsynaptic membrane potential (Kelso et al. 1986), calcium entry (Malenka
et al. 1988; Lisman 1989), or spike timing (Markram et al. 1997; Bi and Poo
2001). In the theoretical community, conditions for synaptic changes are formulated
as ‘synaptic update rules’ or ‘learning rules’ (von der Malsburg 1973; Bienenstock
et al. 1982; Miller et al. 1989) (for reviews see (Gerstner and Kistler 2002; Dayan
and Abbott 2001; Cooper et al. 2004) but the exact features that make a synaptic
update rule a suitable candidate for cortical plasticity and memory are unclear.

From a theoretical point of view, synaptic learning rule should be (i) sensitive to
correlations between pre- and postsynaptic neurons (Hebb 1949) in order to respond
to correlations in the input (Oja 1982); they should (ii) allow neurons to develop
input selectivity (e.g., receptive fields) (Bienenstock et al. 1982; Miller et al. 1989),
in the presence of strong input features, but (iii) distribution of synaptic strength
should remain unimodal otherwise (Gütig et al. 2003). Furthermore (iv) synaptic
memories should show a high degree of stability (Fusi et al. 2005) and nevertheless
remain plastic (Grossberg 1987). Moreover, experiments suggest that plasticity
rules are (v) sensitive to the presynaptic firing rate (Dudek and Bear 1992), but (vi)
depend also on the exact timing of the pre- and postsynaptic spikes (Markram et al.
1997; Bi and Poo 2001).

Many other experimental features could be added to this list, e.g., the role of
intracellular calcium, of NMDA receptors, etc., but we will not do so; see (Bliss and
Collingridge 1993; Malenka and Nicoll 1993) for reviews.

The items in the above list are not necessarly exclusive, and the relative im-
portance of a given aspect may vary from one subsystem to the next; for example,
synaptic memory maintenance might be more important for a long-term memory
system than for primary sensory cortices. Nevertheless, all of the above aspects
seem to be important features of synaptic plasticity. However, the development of
theoretical learning rules that exhibit all of the above properties has posed problems
in the past. For example, traditional learning rules that have been proposed as an
explanation of receptive field development (Bienenstock et al. 1982; Miller et al.
1989), exhibit a spontaneous separation of synaptic weights into two groups, even
if the input shows no or only weak correlations. This is difficult to reconcile with
experimental results in visual cortex of young rats where a unimodal distribution
was found (Sjöström et al. 2001). Moreover model neurons that specialize early
in development on one subset of features cannot readily re-adapt later on. Other
learning rules, however, that exhibit a unimodal distribution of synaptic weights
(Gütig et al. 2003) do not lead to a longterm stability of synaptic changes.

In this paper we want to show that all of the above features (i) - (vi) emerge nat-

2
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urally in a theoretical model where we require only a limited number of objectives
that will be formulated as postulates. In particular, we study how the conflicting
demands on synaptic memory maintenance, plasticity, and distribution of synaptic
synapses could be satisfied by our model. Even though the postulates are rather
general and could be adapted to arbitrary neural systems, we had in mind exci-
tatory synapses in neocortex or hippocampus and exclude inhibitory synapses and
synapses in specialized systems such as the calix of held in the auditory pathway.
Our arguments are based on three postulates:

(A) Synapses adapt their weights so as to allow neurons to efficiently transmit
information. More precisely, we impose a theoretical postulate that the mutual
information I between presynaptic spike trains and postsynaptic firing be optimized.
Such a postulate stands in the tradition of earlier theoretical work (Linsker 1989;
Bell and Sejnowski 1995), but is formulated here on the level of spike trains rather
than rates.

(B) Homeostatic processes act on synapses to ensure that the long-term average
of the neuronal firing rate becomes close to a target rate that is characteristic for
each neuron. Synaptic rescaling and related mechanism could be a biophysical
implementation of homeostatis (Turrigiano and Nelson 2004). The theoretical reason
for such a postulate is that sustained high firing rates are costly from an energetic
point of view (Laughlin et al. 1998; Levy and Baxter 2002).

(C). C1: Maintenance of strong synapses is costly in terms of biophysical ma-
chinery, in particular in view of continued protein synthesis (Fonseca et al. 2004).
C2: Synaptic plasticity is slowed down for very weak synapses in order to avoid a
(unplausible) transition from excitatory to inhibitory synapses.

Optimality approaches have a long tradition in the theoretical neurosciences and
have been utilized in two different ways. Firstly, optimality approaches allow to
derive strict theoretical bounds against which performance of real neural systems
can be compared (Barlow 1956; Laughlin 1981; Britten et al. 1992; de Ruyter van
Steveninck and Bialek 1995). Secondly, they have been used as a conceptual frame-
work since they allow to connect functional objectives (e.g., ‘be reliable!’ ) and
constraints (e.g., ‘don’t use too much energy!’) with electrophysiological proper-
ties of single neurons and synapses or neuronal populations (Barlow 1961; Linsker
1989; Atick and Redlich 1990; Levy and Baxter 2002; Seung 2003). Our study,
i.e., derivation of synaptic update rules from an optimality viewpoint, follows this
second, conceptual, approach.

2 The Model

Neuron Model

We simulated a single stochastic point neuron model with N = 100 input
synapses. Presynaptic spikes at synapse j are denoted by their arrival time tf

j

and evoke EPSPs with time course exp[−(t − tf
j )/τm] for t ≥ tfj where τm = 20ms

is the membrane time constant. Recent experiments have shown that action poten-
tials propagating back into the dendrite can partially suppress EPSPs measured at

3
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the soma (Froemke et al. 2005). Since our model neuron has no spatial structure,
we included EPSP suppression by a phenomenological amplitude factor a(tf

j − t̂)
that depends on the time difference between presynaptic spike arrival and the spike
trigger time t̂ of the last (somatic) action potential of the postsynaptic neuron.

In the absence of EPSP suppression, the amplitude of a single EPSP at synapse
j is characterized by its weight wj and its duration by the membrane time constant
τm. Summation of the EPSPs caused by presynaptic spike arrival at all 100 explicitly
modeled synapses gives the total postsynaptic potential

u(t) = ur +

N
∑

j=1

wj

∑

tfj <t

exp

(

−
t − tfj
τm

)

a(tfj − t̂) (1)

where ur = −70mV is the resting potential and the sum runs over all spike arrival
times tfj in the recent past, t̂ < tfj ≤ t. The EPSP suppression factor takes a

value of zero if tfj < t̂ and is modeled for tfj ≥ t̂ as exponential recovery a(tf
j − t̂) =

1−exp[−(tfj −t̂)/τa] with time constant τa = 50ms (Fig. 1A) unless stated otherwise.
The parameters wj for 1 ≤ j ≤ N denote the synaptic weight of the N = 100
synapses and are updated using a learning rule discussed below.

In order to account for unspecific background input that was not modeled ex-
plicitly, spikes were generated probabilistically with density

ρ(t) = ρr + [u(t)− ur] · g (2)

where ρr = 1Hz is the spontaneous firing rate (in the absence of spike input at the
100 explicitly modeled synapses) and g = 12.5Hz/mV is a gain factor. Thus, the
instantaneous spike density increases linearly with the total postsynaptic potential
u(t). Note, however, that due to EPSP suppression the total postsynaptic potential
increases sublinearly with the the number of input spikes and so does the mean
firing rate of the postsynaptic neuron (Fig. 1B).

The neuron model is simulated in discrete time with time steps of ∆t = 1ms on
a standard personal computer using custom made software written in Matlab.

Objective Function

Postulates A and B have been used previously (Toyoizumi et al. 2005) and lead
to an optimality criterion L′ = I − γD where I is the mutual information between
presynaptic input and postsynaptic output and D a measure of the distance of the
mean firing rate of the neuron from its target rate. The parameter γ scales the
importance of the information term I (postulate A) compared to the homeostatic
term D (postulate B). It was shown that optimization of L′ by gradient ascent
yields a synaptic update rule which shows sensitivity to correlations (see point (i)
above), input selectivity (see point (ii) above), and depends on presynaptic firing
rates (see point (v) above) (Toyoizumi et al. 2005). However, while the learning
rule in (Toyoizumi et al. 2005) showed some dependence on spike timing, it did not
(without additional assumptions) have the typical features of STDP as measured in
vitro (point (vi) above); and exhibited, like earlier models (Bienenstock et al. 1982),

4
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Figure 1: Properties of the stochastically spiking neuron model. (a) Neuron model
and EPSP suppression. EPSPs arriving just after a postsynaptic spike at t = 0
are attenuated by a factor (1 − e−t/τa) and recover exponentially to their maximal
amplitude wj. (b) The output firing rate ρ̄ of a neuron that receives stochastic spike
input at rate ν at all 100 synapses. Each presynaptic spike evokes an EPSPs with
maximal amplitude wj = 0.4mV. (c) Interspike interval (ISI) distribution with input
frequency ν = 10Hz (solid line), 20Hz (dashed line), and 30Hz (dotted line) at all
100 synapses. (d) Autocorrelation function of postsynaptic action potentials at an
input frequency of 10Hz (solid line), 20Hz (dashed line), and 30Hz (dotted line).

spontaneous synaptic specialization, even for very weak input features, which is in
contrast to point (iii) above.

In this earlier theoretical study, synaptic potentiation was artificially stopped
at some upper bound wmax (and synaptic depression was stopped at weight w =
0), so as to ensure that weights w stayed in a regime 0 ≤ w ≤ wmax. In the
present paper we take the more realistic assumption that strong weights are more
likely to show depression than weaker ones but do not impose a hard upper bound.
Similarly, we require that adaptation speed is slowed down for very weak synapses,
but do not impose a hard bound at zero weight. We will show that with these
assumptions the resulting synaptic update rule shows properties of STDP (see point
(vi) above), is suitable for memory retention (see point (iv) above) and leads to
synaptic specialization when driven by strong input (see point (iii) above), while
keeping the properties (i), (ii) and (v), that were found in (Toyoizumi et al. 2005).

To avoid hard upper bounds for the synapses, we use postulate C1 and add a

5
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term Ψ to the optimality criterion L′ that is proportional to w2 (i.e., the square
of the synaptic weight) and proportional to the presynaptic firing rate. This term
comes with a negative sign, since a cost is associated to big weights. Hence from
our optimality viewpoint, synapses change so as to maximize a quantity

L = I − γD − λΨ (3)

where I is the information to be maximized, D a measure of the firing rate mismatch
to be minimized, and Ψ the cost induced by strong synapses to be minimized. The
factors γ and λ control the relative importance of the three different terms. In
other words, synapses adjust their weights so as to be able to transmit information
while keeping the mean firing rate and synaptic weights at low values. Thus our
three postulates A, B, and C give rise to one unified optimality criterion L. We
hypothesize that a significant part of findings regarding synaptic potentiation and
depression can be conceptually understood as the synapse’s attempt to optimize the
criterion L.

The learning rule used for the update of the synaptic weights wj is derived from
the objective function (3) i.e., L = I − γD − λΨ which contains three terms.

The first term is the mutual information between the ensemble of 100 input
spike trains (spanning the interval of a single trial from 0 to T ; the ensemble of
all presynaptic trains is formally denoted by X(T ) = {xj(t) =

∑

tfj
δ(t − tfj )|j =

1, . . . , 100, 0 ≤ t < T}) and the output spike train of the postsynaptic neuron over
the same interval (denoted by Y (T ) = {y(t) =

∑

tfpost
δ(t − tfpost)|0 ≤ t < T}, where

tfpost represent output spike-timing), i.e.,

I =

〈

log
P (Y |X)

P (Y )

〉

Y,X

, (4)

where angular brackets 〈 · 〉Y,X denote averaging over all combinations of input and

output spike trains1. Here P (Y |X) is the conditional probability density of our
stochastic neuron model to generate a specific spike train Y with (one or several)
spike times {tfpost} during a trial of duration T given 100 known input spike trains X.
This conditional probability density is given as a product of the instantaneous prob-
abilities ρ(tfpost) of firing at the postsynaptic spike times {tf

post} and the probability
of not firing elsewhere, i.e.,

P (Y |X) =







∏

tfpost

ρ(tfpost)






exp

[

−

∫ T

0

ρ(t)dt

]

. (5)

Similarly, P (Y ) is the probability to generate the very same output spike train Y
not knowing the input. Here ‘not knowing the input’ implies that we have to average

1From now on, when X or Y are without argument, we take implicitly X ≡ X(T ) and Y ≡ Y (T ),
i.e., the spike trains over the full interval T
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over all possible inputs so as to get the expected instantaneous firing density ρ̄(t)
at time t. However, because of the EPSP suppression factor, the expected firing
density will also depend on the last output spike before t. We therefore define

ρ̄(t) = 〈ρ(t)〉X(t)|Y (t), (6)

i.e., we average over the inputs but keep the knowledge of the previous output spikes
tfpost < t. P (Y ) is then given by a formula analogous to (5), but with ρ replaced by ρ̄.
Hence, given our neuron model, both P (Y |X) and P (Y ) in Eq. (4) are well-defined.
The information term I of Eq. (4) is the formal instantiation of postulate A.

The second term is the homeostatic term

D =

〈

log
P (Y )

P̃ (Y )

〉

Y

, (7)

which compares the actual distribution of output spike trains P (Y ) with that of
an ideal distribution P̃ (Y ) generated by the same neuron firing at target rate of
ρ̃ = 5Hz, i.e., formula (5) with ρ replaced by ρ̃. Mathematically speaking, D is the
Kullback-Leibler distance between two distributions (Cover and Thomas 1991), but
in practice we may think of D simply as a measure of the difference between actual
and target firing rates (Toyoizumi et al. 2005). The term D is our mathematical
formulation of postulate B.

The third term is the cost associated with strong synapses. We assume that the
cost increases quadratically with the synaptic weights but that only those synapses
that have been activated in the past contribute to the cost. Hence the mathematical
formulation of postulate C1 yields a cost

Ψ =
1

2

∑

j

w2
j 〈nj〉X (8)

where nj is the number of presynaptic spikes that have arrived at synapse j during
the duration T of the interval under consideration. Cost terms that are quadratic in
the synaptic weights are common in the theoretical literature (Miller and MacKay
1994), but the specific dependence upon presynaptic spiking induced by the factor
nj in Eq. (8) is not. The dependence of Ψ upon presynaptic spike arrival means
that, in our model, only activated synapses contribute to the cost. The specific
formulation of Ψ is mainly due to theoretical reasons to be discussed below. The
intuition is that activation of a synapse in absence of any postsynaptic activity can
weaken the synapse if the factor λ is sufficiently positive (see also Fig. 3D). The
restriction of the cost to previously activated synapses is reminiscent of synaptic
tagging (Frey and Morris 1997; Fonseca et al. 2004) even though any relation must
be seen as purely hypothetical.

The three terms are given a relative importance by choosing γ = 0.1 (for a
discussion of this parameter see (Toyoizumi et al. 2005)) and λ = 0.026 so as to
achieve a baseline of zero in the STDP function (see Appendix A).

Synaptic update rule

7
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We optimize the synaptic weights by gradient ascent

∆wj = α(wj)
∂L

∂wj
(9)

with a weight-dependent update rate α(wj). According to postulate C2, plasticity
is reduced for very small weights. For the sake of simplicity we chose α(wj) =

4 · 10−2 w4

j

w4

j +w4
s
, where ws = 0.2mV. i.e., learning slows down for weak synapses with

EPSP amplitudes around or less than 0.2mV. Note that updates according to Eq.
(9) are always uphill; however, because of the wj dependence of α, the ascent is not
necessarily along the steepest gradient.

Using the same mathematical arguments as in (Toyoizumi et al. 2005), we can
transform the optimization by gradient ascent into a synaptic update rule. First,
differentiating each term, we find

∂I

∂wj
=

〈

1

P (Y |X)

∂P (Y |X)

∂wj
log

P (Y |X)

P (Y )

〉

Y,X

, (10)

∂D

∂wj
=

〈

1

P (Y |X)

∂P (Y |X)

∂wj
log

P (Y )

P̃ (Y )

〉

Y,X

, (11)

∂Ψ

∂wj
= wj 〈nj〉X . (12)

We will rewrite the terms appearing in Eqs. (10) and (11) by introducing the
auxiliary variables

cj(t) =
dρ/du|u=u(t)

ρ(t)
[y(t)− ρ(t)]

∫ ∞

0

ds′ε(s′)xj(t− s′) (13)

and

Bpost(t) =

[

y(t) log
ρ(t)

ρ̄(t)
− (ρ(t)− ρ̄(t))

]

− γ

[

y(t) log
ρ̄(t)

ρ̃
− (ρ̄(t)− ρ̃)

]

, (14)

Using the definitions in Eqs. (13) and (14), we find the derivative of the conditional
probability density that appears in Eqs. (10) and (11)

∂P (Y |X)

∂wj
= P (Y |X)

∫ T

0

cj(t
′)dt′ (15)

and

log
P (Y |X)

P (Y )
− γ log

P (Y )

P̃ (Y )
=

∫ T

0

Bpost(t)dt. (16)

As a first interpretation we may say that cj represents the causal correlation between
input and output spikes (corrected for the expected correlation); and Bpost is a
function of postsynaptic quantities, namely, the output spikes y, current firing rate

8
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ρ via the membrane potential u, average firing rate ρ̄ and the target firing rate ρ̃.
More precisely, Bpost compares the actual output with the expected output and,
modulated by a factor γ, the expected output with the target.

Hence, with the results from Eqs. (10) — (16) the derivative of the objective
function is written in terms of averaged quantities 〈·〉Y,X as

∂L

∂wj
=

∫ T

0

dt

〈[
∫ T

0

cj(t
′)dt′

]

Bpost(t) − λwjxj(t)

〉

Y,X

. (17)

An important property of cj is that its average 〈cj〉Y |X vanishes. On the other
hand, the correlations between cj(t

′) and Bpost(t) are limited by the time scale τAC

of the auto-correlation function of the output spike train. Hence we can limit the
integration to the relevant time scales without loss of generality and introduce an
exponential cut-off factor with time constant τC > τAC

Cj(t) = lim
ε→+0

∫ t+ε

0

cj(t
′)e−(t−t′)/τC dt′. (18)

With this factor Cj, we find a batch learning rule (i.e., with expectations over the
input and output statistics on the right-hand side) of the form

∂L

∂wj
≈

∫ T

0

dt
〈

Cj(t)B
post(t) − λwjxj(t)

〉

Y,X
. (19)

Finally, for slow learning rate α and stationary input statistics, the system becomes
self-averaging (i.e. expectations can be dropped due to automatic temporal averag-
ing (Gerstner and Kistler 2002)) so that we arrive at the on-line gradient learning
rule

dwj

dt
= α(wj)

[

Cj(t)B
post(t)− λwjxj(t)

]

. (20)

See Fig. 2 for an illustration of the dynamics of Cj and Bpost. The last term has the
form of an ‘weight decay’ term common in artificial neural networks (Hertz et al.
1991) and arises from the derivative of the weight-dependent cost term Ψ. The
parameter λ is set such that dwj/dt = 0 for large enough |tpre − tpost| in the STDP
in vitro paradigm. A few steps of calculation (see Appendix A) yield λ = 0.026. In
our simulations, we take τC = 100ms for the cut-off factor in Eq. (18).

For a better understanding of the learning dynamics defined in Eq. (20), let
us look more closely at Fig. 2a. The time course ∆w/w of the potentiation has
three components: first, a negative jump at the moment of the presynaptic spike
induced by the weight decay term; second, a slow increase in the interval between
pre- and postsynaptic spike times induced by Cj(t)B

post(t) > 0; third, a positive
jump immediately after the postsynaptic spike induced by the singularity in Bpost

combined with a positive Cj.
As it is practically difficult to calculate ρ̄(t) = 〈ρ(t)〉X(t)|Y (t), we estimate ρ̄ by

the running average of the output spikes, i.e.,

τρ̄
dρ̄est

dt
= −ρ̄est(t) + y(t) (21)

9
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Figure 2: Illustration of the dynamics of Bpost (Top), Cj (Middle) and ∆w/w =
(w−winit)/winit (Bottom). We always start from an initial weight winit = 4 mV and
induce postsynaptic firing at time tpost = 0. (a) Pre-before-post timing with tpre =
−10 ms (solid line) induces a large potentiation whereas tpre = −50 ms (dashed line)
induces almost no potentiation. (b) Due to the EPSP suppression factor, a post-
before-pre timing with tpre = 10 ms (solid line) induces a large depression whereas
tpre = 50 ms (dashed line) induces a smaller depression. The marks (circle, cross,
square and diamond) correspond to the weight change due to a single pair of pre-
and postsynaptic spike after weights have converged to their new values. Note that
in Fig. 3, the corresponding marks indicate the weight change after 60 pairs of pre-
and postsynaptic spikes.
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with τρ̄ = 1min. This approximation is valid if the characteristics of the stimulus and
output spike trains are stationary and uncorrelated. To simulate in vitro STDP ex-
periments, the initial value of ρ̄est is set equal to the injected pulse frequency. Other,
more accurate estimates of ρ̄est are possible, but lead to no qualitative change of re-
sults (data not shown). In the simulations of Fig. 4-6, the initial synaptic strength
is set to be winit = 0.4± 0.04mV.

Stimulation paradigm

Simulated STDP in vitro paradigm. For the simulations of Fig. 3, spike timings
tpre = tfj at synapse j and postsynaptic spike times tpost are imposed with a given
relative timing tpre − tpost. For the calculation of the total STDP effect according to
a typical in vitro stimulation paradigm, the pairing of pre- and postsynaptic spikes
is repeated until a total of 60 spike pairs have been accumulated. Spike pairs are
triggered at a frequency of 1Hz except for Fig. 3C where the stimulation frequency
was varied.

Simulated stochastic spike arrival. In most simulations presynaptic spike arrival
was modeled as Poisson spike input either at a fixed rate (homogeneous Poisson
process) or modulated rate (inhomogeneous Poisson process).

For example for the simulations in Fig. 6, with a Gaussian profile, spike arrival
at synapse j is generated by an inhomogeneou Poisson process with the following
characteristics. During a segment of 200 ms, the rate is fixed at νj = (νmax −
ν0) exp[−0.01∗d(j−k)2]+ν0 where ν0 = 1 Hz is the baseline firing rate and d(j−k)
is the difference between index j and k. The value of k denotes the location of the
maximum. The value of k was reset every 200ms to a value chosen stochastically
between 1 and 100. [As indicated in the main text, presynaptic neurons in Fig. 6
were considered to have a ring topology which has been implemented by evaluating
the difference d(j − k) as d(j − k) = min{|j − k|, 100− |j − k|}.]

However, in the simulations for Fig. 5, input spike trains were not independent
Poisson, but we included spike-spike correlations. A correlation index of c = 0.2
implies that between a given pair of synapses 20 percent of spikes have identical
timing. More generally, for a given value of c within a group of synaptic inputs,
100 c percent of spike arrival times are identical at an arbitrary pair of synapse
within the group.

3 Results

The mathematical formulation of postulates A, B and C1 led to an optimality
criterion L which was optimized by changing synaptic weights in uphill direction.
In order to include postulate C2, the adaptation speed was made to depend on the
current value of the synaptic weight so that plasticity was significantly slowed down
for synapses with excitatory postsynaptic potentials (EPSPs) of amplitude less than
0.2mV (see Section 2 for details).

As in a previous study based on postulates A and B (Toyoizumi et al. 2005),
the optimization of synaptic weights can be understood as a synaptic update rule

11
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Figure 3: The synaptic update rule of the model shares features with STDP. (a)
STDP function (percentage change of EPSP amplitude as a function of tpre − tpost)
determined using 60 pre-and-post spike-pairs injected at 1Hz. The initial EPSP
amplitudes are 4mV (dashed line) and 6mV (dotted). Marks (circle, cross, square
and diamond) correspond respectively to tpre = −50ms, tpre = −10ms, tpre = 10ms
and tpre = 50ms also depicted on Fig. 2. (b) The percentage change in EPSP am-
plitude after 60 pre-and-post spike-pairs injected at 1Hz for pre-before-post timing
((tpre−tpost) = −10ms, solid line) and post-before-pre timing ((tpre−tpost) = +10ms,
dashed line) as a function of initial EPSP amplitude. Our model results qualita-
tively resemble experimental data (see Fig. 5 in Bi and Poo, 1998).(c) Frequency
dependence of the STDP function: spike-pairs are presented at frequencies of 0.5Hz
(dashed line), 1Hz (dotted line), and 2Hz (dot-dashed line). The STDP function
exhibits only a weak sensitivity to the change in stimulation frequency. (d) STDP
function for different choices of model parameters. The extension of the synaptic
depression zone for ‘pre-after-post’ timing (tpre−tpost > 0) depends on the time scale
τa of EPSP suppression (dot-dashed line, τa = 50ms; dashed line, τa = 25ms). The
dotted line shows the STDP function in the absence of a weight-dependent cost term
Ψ. The STDP function exhibits a positive offset indicating that without the cost
term Ψ unpaired presynaptic spikes would lead to potentiation, i.e., a non-Hebbian
form of plasticity.
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that depends on presynaptic spike arrival, postsynaptic spike firing, the postsynaptic
membrane potential and the mean firing rate of the postsynaptic neuron. In addi-
tion, the synaptic update rule in the present study included a term that decreases
the synaptic weight upon presynaptic spike arrival by a small amount proportional
to the EPSP amplitude (see Section 2 for details). This term can be traced back to
the additional weight-dependent cost term Ψ in Eq. (3) that accounts for postulate
C1.

In order to study the consequences of the synaptic update rule derived from
postulates A, B, and C, we used computer simulations of a model neuron that
received presynaptic spike trains at 100 synapses. Each presynaptic spike evoked
an EPSP with exponential time course (time constant τm = 20ms). In order to
account for dendritic interaction between somatic action potentials and postsynaptic
potentials, the amplitude of EPSPs was suppressed immediately after postsynaptic
spike firing (Froemke et al. 2005) and recovered with time constant τa = 50ms (Fig.
1A). As a measure of the weight of a synapse j we used the EPSP amplitude wj

at this synapse in the absence of EPSP suppression. With all synaptic parameters
wj set to an fixed value, the model neuron fired stochastically with a mean firing
rate ρ̄ that increases with the presynaptic spike arrival rate (Fig. 1B), has a broad
interspike interval distribution (Fig. 1C) and an autocorrelation function with a
trough of 10-50 ms that is due to reduced excitability immediately after a spike
because of EPSP suppression (Fig. 1D).

The learning rule exhibits STDP.

In a first set of plasticity experiments, we explored the behavior of the model
system under a simulated in vitro paradigm as used in typical STDP experiments
(Bi and Poo 1998). In order to study the influence of the pre- and postsynaptic
activity on the changes of weights as predicted by our on-line learing rule in Eq.
20, we plotted in Fig. 2 the postsynaptic factor Bpost and the correlation term Cj

that both appear on the right-hand side of Eq. 20 together with the induced weight
change ∆w/w as a function of time. Indeed, the learning rule predicts positive
weight changes when the presynaptic spike occurs 10 ms before the postsynaptic
one and negative weight changes under reversed timing.

For a comparison with experimental results, we used sixty pairs of pre- and
postsynaptic spikes applied at a frequency of 1Hz and recorded the total change
∆w in EPSP amplitude. The experiment is repeated with different spike timings
and the result is plotted as a function of spike timing difference tpre − tpost. As in
experiments (Markram et al. 1997; Zhang et al. 1998; Bi and Poo 1998; Bi and Poo
2001; Sjöström et al. 2001), we find that synapses are potentiated if presynaptic
spikes occur about 10 ms before a postsynaptic action potential, but are depressed
if the timing is reversed. Compared to synapses with amplitudes in the range of 1 or
2 mV, synapses which are exceptionally strong show a reduced effect of potentiation
for pre-before-post timing, or even depression (Fig. 3A and B), in agreement with
experiments on cultured hippocampal neurons (Bi and Poo 1998). The shape of
the STDP function depends only weakly on the stimulation frequency (Fig. 3C),
even though a significant reduction of the potentiation amplitude with increasing
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frequency can be observed.
In a recent experimental study (Froemke et al. 2005) a strong correlation be-

tween the time scale of EPSP suppression (which was found to depend on dendritic
location) and the duration of the LTD part in the STDP function were observed.
Since our model neuron had no spatial structure, we artificially changed the time
constant of EPSP suppression in the model equations. We found that indeed only
the LTD part of the STDP function was affected whereas the LTP part remained
unchanged (Fig. 3D).

In order to study the influence of the weight-dependent cost term Ψ in our opti-
mality criterion L, we systematically changed the parameter λ in Eq. (3). For λ = 0
the weight-dependent cost term has no influence and, because the postsynaptic firing
rate is close to the desired rate, synaptic plasticity in our model is mainly controlled
by information maximization. In this case, synapses with a resonable EPSP am-
plitude of one or a few millivolt are always strengthened, even for post-before-pre
timing (Fig. 3D, dashed line). This can be intuitively understood since an increase
of synaptic weight is always beneficial for information transmission except if spike
arrival occurs immediately after a postsynaptic spike. In this case, the postsynaptic
neuron is insensitive so that no information can be transmitted. Nevertheless, infor-
mation transmission is maximal in a situation where the presynaptic spike occurs
just before the postsynaptic one. The weight-dependent cost term derived from pos-
tulate C is essential to shift the dashed line in Fig. 3D to negative values so as to
induce synaptic depression in our STDP paradigm. The optimal value of λ = 0.026
that ensures that for large spike timing differences |tpre − tpost| neither potentiation
nor depression occurs, has been estimated from a simple analytical argument (see
appendix A).

Both unimodal and bimodal synapse distributions are stable

Under random spike arrival with a rate of 10Hz at all 100 synapses, synaptic
weights show little variability with a typical EPSP amplitude in the range of 0.4 mV.
This unspecific pattern of synapses stays stable even if 20 out of the 100 synapses are
subject to a common rate modulation between 1 and 30Hz (Fig. 4A). However, if
modulation of presynaptic firing rates becomes strong, the synapses develop rapidly
a specific pattern with large values of weights at synapses with rate-modulated spike
input and weak weights at those synapses that received input at fixed rates (synaptic
specialization, see Fig. 4A and B), making the neuron highly selective to input at one
group of synapses (input selectivity). Thus, our synaptic update rule is capable of
selecting strong features in the input, but does also allow a stable unspecific pattern
of synapses in case of weak input. This is in contrast to most other Hebbian learning
rules, where unspecific patterns of synapses are unstable so that synaptic weights
move spontaneously towards their upper or lower bounds (Miller et al. 1989; Miller
and MacKay 1994; Gerstner et al. 1996; Kempter et al. 1999; Song et al. 2000).

After induction of synaptic specialization by strong modulation of presynaptic
input, we reduced the rate modulation back to the value that previously led to
an unspecific pattern of synapses. We found that the strong synapses remained
strong and weak synapses remained weak, i.e., synaptic specialization was stable
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Figure 4: Potentiation and depression depend upon the presynaptic firing rate. 20 synapses of

group 1 receive input with common rate modulation while the 80 synapses of group 2 (synapse

index 21 - 100) receive Poisson input at a constant rate of 10Hz. The spike arrival rate in group

1 switches stochastically every 200ms between a low rate νl = 1Hz and a high rate νh taken as

a parameter. (a) Evolution of synaptic weights as a function of time for different amplitudes of

rate modulation, that is νh changes from 10Hz during the first hour to 30 Hz, then to 50 Hz,

30 Hz, and back to 10 Hz. During the first two hours of stimulation, an unspecific distribution

of synapses remains stable even though a slight decrease of weights in group 2 can be observed

when the stimulus switches to νh = 30Hz. A specialization of the synaptic pattern with large

weights for synapses in group 1 is induced during the third hour of stimulation and remains stable

thereafter. (b) Top: Mean synaptic weights (same data as in A) of group 1 (w̄1, solid line) and

group 2 (w̄2, dashed line). Bottom: The stimulation paradigm, νh as a function of time. Note that

at νh = 30Hz (2nd and 4th hour of stimulation) both an unspecific pattern of synapses with little

difference between w̄1 and w̄2 (2nd hour, top) and a highly specialized pattern (4th hour, top, large

difference between solid and dashed lines) are possible. (c) The value of the objective function L

(average value per second of time) in gray code as a function of the mean synaptic weight in group

1 (y-axis, w̄1) and group 2 (x-axis, w̄2) during stimulation with νh = 30Hz. Two maxima can

be perceived, i.e., a broad maximum for the unspecific synapse pattern (w̄2 ≈ w̄1 ≈ 0.4mV) and

a pronounced elongated maximum for the specialized synapses pattern (w̄1 ≈ 0; w̄2 ≈ 0.8mV).

The dashed line indicates a 1-dimensional section (see d) through the two-dimensional surface. (d)

Objective function L as a function of the difference w̄2 − w̄1 between the mean synaptic weights

in groups 2 and 1 along the line indicated in c. For νh = 30Hz (dashed, same data as in c) two

maxima are visible, i.e., a broad maximum at w̄2 − w̄1 ≈ 0 and a narrow, but higher maximum

corresponding to the specialized synapse pattern to the very left of the graph. For νh = 50Hz

(dotted line), the broad maximum at w̄2 − w̄1 ≈ 0 disappears and only the specialized synapse

pattern remains whereas for νh = 10Hz (solid line) the broad maximum of the unspecific synapse

pattern dominates.
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against a change in the input (Fig. 4B). This result shows that synaptic dynamics
exhibits hysteresis which is an indication of bistability: for the same input, both
an unspecific pattern of synapses and synaptic specialization are stable solutions of
synaptic plasticity under our learning rule. Indeed under rate-modulation between
1 and 30 Hz for 20 out of the 100 synapses, the objective function L shows two local
maxima (Fig. 4C), a sharp maximum corresponding to synaptic specialization (mean
EPSP amplitude about 0.8mV for synapses receiving rate-modulated input and less
than 0.1 mV for synapses receiving constant input) and a broader, but slightly lower
maximum where both groups of synapses have a mean EPSP amplitude in the range
of 0.3-0.5mV; see appendix B for details of method. In additional simulations we
confirmed that both the unspecific pattern of synapses and the selective pattern
representing synaptic specialization remained stable over several hours of continued
stimulation with rate modulated input (data not shown). Bistability of selective and
unspecific synapse patterns was consistently observed for rates modulated between 1
and 10Hz or between 1 and 30Hz, but the unspecific synapse pattern was unstable if
the rate was modulated between 1 and 50Hz consistent with the weight-dependence
of our objective function L (Fig. 4D).

Retention of synaptic memories

In order to study synaptic memory retention with our learning rule, we induced
synaptic specialization by stimulating 20 out of the 100 synapses by correlated spike
input (spike-spike correlation index c = 0.2, see Section 2 for details). The remaining
80 synapses received uncorrelated Poisson spike input. The mean firing rate (10Hz)
was identical at all synapses. After 60 minutes of correlated input at the group of
20 synapses the stimulus was switched to uncorrelated spike input at the same rate.
We studied how well synaptic specialization was maintained as a function of time
after induction (Fig. 5A and B).

Synaptic specialization was defined by a bimodality index that compared the
distribution of EPSP amplitudes at synapses that received correlated input with
those receiving uncorrelated input. For each of the two groups of synapses, we cal-
culated the mean w̄ = 〈w〉 and the variance σ2 = 〈[wj − w̄]2〉 i.e., w̄A and σ2

A for
the group of synapses receiving correlated input and , w̄B and σ2

B for those receiv-
ing uncorrelated input. We then approximated the two distributions by Gaussian
functions. The bimodality index depends on the overlap between the two Gaussians

and is given by b = 0.5
[

erf
(

w̄A−ŝ√
2σA

)

+ erf
(

ŝ−w̄B√
2σB

)]

where erf(x) = 2√
π

∫ x

0
exp(−t2)dt

is the error function and ŝ is one of the two crossing points of the two Gaussians
such that w̄B < ŝ < w̄A.

The two distributions (i.e., strong and weak synapses) started to separate within
the first 5 minutes, and remained well separated even after the correlated memory-
inducing stimulus was replaced by a random stimulus (Fig. 5B).

In order to study how synaptic memory retention depended on the induction
paradigm, the experiment was then repeated with different values of the correlation
index c that characterizes the spike-spike correlations during the induction period.
For correlations c < 0.1 the two synaptic distributions are not well separated at
the end of the induction period (bimodality index < 0.9), but well separated for
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Figure 5: Synaptic memory induced by input with spike-spike correlations. (a)
Evolution of 100 synaptic weights (vertical axis) as a function of time. During the
first 60 minutes, synapses of group A (j = 1, . . . , 20) receive a Poisson stimulation of
10 Hz with correlated spike input (c = 0.2) and those of group B (j = 21, . . . , 100)
receive uncorrelated spike input at 10 Hz. (b) Distribution of the EPSP amplitudes
across the 100 synapses after t = 5 min. (dotted line), t = 60 min. (solid line)
and t = 120 min. (dot-dashed line). The thick lines denote group A while the blue
ones group B. (c) Mean EPSP amplitude of group A (solid line) and B (dashed line)
at t = 60 min. for different values of correlation c of the input applied to group
A. (d) Bimodality index b of the two groups of weights as a function of time. The
memory induction by correlated spike input to group B stops at t = 60min. Memory
retention is studied during the following 60 minutes. A bimodality index close to one
implies as for the case with c = 0.2 implies that synaptic memory is well retained.
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hours (only the first hour is plotted in Fig. 5D).
The long duration of synaptic memory in our model can be explained by the

reduced adaptation speed of synapses with weights close to zero (postulate C2).
If weak synapses change only slowly because of reduced adaptation speed, strong
synapses must stay strong because of homeostatic processes that keep the mean
activity of the postsynaptic neuron close to a target value. Moreover, the terms in
the online learning rule derived from information maximization favor the bimodal
distribution. Reduced adaptation speed of weak synapses could be caused by a
cascade of intra-cellular biochemical processing stages with different time constants
as suggested by Fusi et al. (2005). Thus our synaptic update rule allows for retention
of synaptic memories over time scales that are significantly longer than the memory
induction time, as necessary for any memory system. Nevertheless, synaptic memory
in our model will eventually decay if random firing of pre- and postsynaptic neurons
persists, in agreement with experimental results (Abraham et al. 2002; Zhou et al.
2003). We note that in the absence of presynaptic activity, the weights remain
unchanged since the decay of synaptic weights is conditioned on presynaptic spike
arrival; see Eq. (20).

Receptive field development

Synaptic plasticity is thought to be involved not only in memory (Hebb 1949),
but also in the development of cortical circuits (Hubel and Wiesel 1962; Katz and
Shatz 1996; von der Malsburg 1973; Bienenstock et al. 1982; Miller et al. 1989) and,
possibly, cortical re-organization (Merzenich et al. 1984; Buonomano and Merzenich
1998). To study how our synaptic update rule would behave during development,
we used a standard paradigm of input selectivity (Yeung et al. 2004), which is
considered to be a simplified scenario of receptive field development. Our model
neuron was stimulated by a Gaussian firing rate profile spanned across the 100
input synapses (Fig. 6A). The center of the Gaussian was shifted every 200 ms to
an arbitrarily chosen presynaptic neuron. In order to avoid border effects, neuron
number 100 was considered a neighbor of neuron number 1, i.e., we can visualize
the presynaptic neurons as being located on a ring.

Nine postsynaptic neurons with slightly different initial values of synaptic weights
received identical input from the same set of 100 presynaptic neurons. During
one hour of stimulus presentation, six out of the nine neurons developed synaptic
specialization leading to input selectivity. The optimal stimulus for these six neurons
varies (Fig. 6B and C), so that any Gaussian stimulus at an arbitrary location excites
at least one of the postsynaptic neurons. In other words, the six postsynaptic
neurons have developed input selectivity with different but partially overlapping
receptive fields. The distribution of synaptic weights for the selective neurons is
bimodal with a first peak for very weak synapses (EPSP amplitudes less than 0.1
mV) and a second peak around EPSP amplitudes of 0.6 mV (Fig. 6D); the amplitude
distribution of the unselective neurons is broader with a single peak at around
0.4mV.

The number of postsynaptic neurons showing synaptic specialization depends
on the total stimulation time and the strength of the stimulus. If the stimulation
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Figure 6: The synaptic update rule leads to input selectivity of the postsynaptic
neuron. (a) Gaussian firing rate profile across the 100 presynaptic neurons. The
center of the Gaussian is shifted randomly every 200 ms. Presynaptic neurons fire
stochastically and send their spikes to nine postsynaptic neurons. (b) Evolution of
synaptic weights of the nine postsynaptic neurons. Some neurons become specialized
for a certain input pattern at the early phase of learning, others become specialized
later, and the last three neurons have not yet become specialized. Since the input
spike trains are identical for all the nine neurons, the specialization is due to noise in
the spike generator of the postsynaptic neurons. (c) Final synaptic weight values of
the nine output neurons after 1 hour of stimulus presentation. (d) The distribution
of EPSP amplitudes after 1 hour of stimulation for (top) the specialized output
neurons 1, 2, . . . , 6; (middle) for non-specialized neurons 7, 8, 9; (bottom) for all nine
output neurons.
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time is extended to 3 hours instead of 1 hour, all postsynaptic neurons become
selective using the same stimulation parameters as before. However, if the maximal
presynaptic firing rate at the center of the Gaussian is reduced to 40 Hz instead of
50 Hz only six out of nine are selective after three hours of stimulation; and with
a further reduction of the maximal rate to 30 Hz only a single neuron is selective
after 3 hours of stimulation (data not shown). We hypothesize that the coexistence
of unselective and selective neurons during development could explain the broad
distribution of EPSP amplitudes seen in some experiments (e.g. (Sjöström et al.
2001) in rat visual cortex). For example, if we sample the synaptic distribution
across all 9 postsynaptic cells we find the distribution shown at the bottom of Fig.
6D. If the number of unspecific neurons were higher, the relative importance of
synapses with EPSP amplitudes of less than 0.1 mV would diminish. If the number
of specialized neurons increased, the distribution would turn into a clearcut bimodal
one which would be akin to sampling an ensemble of two-state synapses with all-
or-none potentiation on a synapse-by-synapse basis ((Petersen et al. 1998) in rat
hippocampus).

4 Discussion

What can we and what can we not expect from optimality models?

Optimality models can be used to clarify concepts, but they are unable to make
specific predictions about molecular implementations. In fact, the synaptic update
rule derived in this paper shares functional features with STDP and classical LTP,
but it is blind with respect to interesting questions such as the role of NMDA,
Kainate, endocannabinoid, or CaMKII in the induction and maintenance of poten-
tiation and depression (Bliss and Collingridge 1993; Bortolotto et al. 2003; Frey
and Morris 1997; Lisman 2003; Malenka and Nicoll 1993; Sjöström et al. 2004). If
molecular mechanisms are in the focus of interest, detailed ‘mechanistic’ models of
synaptic plasticity (Senn et al. 2001; Yeung et al. 2004) should be preferred. On
the other hand, the mere fact that similar forms of LTP or LTD seem to be imple-
mented across various neural systems by different molecular mechanisms leads us to
speculate that common functional roles of synapses are potentially more important
for understanding synaptic dynamics than the specific way that these functions are
implemented.

Ideally, optimality approaches such as the one developed in this paper should be
helpful to put seemingly diverse experimental or theoretical results into a coherent
framework. We have listed in the introduction a couple of points, partially linked to
experimental results, partially linked to earlier theoretical investigations. Our aim
has been to connect these points and trace them back to a small number of basic
principles. Let us return to our initial list and discuss the points in light of the
results of the preceding section.

Correlations.
Hebb postulated an increase in synaptic coupling in case of repeated co-activation

of pre- and postsynaptic neurons as a useful concept for memory storage in recurrent
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networks (Hebb 1949). In our optimality framework defined by Eq. (3) correlation
dependent learning is not imposed explicitly but arises from the maximization of in-
formation transmission between pre- and postsynaptic neurons. Indeed, information
transmission is only possible if there are correlations between pre- and postsynaptic
neurons. Information transmission is maximized if these correlations are increased.
Gradient ascent of the information term hence leads to a synaptic update rule that
is sensitive to correlations between pre- and postsynaptic neurons; see Eq. (20).
An increase of synaptic weights enhances these correlations and maximizes informa-
tion transmission. We emphasize that, in contrast to Hebb (1949) we do not invoke
memory formation and recall as a reason for correlation dependence, but information
transmission. Similar to other learning rules (Linsker 1986; Oja 1982), the sensitiv-
ity of our update rule to correlations between pre- and postsynaptic neurons gives
the synaptic dynamics a sensitivity to correlations in the input as demonstrated in
Figs. 4 – 6.

Input selectivity.
During cortical development, cortical neurons develop input selectivity typically

quantified as the width of receptive fields (Hubel and Wiesel 1962). As illustrated in
the scenario of Fig. 6, our synaptic update rule shows input selectivity and stands
hence in the research tradition of many other studies (von der Malsburg 1973; Bi-
enenstock et al. 1982; Miller et al. 1989). Input selectivity in our model arises
through the combination of the correlation sensitivity of synapses discussed above
with the homeostatic term D in Eq. (3) (Toyoizumi et al. 2005). Since the home-
ostatic term keeps the mean rate of the postsynaptic neuron close to a target rate,
it leads effectively to a normalization of the total synaptic input similar to the slid-
ing threshold mechanism in the Bienenstock-Cooper-Munro rule (Bienenstock et al.
1982). Normalization of the total synaptic input through firing rate stabilization
has also been seen in previous STDP models (Song et al. 2000; Kempter et al.
1999; Kempter et al. 2001). Its effect is similar to explicit normalization of synap-
tic weights which is a well-known mechanism to induce input selectivity (von der
Malsburg 1973; Miller and MacKay 1994), but our model does not need an explicit
normalization step. So far we studied only a single or a small number of independent
postsynaptic neurons, but we expect that, as in many other studies, e.g., (Erwin
et al. 1995; Song and Abbott 2001; Cooper et al. 2004), our synaptic update rule
would yield feature maps if applied to a network of many weakly interacting cortical
neurons.

Unimodal versus bimodal synapse distributions.
In several previous models of rate-based or spike-timing based synaptic dynamics,

synaptic weights evolved always towards a bimodal distribution with some synapses
close to zero and others close to maximal weight (Miller et al. 1989; Miller and
MacKay 1994; Kempter et al. 1999; Song and Abbott 2001; Toyoizumi et al. 2005).
Thus synapses specialize on certain features of the input, even if the input has weak
or no correlation at all which seems questionable from a functional point of view
and which disagrees with experimentally found distributions of EPSP amplitudes in
rat visual cortex (Sjöström et al. 2001). As shown in Figs. 4 — 6, an unspecific
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pattern of synapses with a broad distribution of EPSP amplitudes is stable with our
synaptic update rule if correlations in the input are weak. Synaptic specialization
(bimodal distribution) develops only if synaptic inputs show a high degree of corre-
lations, either on the level of spikes or firing rates. Thus neurons only specialize on
highly significant input features, and not in response to noise. A similar behavior
was noted in two recent models on spike-timing dependent plasticity (Gütig et al.
2003; Yeung et al. 2004). Going beyond those studies, we also demonstrated sta-
bility of the specialized synapse distribution over some time, even if the amount of
correlation through rate-modulation is reduced after induction of synaptic special-
ization stimulation (Fig. 4). Thus, for the same input characteristics our model
can show unimodal or bimodal distribution of synaptic weight, depending on the
stimulation history. Moreover, we note that in the state of bimodal distribution, the
EPSP amplitude at the depressed synapses are so small, that in an experimental
setting they could easily remain undetected or classified as ‘silent’ synapse (Kull-
mann 2003). A large proportion of silent synapses has been previously shown to
be consistent with optimal memory storage (Brunel et al. 2004). Furthermore, our
results show that in a given population of cells, neurons with specialized synapses
can coexist with others that have a broad and unspecific synapse distribution. We
speculate that these non-specialized neurons could then be recruited later for new
stimuli, as hypothesized in earlier models of neural networks (Grossberg 1987).

Synaptic memory.
In the absence of presynaptic input, synapses in our model do not change signif-

icantly. Furthermore, our results show that even in the presence of random pre- and
postsynaptic firing activity, synaptic memories can be retained over several hours,
even though a slow decay occurs. Essential for long-term memory maintenance un-
der random spike arrival is the reduced adaptation speed for small values of synaptic
weights as formulated in postulate C2. This postulate is similar in spirit to a recent
theory of Fusi et al. (2005), with two important differences. Firstly, we work with
a continuum of synaptic states (characterized by the value of w) whereas Fusi et al.
assume a cascade of a finite number of discrete internal synaptic states where tran-
sitions are uni-directional and characterized by different time constants (Fusi et al.
2005). The scheme of Fusi et al. guarantees slow (i.e., not exponential) decay of
memories, whereas in our case decay is always exponential even if the time constant
is weight-dependent. Secondly, Fusi et al. use a range of different time constants for
both the potentiated and the unpotentiated state, whereas in our model it is suffi-
cient to have a slower time constant for the unpotentiated state only. If the change
of unpotentiated synapses is slow compared to homeostatic regulation of mean firing
rate, then the maintenance of the strong synapses is given by homeostasis (and also
supported by information maximization).

The fact that our model has been formulated in terms of a continuum of synaptic
weights was for convenience only. Alternatively it is conceivable to define a number
of internal synaptic states that give rise to binary, or a small number of, synaptic
weight values (Fusi 2002; Fusi et al. 2005; Abarbanel et al. 2005). The actual
number of synaptic states is unknown with conflicting evidence (Petersen et al.
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1998; Lisman 2003).
Rate dependence.
Our results show that common rate modulation in one group of synapses strength-

ens these synapses if the modulation amplitude is strong enough. In contrast, an
increase of rates to a fixed value of 40 Hz (without modulation) in one group of
synapses while another group of synapses receives background firing at 10 Hz does
not lead to a synaptic specialization, but only to a minor readjustment of weights
(data not shown). For a comparison with experimental results it is important to note
that rate dependence is typically measured with extracellular stimulation of presy-
naptic pathways. We assimilate repeated extracelluar stimulation with a strong and
common modulation of spike arrival probability at one group of synapses (as opposed
to an increased rate of a homogeneous Poisson process). Under this interpretation,
our results are qualitatively consistent with experiments.

STDP.

Our results show that our synaptic update rule shares several features with STDP
as found in experiments (Markram et al. 1997; Bi and Poo 1998; Bi and Poo 2001;
Sjöström et al. 2001). The time scale of the potentiation part of the STDP function
depends in our model on the duration of EPSPs. The time scale of the depression
part is determined by the duration of EPSP suppression in agreement with experi-
ments (Froemke et al. 2005). Our model shows that the relative importance of LTP
and LTD depend on the initial value of the synaptic weight in a way similar to that
found in experiments (Bi and Poo 1998). However, for EPSP amplitudes between
0.5 and 2 mV the LTP part clearly dominates over LTD in our model which seems
to have less experimental support. Also, the frequency dependence of STDP in our
model is less pronounced than in experiments.

Models of STDP have previously been formulated on a phenomenological level
(Gerstner et al. 1996; Song et al. 2000; Gerstner and Kistler 2002) or on a molecular
level (Lisman 2003; Senn et al. 2001; Yeung et al. 2004). Only recently models
derived from optimality concepts have moved into the center of interest (Toyoizumi
et al. 2005; Toyoizumi et al. 2005a; Bohte and Mozer 2005; Chechik 2003). There
are important differences of the present model to the existing ‘optimal’ models.
Chechik (2003) used information maximization, but limited his approach to static
input patterns, while we consider arbitrary inputs. Bell and Parra (2005) minimize
output entropy and Bohte and Mozer (2005) maximize spike reliability whereas
we maximize the information between full input and output spike trains. None
of these studies considered optimization under homeostatic and maintenance cost
constraints.

After we had introduced the homeostatic constraint in a previous study which
gave rise to a learning rule with several interesting properties (Toyoizumi et al.
2005), we realized that this model did not exhibit properties of STDP in an in vitro
situation without some additional assumptions. Indeed, as shown in Fig. 3D, the
STDP function derived from information maximization alone exhibits no depression
in the absence of an additional weight-dependent cost term in the optimality func-
tion. The weight-dependent cost term introduced in this paper plays hence a crucial
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role in STDP since it shifts the STDP function to more negative values.
How realistic is a weight-dependent cost term?

The weight-dependent cost term Ψ in the optimality criterion L depends quadrat-
ically on the value of the weights of all synapses converging onto the same postsy-
naptic neuron. This turns out to be equivalent to a ‘decay’ term in the synaptic
update; see last term on the right-hand side of Eq. (20). Such decay terms are
common in the theoretical literature (Bienenstock et al. 1982; Oja 1982), but the
question is whether such a decay term (leading to a slow depression of synapses) is
realistic from a biological point of view.

We emphasize that the decay term in our synaptic update rule is proportional to
presynaptic activity. Thus, in contrast to existing models in the theoretical literature
(Bienenstock et al. 1982; Oja 1982), a synapse which receives no input is protected
against slow decay. The specific form of the ‘decay’ term considered in this paper
was such that synaptic weights decreased with each spike arrival, but presynaptic
activity could also be represented in the decay term by the mean firing rate rather
than spike arrival, with no qualitative changes to the results.

An important aspect of our cost term is that only synapses that have recently
been activiated are at risk regarding weight decay. We speculate that the weight-
dependent cost term could, in a loose sense, be related to the amount of plasticity
factors that synapses require and compete for during the first hours of synaptic
maintenance (Fonseca et al. 2004). According to the synaptic tagging hypothesis
(Frey and Morris 1997), only those synapses that have been activated in the recent
past compete for plasticity factors, while unpotentiated synapses do not suffer from
decay (Fonseca et al. 2004). We emphasize that such a link of our cost term to the
competetion for plasticity factors is purely hypothetical. Many relevant details of
tagging and competition for synaptic maintenance are omitted in our approach.

Predictions and experimental tests.
In order to achieve synaptic memory that is stable over several hours, the reduced

adaptation speed for weak synapses formulated in postulate C2 turns out to be
essential. Thus an essential assumption of our model is testable: for synapses with
extremely small EPSP amplitudes, in particular ‘silent synapses’, the induction of
both LTP and LTD should require stronger stimulation or stimulation sustained
over longer times, compared to synapses that are of average strength. This aspect
is distinct from other models (Gütig et al. 2003) which postulate for weak synapses
a reduced adaptation speed for depression only, but maximal effect of potentiation.
Thus, comparison of LTP induction for silent synapses (Kullmann 2003) with that
for average synapses should allow to differentiate between the two models. In an
alternative formulation, synaptic memory could also be achieved by making strong
synapses resist to further changes. As an aside we note that the model of Fusi et al.
(2005) assumes a reduced speed of transition between several internal synaptic states
so that transition would not necessarily be visible as a change in synaptic weight.

A second test of our model concerns the pattern of synaptic weights converging
on the same postsynaptic neuron. Our results suggest that early in development
most neurons would show an unspecific synapse pattern, i.e., a distribution of EPSP
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amplitudes with a single, but broad peak whereas later a sizeable fraction of neurons
would show a pattern of synaptic specialization with some strong synapses and many
silent ones, i.e., a bimodal distribution of EPSP amplitudes. Ideally the effect would
be seen by scanning all the synapses of individual postsynaptic neurons; it remains to
be seen if modern imaging and staining methods will allow to do this. Alternatively,
by electrophysiological methods, distributions of synaptic strengths could be built
up by averaging over many synapses on different neurons (Sjöström et al. 2001). In
this case, our model would predict that during development the histogram of EPSP
amplitudes would change in two ways (Fig. 6D): (i) the number of silent synapses
increases so that the amplitude of the sharp peak at small EPSP amplitude grows;
and (ii) the location of the second, broader, peak shifts to larger values of the EPSP
amplitudes. Furthermore, and in contrast to other models where the unimodal
distribution is unstable, the transition to a bimodal distribution depends in our
model on the stimulation paradigm.

Limitations and extensions

We would like to emphasize that properties of our synaptic update rules have
so far only been tested for single neurons in an unsupervised learning paradigm.
Extensions are possible in several directions. Firstly, instead of single neurons, a
large recurrent network could be considered. This could on one side further our
understanding of the model properties in the context of cortical map development
(Erwin et al. 1995), on the other side scrutinize the properties of the synaptic update
rule as a functional memory in recurrent networks (Amit and Fusi 1994). Secondly,
instead of unsupervised learning where the synaptic update rule treats all stimuli
alike whether they are behaviorally relevant or not, a reward-based learning scheme
could be considered (Dayan and Abbott 2001; Seung 2003). Behaviorally relevant
situations can be taken into account by optimizing reward instead of information
transmission (Schultz et al. 1997).
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A Determination of the Parameter λ

The parameter λ is set to give ∆wj = 0 for large enough |tpre− tpost| in an simulated
STDP in vitro paradigm. In order to find the appropriate value of λ, we separately
consider the effects of a presynaptic spike and a postsynaptic one - which is possible
since they are assumed to occur at a large temporal distance. Since a postsynaptic
spike alone does not change synaptic strength (Cj(t) = 0, always), we choose a λ
that gives no synaptic change when a presynaptic spike alone is induced. For a given
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presynaptic spike at tfj , we have

Cj(t) = −g

∫ t

0

ε(t′ − tfj )e
−(t−t′)/τmdt′

= −g
τCτm

τC − τm

[

e−(t−tf
j
)/τC − e−(t−tf

j
)/τm

]

. (22)

Since ρ̃ ≈ ρr, and ρ̄ ≈ ρr in this in vitro setting, the factor Bpost in Eq. (14) is
approximated as

Bpost(t) ≈ −wjge−(t−tfj )/τm . (23)

Hence, we find the effect of a presynaptic spike as

∆w =

∫ T

0

dwj

dt
dt = wjg

2 τCτm

τC − τm

[

τCτm

τC + τm
−

τm

2

]

− λwj. (24)

The condition of no synaptic change gives λ = g2 τmτC

τC−τm

(

τmτC

τm+τC
− τm

2

)

. We used this

λ in the numerical code.

B Weight Dependent Evaluation of the Optimal-

ity Criterion

In Fig. 4 C and D the optimality criterion has been evaluated as a function of
some artifical weight distribution. Specifically, values of synaptic weights have been
chosen stochastically from two Gaussian distributions with mean w̄1 and standard
deviation σ1 for group 1 and w̄2 and σ2 for group 2. In order to account for differences
in standard deviations due to the weight-dependent update rate α(w), we chose
σ(w̄) = 0.1mV · w̄4/(w4

s + w̄4) which gives a variance of synaptic weights in both
groups which is consistent with the variance seen in Fig. 4A.

For a fixed set of synaptic weight values, the network is simulated during a trial
time of 30 minutes while the synaptic updated rule has been turned off and the
objective function L defined in Eq. (3) is evaluated using ρ̄est from Eq. (21). The
result is divided by the trial time t and plotted in Fig. 4 C and D in units of s−1.
The mesh size of mean synaptic strength is 0.04 mV. The one dimensional plot in
Fig. 4 D is taken along the direction w̄2 = 0.8 mV − w̄1.
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Sjöström, P. and S. Nelson (2002). Spike timing, calcium signals and synaptic plasticity. Current
Opinion in Neurobiology 12, 305–314.
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2.6 Paper VI

Summary

We have seen in the first five papers different learning rules that maximize a given objective

function that should capture the functional role of the synapse. They can be classified as

optimal models of STDP (see section 1.2.3). The approach in this paper (and in the next one)

is different. The goal is not to determine the functional role of the synapse, but to develop a

phenomenological model (see section 1.2.1) which is as simple as possible, but captures most

of the experimental results of STDP.

Most of the actual phenomenological models about STDP only consider the effect of

spike pairs (one pre- and one postsynaptic spike) (Gerstner et al. 1996; Kempter et al. 1999;

Song et al. 2000; Gütig et al. 2003). Here, we present a learning rule that also takes into

account the effect of triplets of spike, i.e. 1 pre and 2 postsynaptic spikes. With this triplet

learning rule, it is possible to fit the data of Sjöström, Turrigiano, and Nelson (2001) which

could not be fitted by simple pair-based learning rules. Moreover, we show a link between

the triplet learning rule and the BCM learning rule.

With this latter property, the triplet learning rule is not only a phenomenological learning

rule, but could also be classified as an optimal learning rule in the sense that it maximizes

the input selectivity (see definition of selectivity in section 1.2.3).

In this paper, we also discuss the implications of the type of interactions between spikes.

Indeed, if a presynaptic spike interacts only with the previous one (see the Nearest-Past-Spike

interactions on Fig. 1.3 of section 1.2.1) instead of interacting with all the previous ones (All-

to-All), it induces some non-linearities that can be useful (or harmful) for data fitting. For

the experimental data we consider here, both interaction schemes are possible.
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Abstract

While classical experiments on spike-timing dependent plasticity ana-
lyzed synaptic changes as a function of the timing ofpairs of pre- and
postsynaptic spikes, more recent experiments also point tothe effect of
spike triplets. Here we develop a mathematical framework that allows
us to characterize timing based learning rules. Moreover, we identify a
candidate learning rule with five variables (and 5 free parameters) that
captures a variety of experimental data, including the dependence of po-
tentiation and depression upon pre- and postsynaptic firingfrequencies.
The relation to the Bienenstock-Cooper-Munro rule as well as to some
timing-based rules is discussed.

1 Introduction

Most experimental studies of Spike-Timing Dependent Plasticity (STDP) have focused on
the timing of spike pairs [1, 2, 3] and so do many theoretical models. The spike-pair
based models can be divided into two classes: either all pairs of spikes contribute in a
homogeneous fashion [4, 5, 6, 7, 8, 9, 10] (called ‘all-to-all’ interaction in the following)
or only pairs of ‘neighboring’ spikes [11, 12, 13] (called ‘nearest-spike’ interaction in the
following); cf. [14, 15]. Apart from these phenomenological models, there are also models
that are somewhat closer to the biophysics of synaptic changes [16, 17, 18, 19].

Recent experiments have furthered our understanding of timing effects in plasticity and
added at least two different aspects: firstly, it has been shown that the mechanism of po-
tentiation in STDP is different from that of depression [20]and secondly, it became clear
that not only the timing of pairs, but also of triplets of spikes contributes to the outcome of
plasticity experiments [21, 22].

In this paper, we introduce a learning rule that takes these two aspects partially into account
in a simple way. Depression is triggered bypairs of spikes withpost-before-pre timing,
whereas potentiation is triggered bytriplets of spikes consisting of 1 pre- and 2 postsynaptic
spikes. Moreover, in our model the pair-based depression includes an explicit dependence
upon the mean postsynaptic firing rate. We show that such a learning rule accounts for two
important stimulation paradigms:

P1 (Relative Spike Timing): Both the pre- and postsynaptic spike trains consist of a burst
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of N spikes at regular intervals T , but the two spike trains are shifted by a time ∆t =
tpost − tpre.

The total weight change is a function of the relative timing∆t (this gives the standard
STDP function), but also a function of the firing frequencyρ = 1/T during the burst; cf.
Fig. 1A (data from L5 pyramidal neurons in visual cortex).

P2 (Poisson Firing): The pre- and postsynaptic spike trains are generated by two indepen-
dent Poisson processes with rates ρx and ρy respectively.

Protocol P2 has less experimental support but it helps to establish a relation to the
Bienenstock-Cooper-Munro (BCM) model [23]. To see that relation, it is useful to plot
the weight change as a function of the postsynaptic firing rate, i.e.,∆w ∝ φ(ρy) (cf. Fig
1B). Note that the functionφ has only been measured indirectly in experiments [24, 25].

We emphasize that in the BCM model,

∆w = ρxφ(ρy, ρ̄y) (1)

the functionφ depends not only on the current firing rateρy, but also on themean firing rate
ρ̄y averaged over the recent past which has the effect that the threshold between depression
and potentiation is not fixed but dynamic. More precisely, this thresholdθ depends non-
linearly on the mean firing ratēρy:

θ = αρ̄p
y, p > 1 (2)

with parametersα andp. Previous models of STDP have already discussed the relation
of STDP to the BCM rule [16, 12, 17, 26], but none of these seemsto be completely
satisfactory as discussed in Section 4. We will also compareour results to the rule of [21]
which was together with the work of [16] amongst the first triplet rules to be proposed.
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〈ẇ
〉

[m
s−

1
]

ρy [Hz]

Figure 1:A. Weight change in an experiment on cortical synapses using pairing protocol (P1) (solid
line: ∆t = 10 ms, dot-dashed line∆t = −10 ms) as a function of the frequencyρ. Figure redrawn
from [11]. B. Weight change in protocol P2 according to the BCM rule forθ = 20, 30, 40 Hz.

2 A Framework for STDP

Several learning rules in the modeling literature can be classified according to the two
criteria introduced above: (i) all-to-all interaction vs.nearest spike interaction; (ii) pair-
based vs. triplet based rules. Point (ii) can be elaborated further in the context of an
expansion (pairs, triplets, quadruplets, ... of spikes) that we introduce now.

2.1 Volterra Expansion (‘all-to-all’)

For the sake of simplicity, we assume that weight changes occur at the moment of presy-
naptic spike arrival or at the moment of postsynaptic firing.The direction and amplitude
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of the weight change depends on the configuration of spikes inthe presynaptic spike train
X(t) =

∑

k δ(t − tkx) and the postsynaptic spike trainY (t) =
∑

k δ(t − tky). With some
arbitrary functionalsF [X,Y ] andG[X,Y ], we write (see also [8])

ẇ(t) = X(t)F [X,Y ] + Y (t)G[X,Y ] (3)

Clearly, there can be other neuronal variables that influence the synaptic dynamics. For
example, the weight change can depend on the current weight valuew [8, 15, 10], the
Ca2+ concentration [17, 19], the depolarization [25, 27, 28], the mean postsynaptic firing
rate ρ̄y(t) [23],. . . . Here, we will consider only the dependence upon the history of the
pre- and postsynaptic firing times and the mean postsynapticfiring rateρ̄y. Note that even
if ρ̄y depends via a low-pass filterτρ ˙̄ρy = −ρ̄y + Y (t) on the past spike trainY of the
postsynaptic neuron, the description of the problem will turn out to be simpler if the mean
firing rate is considered as a separate variable. Therefore,let us write the instantaneous
weight change as

ẇ(t) = X(t)F ([X,Y ], ρ̄y(t)) + Y (t)G([X,Y ], ρ̄y(t)) (4)

The goal is now to determine the simplest functionalsF andG that would be consistent
with the experimental protocolsP1 andP2 introduced above. Since the functionals are
unknown, we perform a Volterra expansion ofF andG in the hope that a small number of
low-order terms are sufficient to explain a large body of experimental data. The Volterra
expansion [29] of the functionalG can be written as1

G([X,Y ]) = Gy
1 +

∫

∞

0

Gxy
2 (s)X(t − s)ds +

∫

∞

0

Gyy
2 (s)Y (t − s)ds

+

∫

∞

0

∫

∞

0

Gxxy
3 (s, s′)X(t − s)X(t − s′)ds′ds

+

∫

∞

0

∫

∞

0

G
xyy
3 (s, s′)X(t − s)Y (t − s′)ds′ds

+

∫

∞

0

∫

∞

0

Gyyy
3 (s, s′)Y (t − s)Y (t − s′)ds′ds + . . . (5)

Similarly, the expansion ofF yields

F ([X,Y ]) = F x
1 +

∫

∞

0

F xx
2 (s)X(t − s)ds +

∫

∞

0

F
xy
2 (s)Y (t − s)ds + . . . (6)

Note that the upper index in functions represents the type ofinteraction. For example,Gxyy
3

(in bold face above) refers to a triplet interaction consisting of 1 pre- and 2 postsynaptic
spikes. Note that theGxyy

3 term could correspond to apre-post-post sequence as well as
a post-pre-post sequence. Similarly the termF xy

2 picks up the changes caused by arrival
of a presynaptic spike after postsynaptic spike firing. Several learning rules with all-to-all
interaction can be classified in this framework, e.g. [5, 6, 7, 8, 9, 10].

2.2 Our Model

Not all term in the expansion need to be non-zero. In fact, in the results section we will
show that a learning rule withGxyy

3 (s, s′) ≥ 0 for all s, s′ > 0 andF xy
2 (s) ≤ 0 for s > 0

and all other terms set to zero is sufficient to explain the results from protocols P1 and P2.
Thus, in our learning rule an isolated pair of spikes in configurationpost-before-pre will
lead to depression. An isolated spike pairpre-before-post, on the other hand, would not be
sufficient to trigger potentiation, whereas a tripletpre-post-post or post-pre-post will do so
(see Fig. 2).

1For the sake of clarity we have omitted the dependence onρ̄y.
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A B

yτ +τ τ −

Figure 2:A. Triplet interaction for LTPB. Pair interaction for LTD.

To be specific, we consider

F xy
2 (s) = −A−(ρ̄y)e

−
s

τ
− and Gxyy

3 (s, s′) = A+e
−

s

τ+ e
−

s
′

τy . (7)

Such an exponential model can be implemented by a mechanistic update involving three
variables (the dot denotes a temporal derivative)

ȧ = −
a

τ+

; if t = tkx then a → a + 1

ḃ = −
b

τ−
; if t = tky then b → b + 1 (8)

ċ = −
c

τy

; if t = tky then c → c + 1

The weight update is then

ẇ(t) = −A−(ρ̄y)X(t)b(t) + A+Y (t)a(t)c(t). (9)

2.3 Nearest Spike Expansion (truncated model)

Following ideas of [11, 12, 13], the expansion can also be restricted to neighboring spikes
only. Let us denote byfy(t) the firing time of the last postsynaptic spike before timet.
Similarly, fx(t′) denotes the timing of the last presynaptic spike precedingt′. With this
notation the Volterra expansion of the preceding section can be repeated in a form that only
nearest spikes play a role. A classification of the models [11, 12, 13] is hence possible.

We focus immediately on the truncated version of our model

ẇ(t) = X(t)F xy
2 (t − fy(t), ρ̄y(t)) + Y (t)Gxyy

3 (t − fx(t), t − fy(t)) (10)

The mechanistic model that generates the truncated versionof the model is similar to Eq. (8)
except that under the appropriate update condition, the variable goes to one, i.e.a → 1, b →
1 andc → 1. The weight update is identical to that of the all-to-all model, Eq. (9).

3 Results

One advantage of our formulation is that we can derive explicit formulas for the total weight
changes induced by protocols P1 and P2.

3.1 All-to-all Interaction

If we use protocol P1 with a total ofN pre- and postsynaptic spikes at frequencyρ shifted
by a time∆t, then the total weight change∆w is for our model with all-to-all interaction

∆w = A+

N−1
∑

k=0

N−1
∑

k′=1

(N − max(k, k′)) exp

(

−
k/ρ + ∆t

τ+

)

exp

(

−
k′

τyρ

)

λk(−∆t)

− A−(ρ̄y)
N−1
∑

k=0

(N − k) exp

(

−
k/ρ − ∆t

τ−

)

λk(∆t) (11)
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whereλk(∆t) = 1− δk0Θ(∆t) with Θ the Heaviside step function. The results are plotted
in Fig. 3 top-left forN = 60 spikes.
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Figure 3:Triplet learning rule. Summary of all results of protocolP1 (left) andP2 (right) for an
all-to-all (top) and nearest-spike (bottom) interaction scheme. For the left column, the upper thick
lines correspond to positive timing (∆t > 0) while the lower thin lines to negative timing. Dashed
line: ∆t = ±2 ms, solid line:∆t = ±10 ms and dot-dashed line∆t = ±30 ms. The error bars
indicate the experimental data points of Fig. 1A. Right column: dashed-lineρ̄y = 8 Hz, solid line
ρ̄y = 10 Hz and dot-dashed linēρy = 12 Hz. Top:τy = 200 ms, bottom:τy = 40 ms.

The mean firing ratēρy reflects the firing activity during the recent past (i.e.before the start
of the experiment) and is assumed as fixed during the experiment. The exact value does not
matter. Overall, the frequency dependence of changes∆w is very similar to that observed
in experiments. IfX andY are independent Poisson process, the protocol P2 gives a total
weight change that can be calculated using standard arguments [8]

〈ẇ〉 = −A−(ρ̄y)ρxρyτ− + A+ρxρ2
yτ+τy (12)

As before, the mean firing ratēρy reflects the firing activity during the recent past and is
assumed as fixed during the experiment. In order to implementa sliding threshold as in the
BCM rule, we takeA−(ρ̄y) = β−ρ̄2

y/ρ2
0 where we setρ0 = 10 Hz. This yields a frequency

dependent thresholdθ(ρ̄y) = β−τ−ρ̄2
y/(A+τ+τyρ2

0). As can be seen in Fig. 3 top-right our
model exhibits all essential features of a BCM rule.

3.2 Nearest Spike Interaction

We now apply protocols P1 and P2 to our truncated rule, i.e. restricted to thenearest-spike
interaction; cf. Eq. (10) where the expression ofF xy

2 andGxyy
3 are taken from Eq. (7). The

weight change∆w for the protocolP1 can be calculated explicitly and is plotted in Fig. 3
bottom-left. For protocolP2 (see Fig. 3 bottom-right) we find

〈ẇ〉 = ρx

(

−
A−(ρ̄y)ρy

ρy + α−

+
A+

ρx + α+

ρ2
y

ρy + αy

)

(13)

whereαy = τ−1
y . If we assume thatρx � αx, Eq. (13) is a BCM learning rule.
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In summary, both versions of our learning rule (all-to-all or nearest-spike) yield a fre-
quency dependence that is consistent with experimental results under protocol P1 and with
the BCM rule tested under protocol P2. We note that our learning rule contains only two
terms, i.e., a triplet term (1 pre and 2 post) for potentiation and apost-pre pair term for
depression. The dynamics is formulated using five variables(a, b, c, ρ̄y, w) and five param-
eters (τ+, τ−, τy, A+, β−). τ+ = 16.8 ms andτ− = 33.7 ms are taken from [14].A+

andβ− are chosen such that the weight changes for∆t = ±10 ms andρ = 20 Hz fit the
experimental data [11].

4 Discussion - Comparison with Other Rules

While we started out developing a general framework, we focused in the end on a simple
model with only five parameters - why, then, this model and notsome other combination
of terms? To answer this question we apply our approach to a couple of other models, i.e.,
pair-based models (all-to-all or nearest spike), triplet-based models, and others.

4.1 STDP Models Based on Spike Pairs

Pair-based models with all-to-all interaction [4, 5, 6, 7, 8, 9, 10] yield under Poisson stim-
ulation (protocol P2) a total weight change that is linear inpresynaptic and postsynaptic
frequencies. Thus, as a function of postsynaptic frequencywe always find a straight line
with a slope that depends on the integral of the STDP function[5, 7]. Thus pair-based
models with all-to-all interaction need to be excluded in view of BCM features of plasticity
[25, 24].
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Figure 4:Pair learning rule in a nearest spike interaction scheme (top) and Froemke-Dan rule (bot-
tom). For the left column, the higher thick lines correspond to positive timing(∆t > 0) while the
lower thin lines to negative timing. Dashed line:∆t = ±2 ms, solid line: ∆t = ±10 ms and
dot-dashed line∆t = ±30 ms. Right column: dashed-linēρy = 8 Hz, solid lineρ̄y = 10 Hz and
dot-dashed linēρy = 12 Hz. The parameters of the F-D model are taken from [21]. The dependence
uponρ̄y has been added to the original F-D rule (A

−
→ β

−
ρ̄2

y/ρ2

0).

A pair-based model with nearest-spike interaction, however, can give a non-linear depen-
dence upon the postsynaptic frequency under protocol P2 with fixed threshold between
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depression and potentation [12]. We can go beyond the results of [12] by adding a suitable
dependence of the parameterA− uponρ̄y which yields a sliding threshold; cf. Fig. 4 top
right.

But even a pair rule restricted to nearest-spike interaction is unable to account for the results
of protocol P1. An important feature of the experimental results with protocol P1 is that
potentiation only occurs above a minimal firing frequency ofthe postsynaptic neuron (cf.
Fig. 1A) whereas pair-based rulesalways exhibit potentiation with pre-before-post timing
even in the limit of low frequencies; cf. Fig. 4 top left. The intuitive reason is that at
low frequency the total weight change is proportional to thenumber ofpre-post pairings
and this argument can be directly transformed into a mathematical proof (details omitted).
Thus, pair-based rules of potentiation (all-to-all or nearest spike) cannot account for results
of protocol P1 and must be excluded.

4.2 Comparison with Triplet-Based Learning Rules

The model of Senn et al. [16] can well account of the results under protocol P1. A classi-
fication of this rule within our framework reveals that the update algorithm generates pair
terms of the formpre-post andpost-pre, as well as triplet terms of the formpre-post-post
andpost-pre-pre. As explained in the previous paragraph, a pair termpre-post generated
potentiation even at very low frequencies which is not realistic. In order to avoid this effect
in their model, Senn et al. included additional threshold values which increased the number
of parameters in their model to 9 [16] while the number of variables is 5 as in our model.
Moreover, the mapping of the model of Senn et al. to the BCM rule is not ideal, since the
sliding threshold is different for each individual synapse[16].

An explicit triplet rule has been proposed by Froemke and Dan[21]. In our framework,
the rule can be classified as a combination of triplet terms for potentiation and depression.
Following the same line or argument as in the preceding sections we can calculate the
total weight change for protocols P1 and P2. The result is shown in Fig. 4 bottom. We
can clearly see that the pairing experimentP1 yields a behavior opposite to the one found
experimentally and the BCM behavior is not at all reproducedin protocol P2.

4.3 Summary

We consider our model as a minimal model to account for results of protocol P1 and P2, but,
of course, several factors are not captured by the model. First, our model has no dependence
upon the current weight value, but, in principle, this couldbe included along the lines
of [10]. Second, the model has no explicit dependence upon the membrane potential or
calcium concentration, but the postsynaptic neuron entersonly via its firing activity. Third,
and most importantly, there are other experimental paradigms that have to be taken care of.

In a recent series of experiments Bi and colleagues [22] havesystematically studied the
effect of symmetric spike triplets (pre-post-pre or post-pre-post) and spike quadruplets
(e.g.,pre-post-post-pre) in hippocampal cultures. While the model presented in this paper
is intended to model the synaptic dynamic for L5 pyramidal neurons in the visual cortex
[11], it is possible to consider a similar model for the hippocampus containing two extra
terms (a pair term for potentiation and and triplet term for depression).
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2.7 Paper VII

Summary

This last paper can be seen as the extension of paper VI. Because our triplet rule fitted

surprisingly well the frequency data of Sjöström et al. (2001), we decided to further test

the idea of triplet learning rule by applying it to different preparations and different brain

regions.

We therefore considered the triplet and quadruplet experiments of Wang et al. (2005)

and fitted our triplet models. We systematically studied the pair and triplet rules for both

an All-to-All and a Nearest-Past-Spike interaction schemes.

The main message of this paper is that triplet learning rules succeed (and pair-based

models fail) to reproduce frequency effects in pairing protocols as well as triplet and quadru-

plet experiments. Moreover, it is possible to reduce the triplet model into a minimal triplet

model (5 parameters) which contains only one extra parameter, when compared to pair-based

models (4 parameters), and fits experimental data almost as well as the full triplet model (8

parameters).

Similarly to paper VI, we show the mapping to the BCM learning rule. Moreover, if

Poisson statistics is assumed for the pre- and postsynaptic neuron and under some conditions,

we show that the averaged triplet learning follows the gradient of an objective function L.

In this way, the phenomenological triplet learning rule can be seen as well as an optimal

learning rule.
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Abstract

Classical experiments on spike-timing dependent plasticity (STDP) use a
protocol based on pairs of pre- and postsynaptic spikes repeated at a given
frequency in order to induce synaptic potentiation or depression. Therefore
standard STDP models have expressed the weight change as a function of
pairs of pre- and postsynaptic spike. Unfortunately, those paired-based STDP
models cannot account for the dependence upon the repetition frequency of
the pairs of spike. Moreover, those STDP models cannot reproduce recent
triplet and quadruplet experiments. Here we examine a triplet rule, i.e. a
rule which considers sets of three spikes (2 pre and 1 post or 1 pre and 2
post) and compare it to classical pair-based STDP learning rules. With such
a triplet rule, it is possible to fit experimental data from visual cortical slices
as well as from hippocampal cultures. Moreover, when assuming stochastic
spike trains, the triplet learning rule can be mapped to a Bienenstock-Cooper-
Munro learning rule.

1
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1 Introduction

During the last decade an increasing number of experiments have shown that synap-
tic strength changes as a function of the precise timing of the pre- and postsynaptic
neurons. In the early experiments (Markram, Lübke, Frotscher, and Sakmann 1997;
Zhang, Tao, Holt, Harris, and Poo 1998; Bi and Poo 1998; Bi and Poo 2001), poten-
tiation has been elicited by a sequence of N pairs of “pre then post” spikes whereas
depression occurred when the timing was reversed i.e. when each postsynaptic spike
precedes a presynaptic one. At this point, it was natural to characterize synaptic
plasticity as a function of the time difference ∆t = tpost − tpre within pairs of spikes.
However performing experiments with pairs of spike does not mean that pairs of
spikes are the elementary building block. There is no a priori reason to think that
pairs of spikes are more relevant than three spikes (triplets), four spikes (quadru-
plets) or even more. It is clear that a lot of other neuronal variables such as calcium
concentration (Malenka, Kauer, Zucker, and Nicoll 1988; Lisman 1989; Lisman and
Zhabotinsky 2001; Shouval, Bear, and Cooper 2002) or postsynaptic membrane po-
tential (Sjöström, Turrigiano, and Nelson 2001; Rao and Sejnowski 2001; Lisman
and Spruston 2005) play an important role in triggering potentiation or depression.
The point of this study is to see how far we can explain experiments that only use
spike timing as a parameter with models that only use spike timing.

Recent experiments (Bi and Wang 2002; Froemke and Dan 2002; Wang, Gerkin,
Nauen, and Bi 2005; Froemke, Tsay, Raad, Long, and Dan 2006) have studied the
detailed role of spike timing by triggering synaptic plasticity with spike triplets (1
presynaptic spike combined with 2 postsynaptic ones or 1 postsynaptic spike with 2
presynaptic spikes). The results of those experiments indicate that a pair rule is not
sufficient to explain synaptic changes triggered by triplets or quadruplets of spikes.

In the first part of this study, we will review some experimental protocols per-
formed in visual cortex and hippocampal culture and show why the classical pair-
based STDP models fail to reproduce those experimental data. The visual cortex
data set (Sjöström, Turrigiano, and Nelson 2001) used in this paper consists of a
standard pairing protocol where the frequency of the pairing has been changed.
We also considered a hippocampal culture data set (Wang, Gerkin, Nauen, and
Bi 2005) which consists of pair, triplet and quadruplet protocols. Since both data
sets disagree on some specific protocols (at low frequency of the pairing protocol,
no potentiation is elicited in Sjöström’s data while a large amount of potentiation
is present in Wang’s data) and since the preparations are different, we fitted our
models with different parameters for each data set.

In the second part of this study, we will show that if we assume that synaptic
plasticity is governed by a suitable combination of pairs and triplets of spikes, the
results from the above mentioned protocols can be surprisingly well reproduced.
Moreover, we show that our triplet learning rule elicits input selectivity analogous
to that of the Bienenstock-Cooper-Monro (BCM) theory (Bienenstock, Cooper, and
Munro 1982).

Claiming that triplet of spikes are more relevant than pairs of spike is not enough

2
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to construct a model of synaptic plasticity. It is also necessary to determine how
those pairs or triplets of spikes integrate. For both the pair-based models and the
triplet-based models, we will consider the case where a presynaptic spike interacts
with all previous postsynaptic ones or vice versa (we will call this, the All-to-All in-
teraction) (Gerstner, Kempter, van Hemmen, and Wagner 1996; Kempter, Gerstner,
and van Hemmen 1999; Song, Miller, and Abbott 2000; Kistler and van Hemmen
2000) and the case where only neighboring spikes are to taken into account (Nearest-

Spike interaction) (van Rossum, Bi, and Turrigiano 2000; Bi 2002; Izhikevich and
Desai 2003; Burkitt, Meffin, and Grayden 2004; Pfister and Gerstner 2006).

In this study, we will show that a Nearest-Spike interaction scheme does not
rescue classical STDP pair-based models. However, if we go from pair-based STDP
rules to triplet models, both Nearest-Spike and the All-to-All interactions are possi-
ble. We will have a slight preference for the All-to-All interaction because it allows
a better fit to quadruplets experiments.

2 Material and Methods

2.1 Synaptic Learning Rule

In this paper, we study a new triplet-based model of STDP and compare it to
classical pair-based STDP models. Traditional mechanistic models of STDP in-
volve a small number of variables that are updated by pre- and postsynaptic firing
events (Kistler and van Hemmen 2000; Karmarkar and Buonomano 2002; Abar-
banel, Huerta, and Rabinovich 2002; Gerstner and Kistler 2002). The new triplet
rule is formulated in such a framework.

In order to introduce the variables used in our model, let us consider the process
of synaptic transmission. Whenever a presynaptic spike arrives at an excitatory
synapse, glutamate is released into the synaptic cleft and binds to glutamate recep-
tors. Let r1 denote the amount of glutamate bound to a postsynaptic receptor. The
variable r1 increases whenever there is a presynaptic spike and decreases back to
zero otherwise with a time constant of τ+. This can be written as

dr1(t)

dt
= −

r1(t)

τ+

if t = tpre then r1 → r1 + 1 (1)

Here, tpre denotes the moment of spike arrival at the presynaptic terminal. The
units of r1 are chosen such that glutamate binding increases by one unit upon spike
arrival. We emphasize that r1 is an abstract variable. Instead of glutamate binding,
it could describe equally well some other quantity that increases upon presynaptic
spike arrival. We call r1 a detector of presynaptic events.

Instead of having only one process triggered by a presynaptic spike, it is possible
to consider several different quantities which increase in the presence of a presynaptic
spike. In our model, we will consider two different detectors of presynaptic events,
namely r1 and r2. The dynamics of r2 is analogous to that of r1 except that its time

3
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constant τx is larger than τ+. Similarly, we assume that each postsynaptic spike
tpost induces an increase of two different quantities that we will denote o1 and o2.
Potential interpretations of o1 and o2 are given below. In the absence of postsynaptic
spike, these postsynaptic detectors decrease their value with a time constant τ− and
τy, respectively. Formally, this gives

dr2(t)

dt
= −

r2(t)

τx
if t = tpre then r2 → r2 + 1

do1(t)

dt
= −

o1(t)

τ−
if t = tpost then o1 → o1 + 1

do2(t)

dt
= −

o2(t)

τy
if t = tpost then o2 → o2 + 1 (2)

We do not want to identify the variables r1, r2, o1 and o2 with specific biophysical
quantities. Candidates of detectors of presynaptic events are, e.g., the amount of glu-
tamate bound (Karmarkar and Buonomano 2002) or the number of NMDA receptors
in an activated state (Senn, Markram, and Tsodyks 2001). Postsynaptic detectors
o1 and o2 could represent the influx of calcium concentration through voltage-gated
Ca2+ channels and NMDA channels (Karmarkar and Buonomano 2002) or the num-
ber of secondary messengers in a deactivated state of the NMDA receptor (Senn
et al. 2001), or the voltage trace of a back-propagating action potential (Shouval,
Bear, and Cooper 2002).

Since our present model is formulated as a mechanistic model, it is possible
to define changes of synaptic efficacies for our triplet learning rule with All-to-All
interactions as a function of those four detectors without making any assumption
on the biophysical quantities they represent. We assume that the weight decreases
upon presynaptic spike arrival by an amount that is proportional to the value of the
postsynaptic variable o1, but depends also on the value of the second presynaptic
detector r2. Hence presynaptic spike arrival at time tpre triggers a change given by

w(t) → w(t)− o1(t)
[

A−

2 + A−

3 r2(t− ε)
]

if t = tpre (3)

Similarly, a postsynaptic spike at time tpost triggers a change that depends on
the presynaptic variable r1 and the second postsynaptic variable o2:

w(t) → w(t) + r1(t)
[

A+
2 + A+

3 o2(t− ε)
]

if t = tpost (4)

Here A+
2 and A−

2 denote the amplitude of the weight change whenever there is
a pre-post pair or a post-pre pair. Similarly A+

3 and A−

3 denote respectively the
amplitude of the triplet term for potentiation and depression (see Fig. 1A). All
those 4 amplitude parameters are assumed to be greater or equal to zero. ε is a
small positive constant in order make sure that the weight is updated before the

4
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Figure 1: Schematic description of the triplet learning rules. A. Schematic descrip-
tion of the terms contributing to long-term depression (LTD) controlled by A−

2 and
A−

3 and the two long-term potentiation (LTP) terms controlled by A+
2 and A+

3 . A
presynaptic spike after a postsynaptic one (post → pre) induces LTD if the temporal
difference is not much larger than τ− (pair term, A−

2 ). The presence of a previous
presynaptic spike gives a further contribution (2-pre-1-post triplet term, A−

3 ) if the
interval between the two presynaptic spikes is not much larger than τx. Similarly, the
triplet term for LTP depends on 1 presynaptic spike, but 2 postsynaptic spikes. The
presynaptic spike must occur before the second postsynaptic one with a temporal
difference not much larger τ+. B. Time course of detectors of pre- and postsynaptic
events r1, r2, o1 and o2. The presynaptic variables r1 and r2 are increased by a fixed
amount upon arrival of a presynaptic spike. Analogously, postsynaptic variables are
updated upon presynaptic firing. With All-to-All interactions, each postsynaptic
spike interacts with all previous postsynaptic spikes and vice versa, i.e. the internal
variables r1, r2, o1 and o2 accumulate over several postsynaptic spike timings. The
red and blue dots denote the values of those internal variables “read” by the triplet
model whenever a spike occurs; e.g. the value of the postsynaptic variable o1 is
“read out” at the moment of presynaptic spike arrival leading to synaptic depres-
sion proportional to the momentary value of o1 (blue dot). Similarly, the value of
the presynaptic variable r1 and the postsynaptic variable o2 are “read out” at the
moment of the second postsynaptic spike and determine the amplitude of synaptic
potentiation. C. Same as in B, but with Nearest-Spike interactions: the extension
of the spike interaction is restricted to the last spike; no accumulation occurs.
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detectors r2 or o2. In other words, r2 is zero unless a previous presynaptic spike has
led to an increase of r2. This ensures the detection of spike triplets.

Fig. 1B illustrates how 1-pre-2-post triplets are detected by the learning rule. At
the time of a postsynaptic spike, the learning rule “reads” the value of the second
postsynaptic variable o2 just before the spike (see red dot at time tpost−ε in Fig. 1B)
as well as the value of the presynaptic detector r1 (see blue dot at time tpost in
Fig. 1B) and increases the weight by an amount A+

2 r1(t
post) + A+

3 r1(t
post)o2(t

post−ε).
Note that if we set A+

3 = 0 and A−

3 = 0, the model becomes a classical pair-
based STDP model (Gerstner, Kempter, van Hemmen, and Wagner 1996; Kempter,
Gerstner, and van Hemmen 1999; Song, Miller, and Abbott 2000; Kistler and van
Hemmen 2000). This pair-based STDP model was used for the results of Fig. 2. It
should be further noted that the two extra triplet terms vanish if a single spike pair
is presented or if spike pairings are repeated at low frequency. This means that in
the limit of low frequency, the classical pair-based learning rule is identical to this
triplet learning rule.

The triplet learning rule of Eqs. (3) and (4) can also describe a Nearest-Spike
interaction scheme if we redefine the update rule of pre- and postsynaptic detectors.
Instead of simply low-pass filtering the spike trains, i.e. adding the effects of all
spikes, the detector variables saturate at 1, i.e. 0 ≤, r1, r2, o1, o2 ≤ 1. This is
achieved by updating the variables to the value of 1 instead of updating by at step
of 1. In this way, the synapse forgets all other previous spikes and keeps only the
memory of the last one (see Fig. 1C).

In this paper we consider first a full triplet model which takes into account all
the four terms of Eqs. (3) and (4). Then, we will see that only some of the terms
are really necessary. This is why we define two different minimal models. The first
one is intended to fit the visual cortex data and disregards two terms i.e. A+

2 = 0
and A−

3 = 0. For the hippocampal culture data set we consider a slightly different
minimal model which disregards only one term, i.e. A−

3 = 0.
In principle, the amplitude parameters A+

2 , A−

2 , A+
3 and A−

3 could change on a
slow time scale. For example, similar to the threshold in the BCM rule, those pa-
rameters could, because of homeostatic processes, depend on the mean postsynaptic
firing rate ρ̄y averaged over a time scale of 10 minutes or more.

2.2 Protocols

In order to compare our model to experimental data, we followed three different
experimental protocols (see Fig. 2) in which the synaptic weight changes as a func-
tion of the pre- and postsynaptic spike statistics. The forth protocol is of a more
theoretical value in the sense that it can be compared to the BCM learning rule
which has interesting computational properties.

Pairing Protocol. (see Fig. 2A). This is the classical STDP protocol (Markram,
Lübke, Frotscher, and Sakmann 1997; Zhang, Tao, Holt, Harris, and Poo 1998; Bi
and Poo 1998; Bi and Poo 2001; Sjöström, Turrigiano, and Nelson 2001; Froemke
and Dan 2002). N = 60 pairs of pre- and postsynaptic spikes shifted by ∆t are
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Figure 2: Failure of pair-based STDP learning rules. In all four subgraphs, black
lines or symbols denote experimental data, blue lines correspond to the All-to-All
pair model and the red lines to the Nearest-Spike pair model (see text for details).
A. Weight change in a pairing protocol as a function of the frequency ρ (solid lines:
∆t = +10 ms, dashed lines: ∆t = −10 ms) . Black lines and data points (with
errors) redrawn from Sjöström (2001).The experimental data are neither reproduced
at high nor at low values of the repetition frequency ρ. B. Quadruplet protocol.
Black circles are redrawn from Wang et al. (2005). C. Triplet protocol for the
pre-post-pre case and D for the post-pre-post case. Black dots in B and black bars
(and standard errors) in C and D from Wang et al. (2005). The asymmetry of
the experimental results (no potentiation for (∆t1, ∆t2) = (5 ms,−5 ms) in C but
strong potentiation for (−5 ms, 5 ms) in D is not captured by the pair-based models.
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elicited at regular intervals of 1/ρ. The interest of the study of Sjöström, Turrigiano,
and Nelson (2001) is that the authors analyzed, in this pairing protocol, the weight
change as a function of the frequency ρ for a fixed ∆t. Changing the frequency ρ
is a good way to check the validity of a model, especially at high frequency where
many spikes are potentially in the temporal range of interaction.

It should be noted that the amount of potentiation for a pre-post (∆t = 10 ms)
pair reported in (Wang, Gerkin, Nauen, and Bi 2005) is significantly lower than the
one originally measured (Bi and Poo 1998) under the same conditions. As mentioned
in (Wang et al. 2005), this can be accounted for by the difference in initial synaptic
strength which was higher in (Bi and Poo 1998). In order to test our model on a
consistent set of data, we took the measurements of Wang et al. (c.f. sup. Fig. 1 of
Wang et al. 2005), i.e. ∆w ' 0.25± 0.05 for ∆t = +10 ms and ∆w ' −0.17± 0.05
for ∆t = −10 ms. Data from Wang et al. (2005) including error bars are redrawn
in Fig. 3. Since the potentiation and depression time constant are not present in
(Wang et al. 2005), we took τ+ = 16.8 ms and τ− = 33.7 from (Bi and Poo 2001).

Triplet Protocol. The first triplet protocol (see Fig. 2C) consists of N = 60
sets of three spikes repeated at a given frequency ρ = 1 Hz. Each triplet consists of
two presynaptic spikes and one postsynaptic spike characterized by ∆t1 = tpost−tpre

1

and ∆t2 = tpost − tpre
2 where tpre

1 and tpre
2 are the first and second presynaptic spike

of the triplet.
The second triplet protocol (see Fig. 2D) also consists of N = 60 triplets. The

only difference is that each triplet consists of 1 pre and 2 postsynaptic spikes. In
this case ∆t1 = tpost

1 − tpre and ∆t2 = tpost
2 − tpre where tpost

1 and tpost
2 are respectively

the first and second postsynaptic spike of the triplet.
Experiments with such a triplet protocol have been performed by Froemke and

Dan (2002) in L2/3 pyramidal neurons of the rat visual cortex and by Wang et al.
(2005) in hippocampal cultures. In order to have a consistent and broad data set, i.e.
pair, triplet and quadruplet experiments, we decided, in the present study, to focus
only on the data of Wang et al. (2005) (since we did not find enough quantitative
information about quadruplets in (Froemke and Dan 2002)).

Quadruplet Protocol. (see Fig. 2B) This protocol consists of N = 60 quadru-
plets at frequency ρ = 1 Hz. It was used by Wang et al. (2005) and is characterized
as follows: a post-pre pair with a delay of ∆t1 = tpost

1 − tpre
1 < 0 is followed af-

ter a time T by a pre-post pair with a delay of ∆t2 = tpost
2 − tpre

2 > 0. When
T is negative, the opposite happens. A pre-post pair (∆t2 = tpost

2 − tpre
2 > 0) is

followed by a post-pre pair (∆t1 = tpost
1 − tpre

1 < 0). Formally, T is defined by
T = (tpre

2 + tpost
2 )/2− (tpre

1 + tpost
1 )/2. Throughout this paper, we took ∆t = −∆t1 =

∆t2 = 5 ms.
Poisson Protocol. The pre- and postsynaptic spike trains are Poisson spike

trains with firing rate ρx and ρy respectively. The interest of such a protocol is that it
is possible to establish a link with the BCM learning rule (Bienenstock, Cooper, and
Munro 1982) which has attractive theoretical properties. Indeed, this learning rule
was originally used to explain the emergence of orientation selectivity in the visual
cortex. Even if this protocol has less experimental support than the other protocols,

8
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some aspects of it have been indirectly measured in the visual cortex (Kirkwood,
Rioult, and Bear 1996) and in hippocampal slice (Dudek and Bear 1992; Artola,
Bröcher, and Singer 1990).
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Figure 3: The triplet learning rule can reproduce the STDP learning window. Weight
change induced by a repetition of 60 pairs of pre- and postsynaptic spike with a delay
of ∆t at a repetition frequency of 1 Hz. A. Weight change as a function of the time
difference between post- and presynaptic spike timing for the full triplet model and
B for the minimal triplet model. The parameters taken for the triplet models are
those which correspond to the hippocampal culture data. See table 3. Experimental
data points and standard errors redrawn from Wang et al. (2005).

2.3 Data Fitting

In order to fit the amplitude parameters A+
2 , A−

2 , A+
3 , A−

3 and the time constants
τx and τy (τ+ = 16.8 ms and τ− = 33.7 ms are kept fixed), we calculated the total
weight change ∆wmod

i for a given pairing or triplet protocol and compared it to the
experimental value ∆wexp

i . For the optimization of the parameters, we performed a
minimization of the normalized mean-square error E defined by

E =
1

P

P
∑

i=1

(

∆wexp
i −∆wmod

i

σi

)2

(5)

where ∆wexp
i and σi are the experimental mean weight change and standard error

of the mean weight change for a given data point i. P is the number of data points
within a data set; P = 10 for the visual cortex data set (see table 1) and P = 13
for the hippocampal culture data set (see table 2). ∆wmod

i is the weight change for
a given model (pair or triplet model).
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∆t = 10 ms ∆t = −10 ms

ρ = 0.1 Hz -0.04 ± 0.05 -0.29 ± 0.08
ρ = 10 Hz 0.14 ± 0.1 -0.41 ± 0.11
ρ = 20 Hz 0.29 ± 0.14 -0.34 ± 0.1
ρ = 40 Hz 0.53 ± 0.11 0.56 ± 0.32
ρ = 50 Hz 0.56 ± 0.26 0.75 ± 0.19

Table 1: Experimental weight change ∆w as a function of the delay ∆t = tpost− tpre

induced by a pairing protocol in the visual cortex. Those values are used for the
fitting of the pair-based and triplet-based models of visual cortical neurons. Data
from Sjöström (2001).

pairing quadruplet
∆w ∆t [ms] ∆w T [ms] ∆t [ms]

0.25±0.05 10 -0.003±0.03 -88.5 5
-0.17± 0.05 -10 0.06±0.04 83.7 5

0.21± 0.04 20 5

triplet (2-pre-1-post) triplet (1-pre-2-post)
∆w ∆t1 [ms] ∆t2 [ms] ∆w ∆t1 [ms] ∆t2 [ms]

-0.01± 0.04 5 -5 0.33±0.04 -5 5
0.03± 0.04 10 -10 0.34±0.04 -10 10
0.01± 0.03 15 -5 0.22± 0.08 -5 15
0.24± 0.06 5 -15 0.29± 0.05 -15 5

Table 2: Experimental weight change ∆w as a function of the relative spike tim-
ing ∆t, ∆t1, ∆t2 and T induced by pairing, triplet and quadruplet protocols in
hippocampal cultures. Those data are used for the fitting of the pair-based and
triplet-based models of hippocampal culture neurons. Data from Wang et al. (2005).
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2.4 Numerical Procedures

The weight change ∆wmod for a given model and a given protocol can be either
simulated numerically with Eqs. (1) - (4) or calculated analytically. See appendix A
for an example of analytical calculation of the weight change of the triplet model
applied to the pairing protocol with Nearest-Spike interactions.

In the present paper, the weight changes predicted by all different models (pair-
based models, minimal and full triplet-based models with both Nearest-Spike and
All-to-All interactions) have been calculated analytically and then evaluated nu-
merically with Matlab on a Sun machine. The normalized mean-square error E of
Eq. (5) has been minimized with the Matlab built-in function lsqnonlin which uses a
reflective Newton method.

3 Results

3.1 Standard Pair-Based STDP Models Fail to Reproduce

Frequency Effects

In a first series of experiments, we applied a classical pair-based STDP learning
rule (c.f. Eqs. (3) and (4) with A−

3 = 0 and A+
3 = 0) to the pairing protocol

with 60 pairs of pre and postsynaptic spikes (see Material and Methods section).
Obviously, the weight change predicted by the model depends on the precise choice
of the parameters A+

2 , A−

2 , τ+ and τ−. We therefore set those parameters in such
a way that the normalized mean square error E across all experimental protocols
is minimal (see Eq. (5)). We find that even with the best set of parameters, the
classical STDP model fails, for both the All-to-All interaction and the Nearest-Spike
interaction, to reproduce the experimental data (see Figure 2A). This is due to the
following reasons.

First, as pointed out by Sjöström et al. (2001), a surprising aspect of their
finding is that at low repetition frequency ρ there is no potentiation. This can
not be captured by standard pair-based STDP models, since for any choice of the
parameter A+

2 > 0, the pair-based model induces LTP if a presynaptic spike precedes
a postsynaptic one by a few milliseconds.

Secondly, as we can see in Fig. 2, for ∆t > 0 potentiation increases when fre-
quency increases. This behavior can also not be reproduced by classical STDP
models. Indeed, in pair-based STDP models, as soon as the frequency increases,
the pre-post pairs approach each other and generate an interaction between the
postsynaptic spike of one pair and the presynaptic spike of the next pair. The ef-
fect of these post-pre pairs should increase with frequency and therefore depress the
synapse, which is what is seen in experiments. Therefore classical pair-based model
fail to reproduce the pairing experiment of Sjöström et al. (2001).

It should be noted that the absence of potentiation at low frequency is in direct
conflict with the results of (Bi and Poo 1998; Zhang, Tao, Holt, Harris, and Poo 1998;
Froemke and Dan 2002) where there is a reasonable potentiation at low frequency.
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Since the preparation of Sjöström et al. (2001) is different from the one of Bi and
Poo (1998) and Wang et al. (2005) and the results in conflict, it seems natural to
use different parameters in our model for each data set.

3.2 Standard Pair-Based STDP Models Fail to Reproduce

Triplet and Quadruplet Experiments

A second evidence of the limits of pair-based STDP learning rules is the following.
In triplet experiments (see Fig. 2C,D), there is a clear asymmetry between a pre-
post-pre and a post-pre-post experiment. For example, 60 repetitions of a pre-post-
pre triplet with relative timing (∆t1, ∆t2) =(5 ms, -5 ms) yields no weight change
whereas the same number of repetitions of a post-pre-post triplet with (∆t1, ∆t2) =(-
5 ms, 5 ms) yields a weight change of approximately 30%. However, any pair-based
model would predict the same result for pre-post-pre and post-pre-post experiments
since the same pairs occur. Therefore triplet results cannot be explained by a sum
of a pre-post potentiation term and a post-pre depression term (see Fig. 2C,D).

Finally, the asymmetry present in the quadruplets experiments (see fig. 2B) also
causes some problems for pair-based STDP models. A quadruplet consists of a pre-
post-post-pre sequence or a post-pre-pre-post sequence and |T | denotes the interval
between the first and last pair of spikes within the quadruplet (see Material and
Methods for more details). In a pair-based model with All-to-All interactions and
for a given interval |T | between the pairs, the weight changes for post-pre-pre-post
and pre-post-post-pre are strictly identical due to the symmetry of the protocol and
the symmetry of the All-to-All interaction. The weight change predicted by a pair-
model can therefore not explain the asymmetry seen in the data. With Nearest-Spike
interactions, the situation gets even worse: pre-post-post-pre quadruplets consist of
two pre-post pairs and one post-pre term whereas for the post-pre-pre-post case,
the opposite occurs: two post-pre pairs and only one pre-post pair, therefore the
Nearest-Spike interaction scheme leads to an asymmetry that is opposite to the one
found in experiments (see Fig. 2B).

3.3 Triplet Rule

So far, we have seen that standard pair-based STDP models fail to reproduce fre-
quency effects of the pairing protocol as well as triplet and quadruplet experiments.
This is mainly due to the fact that pair-based models are intrinsically symmetric, in
the sense that they predict the same weight change for a pre-post pair followed by a
post-pre pair with the same delay ∆t as for the inverted order, i.e. a post-pre pair
followed by a pre-post pair (with the same delay ∆t). However, there is no a priori

reason to think that a pre-post-pre and a post-pre-post triplet should give the same
result since they will activate different pre- and postsynaptic pathways.

We therefore included extra terms in the learning rule in order to break the
symmetry induced by pair-based models. Specifically, we added a triplet depression
term (i.e. a 2-pre-1-post term) as well as a triplet potentiation term (i.e. a 1-pre-
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2-post term); see Material and Methods for more details. We call this model a full

triplet model since it includes both pair terms and triplet terms. The full triplet
model is described by 8 parameters: 4 amplitude parameters A−

2 , A+
2 , A−

3 and A+
3

and 4 time constants: τ+, τ−, τx and τy. Note that pair-based models are described
by 4 parameters (A−

2 , A+
2 ,τ+, τ−).

In analogy to our approach in the previous subsection, we applied our triplet
model to the protocols described in Material and Methods. More precisely, we cal-
culated analytically for each protocol the weight change predicted by our triplet
learning rule (see appendix A for an example of explicit expression of the weight
change). As before, we want our triplet learning rule to fit as best as possible the
experimental data of Sjöström et al. (2001) or Wang et al. (2005). We therefore
minimized the normalized mean square error across all data points of a given data
set (see table 1 or 2) by adjusting the 8 parameters mentioned above. The resulting
parameters are summarized in table 3.

As a first test for the triplet learning rule, we checked if it can reproduce the
biphasic learning window observed by Bi and Poo (1998). Our triplet learning rule
succeeds to reproduce the classical STDP learning window (see Fig. 3) since the
triplet terms specific to our model play a minor role at a fixed low frequency.

3.4 Triplet Learning Rules can Reproduce Frequency Ef-

fects

In this section, we study the pairing protocol used by Sjöström et al. (2001) in visual
cortex, i.e., we apply 60 pairs of pre- and postsynaptic spikes at a given frequency
ρ. As we can see in Fig. 4A, our full triplet learning rule succeeds to reproduce
frequency effects of the pairing protocol. Indeed, the two main problems of the
pair-based STDP models explained in section 3.1 for the pairing protocol are solved
by the triplet model for the following reasons. First, the absence of potentiation
at low frequency is achieved by setting A−

2 to a low value; second, the increase
of potentiation with frequency is implemented via the triplet potentiation term
controlled by A+

3 which has a stronger effect than the triplet depression term A−

3 ;
see table 3A. Thus our model can explain results at different frequencies without an
explicit “potentiation wins” mechanism suggested previously (Sjöström et al. 2001;
Wang et al. 2005).

Since some of the optimized parameters of the triplet learning rule have values
close to zero, we concluded that the terms controlled by these parameters can be
neglected. This allowed us to define a minimal triplet model with less parameters.
The first parameter we can easily drop is the amplitude A+

2 of the pair potentiation
term since it is extremely small in both the All-to-All and Nearest-Spike interaction
scheme (see table 3A). The second parameter we neglect is A−

3 . This is possible
for the following reason. In the All-to-All interaction scheme we have A−

3 � A−

2 ,
therefore the effect of the triplet depression term is negligible compared to the
depression induced by spike pairs.

Results with the minimal triplet model show good agreement with experimental
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Figure 4: The full triplet learning rule succeeds to reproduce the pairing experiment
and most of the triplet and quadruplet experiments. In all four subgraphs, black
lines or circle denote experimental data, blue lines correspond to the All-to-All pair
model and the red lines to the Nearest-Spike pair model. A. Weight change in a
pairing protocol as a function of the frequency ρ (solid lines: ∆t = +10 ms, dashed

lines: ∆t = −10 ms) . Black lines and data points (with errors) redrawn from
Sjöström (2001). B. Quadruplet protocol. Black circles are redrawn from Wang et
al. (2005). C. Triplet protocol for the pre-post-pre case and D for the post-pre-post

case. Black dots in B and black bars (and standard errors) in C and D from Wang
et al. (2005). The triplet-based models succeed to reproduce the asymmetry in
triplets protocols (no potentiation for (∆t1, ∆t2) = (5 ms,−5 ms) in C and strong
potentiation for (−5 ms, 5 ms)) in D: for those triplets the model results (with All-
to-All interactions) are within 1.1 σ (standard error of experimental data) whereas
the results of the pair-based models are off by more than 4 σ
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data (see Fig. 5A). Hence the minimal model with 5 parameters can explain the
visual cortex data that the classical pair-based STDP model with 4 parameters fails
to explain.

A. Visual cortex data set

Model A
+

2 A
+

3 A
−

2 A
−

3 τx [ms] τy [ms] E

All-to-
All

full 5 · 10−10 6.2 · 10−3 7 · 10−3 2.3 · 10−4 (101) 125 0.33

min. 0 6.5 · 10−3 7.1 · 10−3 0 - 114 0.34

Nearest-
Spike

full 8.8 · 10−11 5.3 · 10−2 6.6 · 10−3 3.1 · 10−3 714 40 0.22

min. 0 5 · 10−2 8 · 10−3 0 - 40 0.34

B. Hippocampal culture data set

Model A
+

2 A
+

3 A
−

2 A
−

3 τx [ms] τy [ms] E

All-to-
All

full 6.1 · 10−3 6.7 · 10−3 1.6 · 10−3 1.4 · 10−3 946 27 2.9

min. 5.3 · 10−3 8 · 10−3 3.5 · 10−3 0 - 40 3.4

Nearest-
Spike

full 4.6 · 10−3 9.1 · 10−3 3 · 10−3 7.5 · 10−9 (575) 47 2.9

min. 4.6 · 10−3 9.1 · 10−3 3 · 10−3 0 - 48 2.9

Table 3: List of parameters used to model for A the visual cortex data set and B the
hippocampal culture data set. In this table the terms “full” and “min.” stand for
full triplet model and minimal triplet model respectively. The additional parameters
τ+ = 16.8 ms and τ− = 33.7 ms are taken from Bi and Poo (2001) and kept fixed
for all models and data sets. In some cases, parenthesis are added in the τx column
in order to indicate that the error function is insensitive to the exact value of τx in
those cases. The last column corresponds to the fitting error given by Eq. (5) and
plotted in Fig. 6.

3.5 Triplet Learning Rules can Reproduce Triplet and Quadru-

plet Experiments

By following the same procedure as the one described in the previous paragraph, we
applied our full triplet learning rule to the second set of data, i.e. the hippocampal
culture data set (Bi and Poo 1998; Bi and Poo 2001; Wang et al. 2005). The
parameters resulting from the minimization of the normalized mean square error
across the pair, triplet and quadruplet data are summarized in table 3.

Our triplet learning rule does not only reproduce the classical STDP learning
window (see Fig. 3), but it also captures the results of most of the triplet and
the quadruplet experiments. See Fig. 4B-D. For example, the asymmetry between
the pre-post-pre ((∆t1, ∆t2) = (5 ms,−5 ms)) and the post-pre-post ((∆t1, ∆t2) =
(−5 ms, 5 ms)) triplets can be well captured by our model. For those two specific
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triplet protocols, the predicted weight change of the full triplet learning rule with All-
to-All interactions is within 1.1 σ (standard error on the mean) off the experimental
mean weight change whereas the pair-based learning predictions are off by more
than 4 σ. We should, however, note that even if our triplet learning rule captures
most of the triplet experiments, the fit is not perfect. For example, the pre-post-pre
(with (∆t1, ∆t2) = (5 ms,−15 ms)) triplet experiment is not well reproduced by our
triplet learning rule (see Fig. 4C and 5C).

With arguments similar to those applied in section 3.4, it is possible to reduce
the complexity of the model. Specifically, we have set A−

3 = 0 as before. However, in
contrast to the above minimal model for visual cortex data, the pair-term controlled
by A+

2 is kept as part of the model, since it is necessary to explain the potentiation at
1 Hz repetition frequency. The resulting weight change of the minimal model applied
to the triplet and quadruplet experiments is depicted in Fig. 5B-D. We emphasize
that the minimal model for the hippocampal data is different from the one used for
the visual cortex data.

In order to compare the pair models and the minimal and full triplet models, we
plotted the fitting error given by Eq. (5) as a function of the number of parameters
in the model (see Fig. 6). The best types of model are those who can predict the
experimental data as well as possible while being as simple as possible (i.e. having
as few parameters as possible). In this sense, the minimal models are the best since
they perform almost as well as the full triplet models while having only one extra
parameter compared to standard pair-based models (two extra parameters for the
hippocampal culture data set).

Finally, for future test of the triplet models, we propose two new protocols that
have not yet been used experimentally. The first protocol consists of pre-post-pre
triplets with relative timing (∆t1, ∆t2) = (5 ms,−5 ms) and the second protocol
consists of post-pre-post triplets with relative timing (∆t1, ∆t2) = (−5 ms, 5 ms).
Triplets are repeated 60 times at different frequencies ρ. Fig. 6C and D depict
the weight change predicted by the minimal triplet models (with All-to-All and
Nearest-Spike interactions) for the two triplet protocols. The models predict a fre-
quency dependence with a positive slope. However, the overall level of potentiation
predicted by the All-to-All model is clearly different from that of the Nearest-Spike
interaction model. Thus the above experimental protocol would allow to test the
triplet models and distinguish between its two variants.

3.6 Triplet Learning Rule Can Be Mapped to the BCM

Learning Rule

Functional consequences of our new triplet model can be studied in two different
ways, i.e. analytically or by numerical simulations. We use a combination of the
two and proceeded as follows. First, we show analytically a close analogy (”map-
ping”) between our triplet model and the traditional BCM theory. As a result of
this mapping, we may conclude that, under random spike arrival with rate ρx, our
triplet model behaves as a BCM model and inherits all its functional properties. In
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Figure 5: Minimal triplet learning rules are almost as good as full triplet learning
rules. In all four subgraphs, black line or circle denote experimental data, blue lines
correspond to the All-to-All pair model and the red lines to the Nearest-Spike pair
model. A. Weight change in a pairing protocol as a function of the frequency ρ
(solid lines: ∆t = 10 ms, dashed lines: ∆t = −10 ms) . Black lines and data points
(with errors) redrawn from Sjöström (2001). B. Quadruplet protocol. Black circles
are redrawn from Wang et al. (2005). C. Triplet protocol for the pre-post-pre case
and D for the post-pre-post case. Black dots in B and black bars (and standard
errors) in C and D from Wang et al. (2005).
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Figure 6: A and B: Comparison between the pair and triplet models. C and D

Predictions of the triplet models. A. Fitting error (c.f. Eq. (5)) for the visual cortex
data set of Sjöström et al. (2001) as a function of the number of parameters in the
model. The minimal model has only one extra parameter compared to a pair-based
model but performs more than 20 times better. B. Fitting error for the hippocampal
data set of Wang et al. (2005). C Predicted weight change (visual cortex) of the
triplet protocol (solid lines: pre-post-pre with (∆t1, ∆t2) = (+5,−5) ms, dot-dashed

lines: post-pre-post with (∆t1, ∆t2) = (−5, +5) ms) with All-to-All interactions
(blue lines) and with Nearest-Spike interactions (red lines). D. Same as in C but
for the hippocampal culture data set. Black bars correspond to the experimental
results also present in subplots C and D of Figs. 2, 4 and 5.
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particular, we expect that our triplet model exhibits synaptic competition leading
to input selectivity as required for receptive field development. In a second step, we
have tested this prediction of input selectivity by numerical simulation.

First, we show that unlike standard pair-based STDP learning rules, our triplet
learning rule can be mapped to the BCM learning rule. If we assume that the pre-
and postsynaptic spike trains have Poisson statistics with ρx and ρy respectively as
firing rate, the expected weight change can be calculated analytically. Intuitively,
we may expect that a triplet term with one pre and two postsynaptic spikes leads
to a weight change that is proportional to the postsynaptic rate and the square of
the presynaptic rate. An analogous argument holds for the other terms. Indeed,
a detailed calculation for the All-to-All triplet learning rule based on Eqs. (1)-(4)
yields an expected weight change:

〈

dw

dt

〉

= −A−

2 τ−ρxρy − A−

3 τ−τxρ
2
xρy + A+

2 τ+ρxρy + A+
3 τ+τyρxρ

2
y (6)

Fig. 7A depicts the expected weight change of Eq. (6) as a function of the postsy-
naptic frequency ρy. The above weight dynamics can be written as a BCM learning
rule. Indeed, the BCM theory requires first that the weight change can be written
as dw/dt = φ(ρy, θ)ρx where φ is such that φ(ρy < θ, θ) < 0, φ(ρy > θ, θ) > 0 and
φ(0, θ) = 0. Our Eq. (6) can satisfy this condition if A−

3 = 0 as is the case for our
minimal triplet models. The second requirement is that the threshold θ between po-
tentiation and depression is proportional to the expectation of the pth power of the
postsynaptic firing rate, i.e. θ = αρ̄p

y where p > 1 (Bienenstock, Cooper, and Munro
1982; Intrator and Cooper 1992). This second requirement can be fulfilled if the
parameters A−

2 and A+
2 depend on the mean firing rate ρ̄y (or powers thereof) of the

postsynaptic neuron. Specifically, we set A−

2 → A−

2 ρ̄p
y/ρ

p
0 as well as A+

2 → A+
2 ρ̄p

y/ρ
p
0.

By doing so the threshold becomes θ = ρ̄p
y(A

−

2 τ− − A+
2 τ+)/(ρp

0A
+
3 τ+τy).

Strictly speaking, ρ̄p
y corresponds to the expectation over the input statistics

of the pth power of the postsynaptic firing rate. Practically, this quantity can be
evaluated online by low-pass filtering ρp

y with a time constant of the order of 10

minutes or more. With this range of time scale, ρ̄p
y can be considered as constant

(i.e. ρ̄p
y ' ρp

0) over the duration of the pairing, triplet and quadruplet protocols we
used in this paper. As an aside, we note that with Nearest-Spike interactions, our
triplet learning rule can almost (but not strictly) be mapped to a BCM learning
rule.

Since the triplet rule shares properties with BCM theory, we expect that it gen-
erates input selectivity if a neuron receives a large number of inputs. Development
of input selectivity is thought be an important property to account for receptive
fields development.

For a numerical illustration of the input selectivity property of the triplet learn-
ing rule, we simulated the following scenario. We assume that our model neuron
receives 100 afferents (1 ≤ i ≤ 100) which are stimulated with Gaussian profiles
νi = 1 Hz + 50 Hz exp(−(i − µ)/2 · 102), i = 1, . . . , 100 whose center µ are shifted
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Figure 7: The triplet learning rule can be mapped to a BCM learning rule. A. In-
stantaneous weight change as a function of the postsynaptic frequency for a minimal
triplet model. (c.f. Eq. (6) with A−

3 = 0). The pre- and postsynaptic spike trains
are Poisson spike trains. The dashed line corresponds to λ = ρ̄p

y/ρ
p
0 = 0.64, solid

line: λ = 1 and dot-dashed line: λ = 1.44. B. Energy landscape produced by the
minimal triplet learning rule (with p = 2 and ρ0 = 10 Hz) in a two-input environ-
ment: ρ1

x = (10 Hz, 0)T and ρ2
x = (0, 10 Hz)T . The presence of two specialized (and

stable) fixed point as well as two unspecialized (and unstable) fixed points is an
essential feature of the BCM learning rule. C. Gaussian stimulation profile across
100 presynaptic neurons. The center of the Gaussian is shifted randomly every 200
ms to one of 10 random positions. Periodic boundary conditions are assumed. D.
Evolution of the 100 weights as a function of time under the stimulation described
in C. After one minute of stimulation, the postsynaptic neuron becomes sensitive to
a stimulation centered around the 70th presynaptic neuron. The parameters taken
in the minimal model are those which correspond to the visual cortex; c.f. table 3.
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randomly every 200 ms (see Fig. 7C) over 10 possible positions. Presynaptic spikes
are generated at time tfi with a rate νi. Each presynaptic spike generates an expo-
nential postsynaptic potential with decay time constant τ = 10 ms, so that the total
potential is u =

∑

i

∑

tfi <t wiε0 exp(−(t− tfi )/τ) where ε0 = 1 mV. The postsynaptic

firing rate increases with the membrane potential according to νpost = 1 Hz + g · u
where g = 10Hz/mV . The neuron is stimulated over 60 seconds while synapses
change according to our triplet learning rule. As we can see in Fig. 7D, the neuron
becomes automatically specialized to one of the 10 input patterns, i.e. the one with
µ = 70. In other words, learning leads to input selectivity, a necessary property for
receptive field development.

It is interesting to note that the dynamics of Eq. (6) can be seen as a gradient
ascent of an objective function L, i.e. ∆w ∝ ∂L/∂w. Let p = 2 and β = A+

3 τ+τy. L
can be written as L = β

3
ρ̄3

y −
β
α
θ2. If the model neuron has only two input afferents

and hence only two synapses, this objective function L (or energy landscape) (see
Fig. 7B) elicits two selective points which correspond to the two maxima of the
function L. The first maximum is at w1 = 1 and w2 = 0 and the second at w1 = 0 and
w2 = 1. The pattern of synaptic weight corresponds therefore to input selectivity,
i.e., the neuron is sensitive to only one of two inputs. Thus the objective function
can be used for a mathematical demonstration of input selectivity. Note that the
objective function exists only if we assume that φ is a function of ρ̄p

y and not ρ̄y
p

(Cooper, Intrator, Blais, and Shouval 2004).

4 Discussion and Conclusion

In this paper we first showed the limitations of the standard pair-based STDP mod-
els in terms of predicting the outcome of several spike-timing based protocols. We
then showed that a triplet learning rule is more suitable to reproduce those experi-
mental protocols, namely, the frequency dependence of the pairing protocol as well
as the triplet and quadruplet protocols. Finally, we showed the link between our
triplet learning rule and the BCM learning rule. We find noteworthy and some-
what unexpected that our detailed modeling of frequency dependence of pair-based
protocols and asymmetries in triplet protocols should lead under the assumption of
Poisson spike trains to a known theoretical rule with well characterized features.

Throughout this paper, we compared the All-to-All interactions versus the Nearest-
Spike interactions for pair-based models as well as for triplet-based models. Even
though Nearest-Spike interactions induce some potentially interesting non-linearities
in pair-based models (van Rossum, Bi, and Turrigiano 2000; Izhikevich and Desai
2003; Burkitt, Meffin, and Grayden 2004) (especially in the Poisson protocol), it is
not possible to make a strict mapping of Nearest-Spike interactions models to the
BCM rule and more importantly pair-based models with Nearest-Spike interactions
fail to reproduce the correct frequency dependence in the pairing protocol as well
as triplet and quadruplet experiments.

Limitations
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Even if our triplet model can capture most of the triplet and quadruplet exper-
iments, it is necessary to keep in mind the kind of experiments this model cannot
reproduce. Since our model predicts weight changes as a function of the spike timing
only, it fails to make any kind of inference for experiments which trigger explicitly
other biophysical parameters such as Ca2+ concentration or postsynaptic membrane
potential. We nevertheless think that this approach is interesting since in one way or
another those biophysical parameters depend on the timings of the pre- and postsy-
naptic spikes. For example, the calcium concentration depends on the timing of the
postsynaptic spike (via the back-propagating action potential) and the presynaptic
spike (via voltage-gated calcium channels and NMDA channels).

Recent experiments (Froemke, Poo, and Dan 2005) show that the shape of the
depression part of the learning window depends on the position of the synapse on the
dendritic tree. Although our model does not include such geometrical properties, it
is possible to account for the position of the synapse by changing explicitly the time
constant τ− (characterizing the LTD part of the learning window) as a function of
the distance between the synapse and the soma.

Even in the context of typical STDP experiments, some aspects are not covered
by our model. In most STDP experiments, plasticity is induced after a repetition
of a fixed number of pairs of pre- and postsynaptic spikes. Clearly the amount
of plasticity depends on the number of pairs. In fact, the amount of potentiation
increases with the number of pairs of pre- and postsynaptic spikes and saturates
at a given value (Senn, Markram, and Tsodyks 2001; Froemke, Tsay, Raad, Long,
and Dan 2006). This saturation is not taken into account in our present model
since the weight dependence is not explicitly mentioned. The dependence upon the
weights can easily be added in the triplet models (the parameters A+

2 , A−

2 , A+
3 and

A−

3 could also depend on w). Even if we have some indications (Bi and Poo 2001;
Wang, Gerkin, Nauen, and Bi 2005) of how synapses change as a function of w,
more experimental data are clearly needed in order to determine the correct weight
dependence. It should be noted that if we add the dependence upon the weight,
there would not be an unambiguous mapping to the BCM theory.

In our present study with the minimal model, we needed to fit 5 parameters for
the first preparation (slice of visual cortex) or 6 parameters for a different prepa-
ration (hippocampal culture), so we had in total 11 parameters to tune. It could
be interesting to define a single model (with less than 11 parameters) where some
parameters, but not all, are shared between the two preparations.

Alternative Interpretations of the Experimental Data

The goal of this paper is to go as far as possible in the prediction of the weight
change with only spike timing and no other neuronal variables or mechanism. It
is interesting to note that our triplet learning rule can reproduce both data that
has been explained by a postsynaptic potential effect (Sjöström, Turrigiano, and
Nelson 2001) or by a suppression effect (Wang et al. 2005). In Sjöström’s exper-
iment, the increased potentiation at high frequency is explained by the increased
membrane potential due to the accumulation of presynaptic inputs whereas in our
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model the increased potentiation is due to the increase of the postsynaptic variable
o2 . Combined with a suitable neuron model, an increased frequency would of course
yield a higher potential on average. Wang et al. (2005) interpreted their triplet and
quadruplet experiment as a result of a suppression mechanism, i.e. if a pre-post
pair is followed by a post-pre pair, the latter depression term suppresses the first
potentiation term (and not the other way round). This phenomenon is captured in
our framework by the extra potentiation due to the 1-pre-2-post triplet term.

Expansion Perspective

It is possible to see pair terms and triplet terms of Eqs. (3) and (4) in a more
general framework (Gerstner and Kistler 2002). From the point of view of pure
spike-timing dependent plasticity, we can say that the instantaneous weight change
is an unknown functional of the presynaptic spike train X and the postsynaptic spike
train Y , i.e. dw/dt = H[X, Y ]. In this framework, a pair-based STDP learning rule
corresponds to the Volterra expansion of H to the second order. In this article,
we pushed the expansion to the third-order and showed that the prediction power
increased a lot with only one or two extra parameters.

It is interesting to note that quadruplets data can be fitted with a triplet rule.
This suggests that third-order terms (triplet terms) are good enough and therefore
there is no need to take into account higher-order terms. It is of course possible
that new experiments will show the limitations of a triplet model and force us to
consider higher-order terms. Clearly, the relevance of such an approach depends on
how far we have to go in the expansion.

The learning rule as it is now does not depend directly on the membrane potential
and therefore cannot reproduce the experiments of Sjöström, Turrigiano, and Nelson
(2001) in which the membrane potential is controlled by the experimentalist. We
should however note that in the framework of the Volterra expansion of the unknown
functional H, it is possible to assume that H depends explicitly on the membrane
potential (Gerstner and Kistler 2002) and therefore capture the voltage dependence
experiments of Sjöström, Turrigiano, and Nelson (2001).

In this paper, we have considered only one pre- and one postsynaptic neuron, in
order to be simple and to make the synaptic change a function of locally available
quantities. There is now partial evidence (see (Bi and Poo 2001) for a review) that
synaptic plasticity does not only depend on the state of the pre- and postsynaptic
neuron. Neighboring synapses can have a direct influence on a given synapse leading
to heterosynaptic plasticity. This could be included in this framework by making
the functional H depend on all presynaptic firing spike trains, i.e. H[X1, . . . , XM , Y ].

Comparison to Other Models

It is interesting to note that our triplet learning rule has some similarities with
the Senn-Markram-Tsodyks (SMT) model (Senn, Markram, and Tsodyks 2001). In
their model, they need a first presynaptic spike in order activate a fraction of NMDA
channels, then a postsynaptic spike to set some secondary messengers in an up-state
and finally a last postsynaptic spike in order to trigger synaptic potentiation. Thus
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their rule essentially consists of a triplet pre-post-post term for potentiation and a
triplet post-pre-pre term for depression. Even if their model makes implicitly use
of triplet terms, it should be noted that the order of spikes is different compared
to our present triplet model. In our present triplet model we need one pre and two
postsynaptic spikes regardless of the order, i.e. it encompasses pre-post-post as well
as post-pre-post triplets of spikes. This difference is of particular importance if we
want to fit the post-pre-post triplet experiments or quadruplet experiments of Wang
et al. (2005). For those protocols the SMT model cannot reproduce the data.

Another model which takes into account a multi-spike interaction is the Froemke-
Dan learning rule (Froemke and Dan 2002). Their model (which is in fact a quadru-
plet model) predicts a synaptic behavior which is in direct contrast with the synaptic
dynamics given by Eqs. (3) and (4). In their model, if a postsynaptic spike precedes
a pre-post pair of spikes, the effective potentiation will decrease as soon as the two
postsynaptic spikes get closer to each other, whereas in our model, the opposite
occurs. This is the main reason why the Froemke-Dan model, under a Poisson
assumption for the pre- and postsynaptic spike trains, predicts an increasing de-
pression as the postsynaptic firing rate increases, as reported by (Izhikevich and
Desai 2003) which seems unplausible in view of the results in Fig. 8C of Sjöström
et al. (2001). It should be noted that the revised suppression model of Froemke,
Tsay, Raad, Long, and Dan (2006) gets around this problem by setting two different
saturation values: one for depression and one potentiation.

Up to this point we have not made any assumption about the cellular processes
that are described by our triplet learning rule. It is known that the amount of poten-
tiation or depression expressed by a synapse depends critically on the concentration
of calcium. Moreover we know that there is a supralinear summation of calcium on
the postsynaptic site when an EPSP precedes an AP (Waters, Larkum, Sakmann,
and Helmchen 2003). From this point of view, two closely spaced postsynaptic spikes
can increase the level of calcium and therefore increase potentiation. This would
correspond to the 1-pre-2-post triplet term of our formalism.

In this study, we showed that a minimal triplet model can capture most, but
not all, aspects of the pairing, triplet and quadruplet experiments. A natural ex-
tension of this study could be to include explicitly the dependence upon biophysical
quantities such as the Ca2+ concentration, the postsynaptic membrane potential or
other neuronal quantities. A more appealing approach would be to consider exist-
ing detailed biophysical models of synaptic plasticity and try to reduce them to a
triplet model and therefore identify the underlying biological quantities of our triplet
model.

A Analytical Calculations for Nearest-Spike In-

teractions

The predicted weight change of a given model for a given protocol can be either
simulated numerically or calculated analytically. As an example of analytical calcu-
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lation, we are showing here the explicit expression of the weight change predicted
by a triplet learning rule with Nearest-Spike interactions for a pairing protocol. The
explicit expression of the weight change is simply obtained by counting the number
pairs and triplets with fixed intervals. For example, in a pairing protocol with N
pairs of pre- and postsynaptic spikes repeated at a frequency ρ with a positive delay
∆t, there are N pre-post pairs separated by ∆t and N − 1 post-pre pairs separated
by ρ−1 −∆t where ρ−1 is the interval between pairs. The weight change ∆w gives

∆w = (N − 1)F2(ρ
−1 −∆t) + (N − 1)F3(ρ

−1, ρ−1 −∆t)

+ NG2(∆t) + (N − 1)G3(∆t, ρ−1) (7)

For negative ∆t, an analogous argument applies which gives

∆w = NF2(−∆t) + (N − 1)F3(ρ
−1,−∆t)

+ (N − 1)G2(ρ
−1 + ∆t) + (N − 1)G3(ρ

−1 + ∆t, ρ−1) (8)

where F2(s) = −A−

2 exp(−s/τ−) and G2(s) = A+
2 exp(−s/τ+) denote the pair-

based depression kernel and pair-based potentiation kernel respectively, F3(s, s
′) =

−A−

3 exp(−s/τx) exp(−s′/τ−) and G3(s, s
′) = A+

3 exp(−s/τ+) exp(−s′/τy) denote
the triplet-based depression kernel and triplet-based potentiation kernel respectively.

The weight change for other combinations of model and protocol can be cal-
culated in the same way by counting the number of pairs and triplets with given
intervals.

B Poisson Statistics with Nearest-Spike Interac-

tions

In the Nearest-Spike interaction, we have almost a BCM behavior. If we assume
Poisson statistics, i.e. an interval distribution Px(s) = ρx exp(−ρxs) for the presy-
naptic spikes and Py(s) = ρy exp(−ρys) for the postsynaptic spikes, we can calculate
the expectation of the pair terms and the triplet terms of Eqs. (3) and (4), where ρx

and ρy correspond to the pre- and postsynaptic firing rate respectively. For example,
for each postsynaptic spike, the triplet potentiation term gives:

A+
3

∫

∞

0

Py(s)e
−s/τyds

∫

∞

0

Px(s)e
−s/τ+ds =

A+
3 ρxρy

(ρy + αy)(ρx + αx)
(9)

where α+ = τ−1
+ and αy = τ−1

y . All other terms can be calculated in the same
way. This gives
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〈

dw

dt

〉

= −A−

2

ρxρy

ρy + α−
− A−

3

ρ2
xρy

(ρx + αx) (ρy + α−)

+ A+
2

ρxρy

ρx + α+

+ A+
3

ρxρ
2
y

(ρy + αy) (ρx + α+)
(10)

where α− = τ−1
−

and αx = τ−1
x . If we do the same assumption as we did with the

All-to-All interaction scheme, i.e. A−

3 = 0 and we further assume that ρx � α+ (in
our case ρx � 60Hz), we can satisfy the first constraint of a BCM learning rule, i.e.
dw/dt = φ(ρy, θ)ρx, but we cannot satisfy the second one. It is impossible to redefine
the amplitude parameters in such a way that the threshold becomes proportional to
ρ̄p

y. Note that this does not mean that the learning rule Eq. (10) cannot elicit the
properties of a BCM learning rule, such as input selectivity. In fact, this learning
rule has still the input selectivity property, but only for a limited range of input
frequencies.
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CHAPTER 3

Discussion

3.1 Summary of the Results

Synapses are dynamic and change as function of locally available quantities. In this thesis,

we developed several models on synaptic plasticity that mainly depend on the timings of

pre- and postsynaptic spikes as locally available quantities. Are there fundamental principles

that help us to understand why synaptic strength changes as a function of the time difference

between the pre- and postsynaptic spike in a way depicted by Fig. 1.1? What is the synaptic

functional role which governs its dynamics? This question was addressed by the first five

papers. The two first papers dealt with supervised scenarios, while the papers III - V studied

unsupervised scenarios.

The second question we asked in this thesis was the following. What is the simplest

description of STDP experiments? Is this description consistent with experiments that con-

sists of pairs of spikes, triplets or quadruplets of spikes? Is the description still valid if the

repetition frequency of the pairs increases? Those questions were addressed in papers VI and

VII.

In the next sections, we will review the main results of the optimal models (papers I-V)

and the phenomenological models (papers VI-VII). We will then discuss the limitations of

our approaches and finish with some propositions of future developments.

173



174 CHAPTER 3. DISCUSSION

STDP is the Best Rule that Achieves Temporal Precision

In the supervised scenarios of the two first papers, we have shown that the best learning

rule that maximizes the probability of firing at precise times, while not firing (or not firing

more than background activity) at other times is similar to the STDP learning window. In

the last scenario of paper II, we have shown that STDP makes the postsynaptic neurons,

the best detector neurons. Indeed, we have shown that the learning rule that maximizes

the probability of firing at given times (and not at the other times) when a specific input

pattern is presented and minimizes the probability of firing when other inputs are presented,

is similar to the STDP learning rule if an extra locality constraint is assumed.

As mentioned in the discussion part of paper II, the main interest of such an approach is

the link to reinforcement learning. If 〈R〉x,y =
∑

x,y R(x, y)P (y|x)P (x) denotes the expected

reward that should be maximized through learning, where P (y|x) is the probability of having

a postsynaptic spike train y for a given input x, it is straightforward to calculate the gradient

of 〈R〉x,y with the formalism of paper I. A similar formalism has already been proposed by

Xie and Seung (2004) in the context of reinforcement learning, but they did not calculate

the corresponding optimal learning window. See also appendix B.1 for a detailed description

of the relation to the tempotron (Gütig and Sompolinsky 2006).

Infomax + Homeostatic Constraint Leads to BCM

We have shown in paper IV, that the maximization of information between input and output

under an homeostatic constraint leads to the BCM learning rule. Even if the relation between

infomax and BCM has already be made (Nadal and Parga 1997), our approach sheds some

light on the problem. Indeed, in our framework, the homeostatic constraint is the essential

element which drives the non-linear dynamics of the BCM threshold.

Moreover, the learning rule of paper IV has interesting properties that cannot be captured

by the BCM learning rule. Indeed, the BCM learning rule is rate-based learning rule and

can not elicit properties such as sensitivity to spike-spike correlations which is captured by

the learning rule of paper IV.
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Infomax + Constraint Leads to STDP

In the unsupervised scenarios considered in papers III and V, we have shown that the infomax

principle (Linsker 1988) leads to the STDP learning rule. More precisely, in paper III, we

have shown that in the limit of small fluctuations of the membrane potential, the infomax

principle leads to a weight change which is composed of a positive bias and a term which

depends on the time difference between the pre- and postsynaptic spike. This last term can

be compared to the STDP learning window.

In paper V, extra constraints are added in the objective function. We have shown in

this paper that the maximization of an information term and a quadratic weight decay term

is sufficient to elicit a learning rule which is consistent with STDP. The weight decay was

introduced to remove the positive bias induced by the information term. Note that in this

paper we also assumed a homeostatic constraint, but this does not contribute to the derived

learning window.

The weight decay term has also an effect on the stability of the fixed points. In addition

to the specialized weight patterns (bimodal weight distribution) which are also stable in the

BCM formalism, the weight change of V has also a fixed point for non-specialized weight

patterns (unimodal weight distribution). This bistability of unimodal and bimodal weight

distribution is a specificity of the learning rule of V. The stability of the unimodal weight

distribution is useful to prevent the neuron to be selective to an input that came “by chance”.

Triplets are Necessary in Models of STDP

In papers VI and VII, we have shown that the standard pair-based learning rule (which only

depends on the time difference between the pre- and postsynaptic spike) fail to reproduce

experiments during which the repetition frequency between the pairs is changed. Those

pair-based rules also fail to capture triplet and quadruplet experiments.

We have shown that we can construct a triplet model with All-to-All interactions that

consists of a pre-post term, a post-pre term and a 1-pre-2-post term. This triplet model can

reproduce surprisingly well the frequency dependence experiment and can capture most of

the triplet and quadruplet experiments.
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Triplet Learning Rule can be Mapped to BCM

Moreover, this triplet learning rule can be mapped to the BCM learning rule if Poisson

statistics is assumed for the pre- and postsynaptic neuron. The BCM threshold can be

obtained if we assume a specific dependence of the amplitude parameters A−2 , A+
2 (c.f. paper

VII) on the mean postsynaptic firing rate.

τLTP Comes from τEPSP , no Unique Interpretation of τLTD

In all optimal models of papers I-V, the weight change is derived from a different objective

function. This means that the functional role and of course the exact expression of the

learning rule differs from one case to the other. It is however interesting to note that in all

those five papers, the shape of potentiation part of the learning window is essentially given

by the time course of the EPSP. Indeed, the EPSP’s implement the causal relation between

the pre- and postsynaptic events.

The situation is different for the acausal part of the learning window. Indeed, in each

scenario the interpretation of the depression is different. In paper I and in scenarios A and

B of paper II, synapses that transmit a presynaptic spike arriving after the postsynaptic one

should be depressed because of the increased probability of emitting a subsequent spike (due

to the DAP or the depolarizing teaching signal). So depression occurs in order to prevent

the neuron from bursting. In this case, the time constant of the LTD part of the learning

window τLTD is linked to the membrane time constant and eventually to the duration of the

teaching signal if it lasts for a long time.

In scenario C of paper II, synapses are mainly depressed in order to prevent the neuron

to fire when an undesirable input pattern is presented. In this scenario, τLTD comes from

the locality constraint.

In paper III the depression part of the weight change (due to the correlation of pre- and

postsynaptic spike) comes essentially from the refractoriness of the neuron. Intuitively, the

synapse transmits less information when the neuron is in a refractory state than when the

presynaptic spike precedes the postsynaptic one. In paper V, the interpretation is similar.

In this paper, the amplitude of an EPSP is suppressed and hence transmits less information

if it follows a postsynaptic spike. τLTD is therefore related to the EPSP suppression time

constant.
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In all those papers, we it was relatively straightforward to define an objective function

that elicits potentiation in the causal part of the learning window and a global offset (the

simplest example is illustrated by scenario A of paper II, without teaching signal and with

no spike-afterpotential). It was however much more difficult to find scenarios in which de-

pression should be stronger than a given baseline if the presynaptic spike occurs just after

the postsynaptic spike. As proposed by Song et al. (2000), it is still possible that a learning

window with potentiation in the pre-before-post region and a global offset is sufficient to ful-

fill most of the functional role of STDP. From this point of view, depression is concentrated

in the post-before-pre region not for any fundamental reason but for ease of implementation

in the biological substrate.

3.2 Limitations

Panglossian Paradigm

Everything is for the best in the best of all possible worlds.

Voltaire 1759 in Candide

Optimism. This is what the philosophical tale Candide is about. Candide, the main

character of the story, is educated by a tutor, Dr. Pangloss who teaches him a very simplistic

and optimistic theory: “Everything is for the best in the best of all possible worlds”. This

approach which states that “everything is for the best” or is in some sense optimal has been

termed as Panglossian paradigm or adaptationism (Gould and Lewontin 1979).

Since most of this thesis deal with optimal models, let us discuss now the limitations of

those models. There is first a methodological concern we have to address: it is simple to

define an objective function for which a specific feature could be optimal. It is certainly more

difficult to find an objective function that can capture many different features. This point

is somehow related to the overfitting problem. If there are too many different possibilities

to explain a given phenomenon, in our case STDP, it is necessary to add constraints, i.e.

consider other phenomena that have also to be explained by the same rule.

A common mistake (see the criticism of Gould and Lewontin (1979)) is to state that

“because of evolution or natural selection, synaptic dynamic (or any kind of biological mech-
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anism) are in some sense optimal”. This hazardous statement relies on many implicit assump-

tions. First, it assumes that the organisms can be considered as an assemblage of features

(or traits) that can be optimized independently. Second, it considers natural selection as the

only (or the major) actor that forges the properties of the organisms and thirdly it fails to

distinguish the current utility of a feature from its historical reasons for origin.

Finally, a last remark about the optimal models that use the mutual information as an

objective function. Information theory has been developed to describe key features of man-

made communication systems and has demonstrated real efficiency in this domain, but we

should be cautious when applying it to living systems.

As a summary, it is really important to be careful when interpreting the results of those

optimal models. Even if, by definition, they do not have a great power to predict the outcome

of new experiments, they can still be of great interest by giving some general principles or

general guidelines which can help “not to be lost in a mass of irrelevant details” (Barlow

1961).

3.3 Propositions for Future Developments

In paper V, we derived a learning rule which has a bistability property. Both the unimodal

and the bimodal weight distribution are stable. An interesting line of research would be to

look for a minimal model that can reproduce this bistability in order to isolate the essential

elements that cause this bistability. The next step would be then to add biological relevance

of such a model and hence determine what are the biological parameters that need to be

changed in order to get this bistability. Can the neuron dynamically switch on and off this

bistability property? What are the relevant parameters?

The triplet learning rule developed in papers VI and VII, does not have any explicit

dependence upon the weights. In an approach similar to the one of Gütig et al. (2003,

Meffin et al. (2006), it would be interesting to study weight dependence of the amplitude

coefficients (A−2 , A
−
3 , A

+
2 , A

+
3 ) with a Fokker-Planck equation (van Rossum et al. 2000; Rubin

et al. 2001). What are the conditions that lead to a unimodal/bimodal distribution of the

weights? Is there a specific choice of the weight dependence that could lead to a bistability

between unimodal and bimodal weight distribution in a way which similar to paper V? All

this study can be done for the All-to-All interaction scheme; does it make any difference on
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?

?

ICA Infomax BCM Triplets

Figure 3.1: Schematic view of a possible line of research. Solid arrows denote links between

theories that can be found in the literature. Dashed arrows indicate links that remain to be

investigated.

the weight distribution if we assume instead a Nearest-Past-Spike interaction scheme?

A second line of research for those triplet models would be to show the computational

properties of the triplet learning rule (see Fig. 3.1). Is there any relation with independent

component analysis (ICA). What is the relation between the triplet learning rule and the

learning rule that maximizes the mutual information? We have shown in papers VI and VII,

that it is possible to do a mapping from the triplet model to the BCM model. In paper IV,

we have shown a link between the BCM learning rule and the weight dynamics which results

from the mutual information maximization, so there is probably a way to show the link

between infomax and the triplets. It is also known that the ICA algorithm can be obtained

by maximization of the mutual information (Nadal and Parga 1994; Bell and Sejnowski 1995),

so there might be a link between the triplets and ICA.

The research for this plausible link between the triplet learning rule and ICA is also

motivated by the fact that pair-based learning rules lead to principal component analysis

(PCA) (Oja 1982). So perhaps, the transition form “pair” to “triplet” learning rule could

cause a transition from PCA to ICA, which can be seen as a non-linear generalization of the

PCA (Oja et al. 1997).

Finally, it could be interesting to further test the triplet learning rules on different prepa-

rations. Up to now, we used the data from Sjöström et al. (2001) performed in L5 pyramidal

cells of the visual cortex and data from Wang et al. (2005) obtained from measurements in

hippocampal cultures. A lot of recordings have also been done in L2/3 pyramidal neurons of
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visual cortex (Froemke and Dan 2002; Froemke et al. 2006). The triplet experiments in those

last papers give results which are different from the ones in the hippocampal culture. Can

our triplet model still reproduce the experimental results? If we relax the constraint that

all amplitude parameters (A−2 , A
−
3 , A

+
2 , A

+
3 ) should be bigger then zero, the triplet learning

rule might be consistent with those experimental data and therefore give a further indication

that triplets of spike are relevant in the modeling of STDP.

Lausanne, July 3, 2006
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APPENDIX A

Volterra Expansion

A.1 All-to-All Interaction Scheme

In section 1.2.1, we wrote the instantaneous weight change ẇ as

ẇ(t) = H0 +X(t)F [X,Y ] + Y (t)G[X,Y ] (A.1.1)

where F [X,Y ] and G[X,Y ] are unknown functionals of the presynaptic spike train X and the

postsynaptic spike train Y . We wrote in Eqs. (1.2.3) and (1.2.4) the first terms of a Volterra

expansion of those functionals. As already mentioned in the introduction, this framework

corresponds to the All-to-All interaction scheme (c.f. Fig 1.3).

In order to write the general form of a Nearest-Past-Spike interaction scheme, it is

necessary to first write in a compact form the Eqs. (1.2.2), (1.2.3) and (1.2.4). Let xl =

xx . . . x denote a sequence of l presynaptic spike trains X and yl a sequence of l postsynaptic

spike trains Y . In this way we can define F x
lyk−l

k as the kernel governing the interaction of

the order k with l presynaptic spikes and k − l postsynaptic spikes. For example the kernel

Gxyy3 ≡ Gx
1y2

3 in Eq. (1.2.4) governs the interactions between 1 pre and 2 postsynaptic spikes.

Therefore, the weight change of Eq. (1.2.2) can be rewritten as

183
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ẇ(t) = X(t)
∞∑
k=1

k∑
l=1

∫
Ωk−1

F x
lyk−l

k (sk−1)
l−1∏
i=1

X(t− si)
k−1∏
j=l

Y (t− sj)dsk−1

+ Y (t)
∞∑
k=1

k−1∑
l=0

∫
Ωk−1

Gx
lyk−l

k (sk−1)
l∏

i=1

X(t− si)
k−1∏
j=l+1

Y (t− sj)dsk−1 (A.1.2)

where Ω =]0,∞] is the domain of integration and sk−1 = (s1, . . . , sk−1) is a k − 1

dimensional vector. In Eq. (A.1.2), the index k denote the order of interactions. For example,

k = 3 corresponds to spike triplets.

A.2 Nearest-Past-Spike Interaction Scheme

Instead of considering all possible interactions, i.e. all the pair interactions for the second

order, all the triplet interactions for the third order, . . . it is possible to consider only the last

spike before the actual one or the second last spike, . . . . This is what we will call the Nearest-

Past-Spike expansion. Let fx(t) denote the last presynaptic spike before t. Similarly, let fy(t)

denote the last postsynaptic spike before t. Let us further denote fxl(t) = fx(fx(. . . fx(t) . . . ))

the lth presynaptic spike before t and fyl(t) the lth postsynaptic spike before t. Finally, let

fxl = (fx(t), . . . , fxl(t)) be the vector containing the timings of the l previous spikes. With

this notation, we can replace the domain of integration Ωk−1 on the first line of Eq. (A.1.2)

by

Ωl−1,k−l = ]0, fx(t)]×]fx(t), fx2(t)]× · · ·×]fxl−2(t), fxl−1(t)]

× ]0, fy(t)]× · · ·×]fyk−l−1 , fyk−l ] (A.2.1)

and on the second line of Eq. (A.1.2), Ωk−1 is replaced by Ωl,k−l−1. The instantaneous

weight change yields

ẇ(t) = X(t)
∞∑
k=1

k∑
l=1

F x
lyl−k

k (tl−1 − fxl−1, tk−l − fyk−l)

+ Y (t)
∞∑
k=1

k−1∑
l=0

Gx
lyl−k

k (tl − fxl, tk−l−1 − fyk−l−1) (A.2.2)
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where tl = (t, . . . , t) is a time vector with l identical components. As an illustration, the

term Gxyyy4 (t−fx(t), t−fy(t), t−fy(fy(t))) corresponds to the quadruplet term which depends

on the last presynaptic spike, the last postsynaptic spike and the second last postsynaptic

spike.
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APPENDIX B

Comparison with Other Models

B.1 Notes on the Tempotron

Recently Gütig and Sompolinsky (2006) proposed a learning rule which is derived in a similar

context as the one in paper II. This learning rule, termed as the tempotron is intended to

be the generalization of the perceptron learning rule (Minsky and Papert 1969). Indeed, this

rule is a spike-based and not a rate-based learning rule. The idea is the following. The goal

of the tempotron is to classify input patterns into two classes: the class C⊕ and the class C	.

More precisely, after learning the neuron should elicit at least one spike if a pattern x ∈ C⊕

is presented and no spike is a pattern x ∈ C	 is presented.

If the neuron makes a classification error, i.e. generating spikes when x ∈ C	 is presented

and generating no spike in the presence of x ∈ C⊕, the weight wj of synapse j is changed

according to the following rule:

∆wj = α±
∑

tj<tmax

ε(tmax − tj) (B.1.1)

where ε(s) is the EPSP kernel, tj are the presynaptic spike timings of synapse j and α+ = α

is a small positive constant if an input pattern x ∈ C⊕ is presented and no postsynaptic

spike elicited. Conversely α− = −α is a small negative constant if an input pattern x ∈ C	

is presented and at least one postsynaptic spike is generated. If the neuron does not make

any error, the weight wj does not change.
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A more biological plausible version of the tempotron learning rule (c.f. Eq. (B.1.1) has

been proposed by Gütig and Sompolinsky (2006) in order to avoid the calculation of tmax:

∆wj = α±
∑
tj

∫ T

0
f(u(s))ε(s− tj)ds (B.1.2)

where f(u) is an increasing function of the membrane potential. Typically f(u) = u or

f(u) = exp(u).

Here we will show that this learning rule is a very specific case of the reinforcement

learning rule proposed in paper II (c.f. Eq. (31)) as well as the one proposed by (Xie and

Seung 2004). Let 〈R〉 denote the expected reward:

〈R〉 =
∑
x,y

R(x, y)P (y|x)P (x) (B.1.3)

where x and y are respectively the pre- and postsynaptic spike trains on the interval [0, T ].

The gradient ascent learning rule Eq. (B.1.3) yields

∆wj = α
∑
x,y

R(x, y)
∂ logP (y|x)

∂wj
P (y|x)P (x) (B.1.4)

where α is the learning rate. For convenience, let us recall here that for a Poisson neuron

logP (y|x) can be written as (see Eq. (2.6) of paper II):

logP (y|x) =
∫ T

0
log(ρ(s))y(s)− ρ(s)ds (B.1.5)

where ρ(s) = g(u(s)) corresponds to the instantaneous firing rate and is a function of the

membrane potential u(s). The mapping between Eq. (B.1.1) and Eq. (B.1.4) can be seen if

we consider the following reward scheme

R(x, y) =


0 if x ∈ C⊕ and Ny ≥ 1

0 if x ∈ C	 and Ny = 0

−1 if x ∈ C⊕ and Ny = 0

−1 if x ∈ C	 and Ny ≥ 1

(B.1.6)

where Ny =
∫ T

0 y(s)ds is the number of postsynaptic spikes during the interval [0, T ]. In

other words the reward is 0 if the tempotron classifies well and −1 in case of misclassification.
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Replacing Eq. (B.1.6) into Eq. (B.1.4), we get

∆wj = − α
∑

x∈C⊕

∂ logP (0|x)
∂wj

P (0|x)P (x)

− α
∑

x∈C	

∂ log(1− P (0|x))
∂wj

(1− P (0|x))P (x) (B.1.7)

By replacing in the above equation the exact averaging by the empirical averaging, we get

∆wj = α±
∑
tj

∫ T

0
ρ′(s)ε(s− tj)ds (B.1.8)

where ρ′(s) = g′(u(s)) = dg
du |u=u(s). It is now clear that this last equation is identical to the

“biological” version of the tempotron (c.f. Eq. (B.1.2)) if f(u) = g′(u).

In summary, the biological version of the tempotron learning rule is a specific case of the

reinforcement learning rule proposed in paper II. Indeed, among the enormous number of

possible spike trains that could lead to different rewards, the tempotron considers two classes

of output spike trains y: the first class which only contains the case with no spike and the

second class containing all spike trains with at least one spike. From this point of view, the

tempotron considers a spike-code in the input and a kind of rate code in the output.

We should note that the tempotron has been formulated in a deterministic framework

whereas spike generation in papers I and II is stochastic. It is, however, possible to

consider the deterministic limit of the function g(u) and therefore get a purely deterministic

framework, identical to the one of the tempotron; e.g. if g(u) = exp((u − θ)/∆u), the

deterministic limit is obtained if ∆u→ 0.

It is also interesting to note that the kernel ε(s) assumed in the learning rule of Gütig

and Sompolinsky (2006) is identical to the one that describes the EPSP time course. This

is consistent with papers I-III and V which state that the potentiation part of the optimal

learning window is given by ε(s).

B.2 Triplets and the SMT Learning Rule

In the introduction of this thesis (section 1.2.2), we have described the Senn-Markram

Tsodyks (SMT) model of synaptic plasticity. The aim of this appendix is to show how

we can simplify it and get a learning rule which is similar (but not identical) to the triplet



190 APPENDIX B. COMPARISON WITH OTHER MODELS

learning rules developed in paper VI and VII. Let us recall here for convenience the dynamics

of the SMT model:

Ṅu(t) = −N
u(t)
τNu

+ ruN r(t)X(t) (B.2.1)

Ṅd(t) = −N
d(t)

τNd(t)

+ rdN r(t)Y (t) (B.2.2)

Ṡu(t) = −S
u(t)
τSu

+ rSNu(t)(1− Su(t− ε))Y (t) (B.2.3)

Ṡd(t) = −S
d(t)
τSd

+ rSNd(t)(1− Sd(t− ε))X(t) (B.2.4)

ẇ∞(t) = rP (1− w∞(t− ε)) [Su(t+ ε)− θu)]+ Y (t)

− rDw∞(t− ε)
[
Sd(t+ ε)− θd

]+
X(t) (B.2.5)

ẇ(t) =
w∞(t)− w(t)

τM
(B.2.6)

In order to see the relation between the triplet model and the SMT model, we have to

do some simplifying assumptions:

1. (H1). Almost all NMDA receptors are in the recovery state, i.e. N r ' 1

2. (H2). The number of secondary messengers in the up state and down state is small,

i.e. Su ' 0, Sd ' 0.

3. (H3). The threshold of the secondary messengers are zero, i.e. θu = θd = 0.

4. (H4). The weight changes are instantaneous, i.e τM → 0.

From those hypothesis, we get the simplified SMT model named as sSMT:

Ṅu(t) = −N
u(t)
τNu

+ ruX(t) (B.2.7)

Ṅd(t = −N
d(t)

τNd(t)

+ rdY (t) (B.2.8)

Ṡu(t) = −S
u(t)

τSu(t)
+ rSNu(t)Y (t) (B.2.9)

Ṡd(t) = −S
d(t)
τSd

+ rSNd(t)X(t) (B.2.10)

ẇ∞(t) = rP (1− w(t− ε))Su(t+ ε)Y (t)− rDw(t− ε)Sd(t+ ε)X(t) (B.2.11)
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Note that the update of the weight occurs after the update of Su and Sd because of the

dependence upon t + ε where ε > 0. Because of this precise sequence of updates, the first

term on the r.h.s. of Eq. (B.2.11) captures pre-post pairs of spikes as well as pre-post-post

triplets of spikes (c.f. Fig. B.2). If the order is reversed, only pre-post-post triplet of spikes

are considered. Similarly, the second term on the r.h.s. of Eq. (B.2.11) corresponds to a post-

pre sequence as well as a post-pre-pre sequence (see Fig. B.1). The main difference with our

triplet model is that in the SMT model, the pre-post-post sequence leading to potentiation

is imposed whereas in papers VI and VII, the triplet potentiation term corresponds to a

pre-post-post sequence as well as a post-pre-post sequence. Indeed, in the SMT model, the

secondary messengers depend on the number of NMDA receptors in the up and down state

whereas in papers VI and VII, the pre- and postsynaptic detectors are independent; c.f.

Eqs. (1) and (2) in paper VII.

Apart from the order distinction we made in the previous paragraph, Eqs. (B.2.7)-

(B.2.11) correspond to the All-to-All triplet terms of paper VI and VII. Note that if the

assumption H2 is not valid, the level of secondary messengers saturates and hence their

dynamics correspond to a Nearest-Past-Spike interaction scheme. More precisely, the pre-

post part of the pre-post-post term would be of the type All-to-All and the post-post part

of the pre-post-post term would be of the type Nearest-Past-Spike (see Fig. B.1). Similar

arguments apply to the triplet depression term. This mixture of All-to-All and Nearest-Past-

Spike schemes is similar to the type of interactions assumed in the model of Froemke and Dan

(2002). In this paper, an efficacy value is attributed to each a presynaptic (postsynaptic)

spike as a function of the distance to the last presynaptic (postsynaptic) spike; this corre-

spond to Nearest-Past-Spike interactions. Then, the pre- and postsynaptic spikes interact in

an All-to-All interaction scheme.
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Triplet SMT Froemke-Dan

N/A
N/A NN/A

N

N
A

Figure B.1: Comparison between the (left) triplet model of paper VI and VII, (middle) the

simplified SMT (sSMT) model, and (right) the Froemke-Dan model (2002). N and A denote

respectively the Nearest-Past-Spike and the All-to-All interaction scheme. C.f. Fig 1.3.

N/A denotes that both types of interactions are possible. In the sSMT model, the pre-post

interaction is All-to-All if the hypothesis H2 (low level of secondary messengers) is valid and

corresponds to Nearest-Past-Spike if H2 is not valid. Only the triplet potentiation term is

represented.

time

w

w

u

uN

S

t
post
2

pret

t1
post

Figure B.2: Illustration of the pair and triplet effects in the SMT model. The presynaptic

spike (at time tpre1 ) causes an increase of Nu. The two postsynaptic spikes (at time tpost1 and

tpost2 ) cause two subsequent increases of Su. The vertical blue lines correspond to pair effects

while the vertical red lines to triplet effects. The weight w increases at time tpost1 because

the value of Su is read just after the postsynaptic spike, i.e. at time tpost1 + ε: this is a pure

pair effect. At time tpost2 , there is a pair effect as well as a triplet effect.
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